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Introduction 

To understand the dynamic properties of time series, 

macroeconomists frequently calculate impulse response functions, 
which describe the effect of an innovation on future values of 

a series. In classical analyses, point estimates of impulse 

responses are usually reported, but Runkle (1987) argues that 

these can be quite misleading because confidence intervals can 

be quite wide. With a few exceptions, notably Koop (1992) and 

DeJong and Whiteman (1991), few papers have analyzed impUlse 

response functions from a Bayesian perspective. This is 

surprising since Bayesian techniques offer a natural framework 
for dealing with them. 

Frequently, macroeconomists are interested in the properties 

of impUlse responses at long horizons (see for instance, campbell 

and Mankiw (1987) and Lee et al. (1992) and the references 

therein). However, we have demonstrated in a related paper (Koop, 

Osiewalski and Steel (1992), hereafter KOS) how Bayesian long-run 

forecasts can be very sensitive to apparently innocuous 

assumptions made in the prior. Building on our previous research, 

this paper will demonstrate how such sensitivity can also occur 

with impulse responses; specifically, we show that impulse 

responses at some forecast horizons may have density functions 

which have no finite moments and that standard Bayesian 

estimators based on squared error loss functions do not exist. 

The remainder of the paper is organized as follows. Section 

1 presents some theoretical results intended to illustrate how 

impUlse responses at long horizons can be sensitive to seemingly 

innocent prior assumptions. Section 2 presents an empirical 

illustration and Section 3 concludes. 

Section 1: Theoretical Results 

Consider the following ARIMA(p,l,q) model l 

IIn this paper, we consider only univar iate models. But 
similar results will hold for multivariate models such as VARs. 
Furthermore, the presence of nonstochastic terms as in Appendix 
A will not affect the form of the impUlse response function, 
except insofar as it affects the posterior density of the 
parameters. 
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where 

Yt is observed for t=l, ... ,T and we have initial values 

YCO)=(Y.p ,·" ,Yo)'. We assume that {3ER, a=(all •• ,ap)' is an element 

of the stationary region, Cp' and 1)=(1)11" ,1)q)' is an element of 

the union of the invertibility region and the set of points 

allowing for a moving average (MA) root of one. That is, aEcp , 

and 1)ECq"where Ck={xERk : all roots, Zj (j=l, .. ,k), of l-I::XjZj=o lie 

outside the unit circle} and ck"={xERk: all roots, Zj (j=l,"" ,k), 

of 1-I:xj zj=O lie outside or on the unit circle}. 

Using the following one-to-one reparameterization of (1): 

(p 'YI" ''Yp-) '=Gp(cx/ ... a p)' and (A (/>... '(/><1-') '=Gq(1)I. ..1)q)' where Gj is an 

ixi matrix taking the form: 

1 1.. 1 

0-1. . -1 

o o.. -1 

we can write (1) as 

AyC=P +pAYc- 1 +y 1A2Yc _1 + .. +Yp_1A2Yc_rlTl + (2) 
eC-A.€C-l- (4) l Ae c-1 + •• +4>q- 1A€c-q<1) . 

If (1) has an MA unit root of one, then A=l, and (1) collapses 

to a trend-stationary speci f ication for YI: 

YC=$+~t+UC' (3) 
UC=O:lU C- 1 + .• +O:puc_p+ec-4>lec-l-' . -4>q-l€C-qT l' 

In the structural model, (3), the deviations from the linear 

trend then follow a stationary ARMA (p, q-1) process, and the 

reduced form is: 

Y c=Po+P t+O:1Yc-1+ .. +O:pYc-p+ (4) 
e c-4> l e C-l-' • -4>Q"le C- Q <l' 

where 
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P P-1 

PO=lJr (l-p) +~E iai=lJr (l-p) +~ (p-E y), 
i=l i=l 
P=~(l-p). 

Hence, introducing a constant, ~, and allowing for an MA root of 

one in the ARIMA(p,l,q) model keeps open the possibility that 
trend-stationarity will be present. 2 

To calculate impulse response functions we assume that a 

shock of size 0 has occurred in period i (usually i=T+l). 

Macroeconomists are typically interested in the effect of a unit 

shock (0=1)3 at time T+1 on the variable in time T+n, defined as: 

where the notation implicitly assumes that the shock occurs in 

period T+l, and Yr.: is the observable in period T+n conditional 

on a shock of size 1 occurring (i.e. adding unity to f T+,). 
As we show in Appendix A, the impulse response is given by 

q n 
(5 )I T +n=-E 11jE b i _j , 

j.o i'l 

where 7)0=-1 and b,,=O for hsO, b,,==l for h=l, and bh=Qlbh_l+ .. +Qpbh_p for 

h~2. Note that the impulse response is an (n-1)th order 

polynomial in the Q,S, and its posterior distribution depends 

entirely on the marginal posterior distribution of 8=(Q' ~') '. 

Under stationarity, the limit of the sequence of impulse 

responses as the forecast horizon goes to infinity exists and can 

be written as: 

1-'­I T ,,,,,=-- . (6)
l-p 

Note that the derivation of (6) does not require invertibility, 

2Campbell and Mankiw (1987) work with deviations from the 
sample mean of ~y and impose ~=O in their model on page 861. 

3For ARIMA(p,d,q) models impulse response functions are 
independent of the size of the shock (i.e. doubling 0 will merely 
double the impulse response function). Note also that, instead 
of unit shocks, we could also consider shocks equal to 0., as 
discussed in Appendix C. 
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IT+~ depends only on A and p, and is zero iff A=l, regardless of 

the value for p. Since the model with A=l corresponds to the 

trend-stationary process (3), it needs special treatment (i.e. 
positive prior probability for this model requires prior mass 
over 1). Since stationarity implies p<l and invertibility implies 
A<l, IT+~ is strictly positive for any 8ECpxcq • In this paper, we 
rule out MA roots inside the unit circle to ensure 
identification. Looking at (6) it is not immediately obvious that 

this is a harmless assumption. However, in Appendix C we show how 
impulse responses from the non-invertible model are, in a sense, 

equivalent to impulse responses from the corresponding invertible 
model. 

As the following result shows, posterior distribution of 

IT+~ need not have finite integer moments. 

Theorem: Suppose that the conditional prior density of p given 
(17,"() fulfills the condition p(pIZ\(lI,17,,,()~C>O for pE(d,l) for 
some d<l. Then E[ (IT+~)'lz,z(lI)] does not exist for j~l. (z and z(O) 
are the data and the initial conditions, respectively. They are 
described in more detail in Appendix B.) 

Proof: As is shown in Appendix B, the condi tiona 1 posterior 
density of p given (17,"() is proportional to the product 
p(pIZ\o),17,"()fs.dpIT-2,a,h), where a and h are positive functions 
of (1J., "() (which can be obta ined from the p-var iate Student t 
factor in p(p,"(IZ,Z(III'P,"(», and f s.! indicates the r-variate 
Student t density. Let fl\lil1=inf"E(<I.IIP(plz,z\II)/17,"() and note that 
fm~>O due to the assumption about the prior. E[(IT+~)Jlz,z~,17,,,(] 
can be written as the sum of two terms, one of which is non­
negative and the other is: 

(1-A) j J
1

(1-p) - j p (p Iz, z (0) , 11 , y) dp . (7) 
d 

The integral in (7) can be bounded from below by 
1 l-d 

fminJ (l-p) -jdp=fmin Jw-jdw, 
d 0 

which diverges to +00 for j~l. Since the conditional moments of 
IT+~ do not exist, the unconditional moments also do not exist.D 

It is worth emphasizing that the theorem holds for all prior 

structures for which p (p IZ(II) ,17, "() does not tend to zero as p 

tends to one. This implies, for example, that the posterior 
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density of IT+~ will have no moments if the prior is uniform over 

the stationary region, or is a Normal or Student t density ~ 

truncated by the stationary region. However, for Beta priors for 

p given (z~,~,l) which have 

the existence of posterior moments of I T +oo is possible. In 

particular, if the conditional prior for p is a Beta density with 

parameters rand s defined on (-a,l) with a>O, then the 

conditional jth order moment exists if r~l and s>j. -> 
We assume in this paper that et lies in the stationary 

region. This assumption ensures that all moments exist for the 

posterior of I 1 +n for finite n. If we allow for nonstationarity 

the problem of non-existence of moments is present even for 

finite horizons. For example, if we use an improper uniform prior 

that is not truncated to ensure stationarity, then 

E[(IT+n)jlz,z(o),~] does not exist when n~l+(T-p-l)/j (j=l,2, ... ). 
,-yI

A prior that puts more weight on the explosive region, such as I 

Phillips' prior (see Phillips (1991)), would cause impulse 
I 

responses at even smaller n to have no moments. In fact, for the 

ARIMA(l,l,O) model, Phillips' prior implies that the posterior 

of 1T+n has no integer moments for n~2. 4 

In view of this lack of moments, we do not focus on the 

calculation of posterior means and variances. Instead, we 

advocate calculating the whole posterior density of IT+~i or, for 

particular values of d, ~) 

p(IT...~dIData) =p(l-A~d(l-p) /Data) . (8) 

Alternatively, highest posterior density or posterior coverage 
)intervals can be calculated. All these features are by-products 

of Monte Carlo analysis of the posterior distribution of O. 

Special Case: ARIMA(l,l,O) 
This case corresponds to (1) with et=etl=p, etEC,=(-l,l), and 

4The results in thi s paragraph are straightforward 
extensions of results given in KOS. 
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q=o. For this model, bh=~h.1 for h>- 1 , and (5) reduces to 

and 

1 1
I r·...=-->- ,

I-ex 2 

which are in full agreement with (6). Note that, for d>O, 

p(IT...~dIData) =P(O:~l- ~ IData), 

which gives a simple relationship between the quantiles of a and 

IT+~' Note also that, for ARIMA(l,l,O) models, long-run impulse 

responses are bounded away from zero since IT.~>~' Moving average 

errors are necessary if more flexibility :s to be achieved, a 

point stressed by Campbell and Mankiw (1987). 

If the prior for ~ is restricted to lie in the stationary 

region, then, for any finite n, all posterior moments of I Ho 

exist. However, our theorem implies that the existence of 

posterior moments of IT+~ depends crucially on the behavior of 

the prior for Q near 1. It is worth emphasizing that for most 

macroeconomic examples (using differenced data), 1 will lie far 

out in the tail of the posterior. Hence the existence of 

posterior moments for IT+~ depends on properties of the prior in 

apparently insignificant areas. 

As far as posterior modal values are concerned, the analysis 

for IT+~ is easier than for any finite horizon. 

Proposition:
Under a uni form pr ior for ~ truncated to I ie in (-1,1), the 
posterior of IT+~ is proportional to an inverted student t 
distribution truncated from below at ~. This posterior density 
is either monotonicaJ ly decreasing or has a unique mode in (~,~). 

Proof: 
If p(QIZ~q)=p(Q)=~I(-l<Q<l), then it follows from Appendix 

B that the posterior density of I-a is a truncated Student t 
density which is nonzero over the interval (0,2). If we denote 
the degrees of freedom, location and precision of the underlying 
untruncated Student t density by u, a, and h respectively, then 
the posterior density of IT+~:=(l-Q)"1 is 
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p (IT.... / z (0)' z) =I,r~,J..;, 1 (I;:", Iv, a, h) I (IT'''> ~ ) , 

where 1(.) is the indicator function. To find the mode of this 
posterior we take the first derivative and set it to zero. 
Details of this messy calculation are available on request. 
Ignoring the truncation, we can show that there are two solutions 
to the first order condition: one positive and one negative. s The 
I(IT+~>~) term rules out the negative solution. It follows that, 
if the positive solution is greater than ~, it is a unique mode; 
otherwise p(IT+~lzM'z) is decreasing over (~,oo) since the 
gradient can be shown to be negative after passing through its 
positive solution.06 

A Bayesian econometrician might be tempted to abandon the 

stationarity region and assume, for analytical convenience, an 

improper uniform prior on oER. Although such a move may have 

little consequence for posterior inference on 0 itself, it would 

lead to posterior point mass at infinity for IT+~' since IT+~=oo 

for 0~1. 

Special Case: AR(l) plus trend 

As demonstrated, the case of AR(l) deviations from a linear 

trend may be treated as the limit of an ARIMA(l,l,l) model as 

the MA parameter, 7j='71=}..' approaches one from the left. If we do 

not impose stationarity, but allow o=oJ=P to be an element of (­

l,l+d) for d>O, then 11"+"=a,,ol. This implies IT+~=O if oE(-l,l), 

IT+~=l if 0=1, and II"+~=OO if 0>1. Under any continuous prior for 

a, the posterior for l y+" is also continuous for finite n; but 

I T+oo has two point masses: 

5This is just an illustration of Theorem 2.3 in Lehmann and 
Schaffer (1988) which states that, if the underlying distribution 
has both ta i 1slighter than Cauchy, then the corresponding 
inverted distribution has at least one positive and one negative 
mode. 

6The same reasoning could be appl ied to the conditional 
posterior of Iy+~ given (7/,7) in the general ARIMA(p,l,q) model. 
However, unimodality of the posterior may be lost when 7j and ~ 

are integrated out. 
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p(IT..",=O IData) =P( la I<lIData), 
p(IT....=oo\Data) =p(a)lIData) =p(a<:lIData). 

If we put some prior mass at the point a=l, then there is some 

posterior mass at this point, and the posterior of IT+~ has one 
more mass point: 

p(IT...=lI Data) =p(a=lIData) • 

Being simple, AR(l) deviations from a linear trend model can 

offer only crude answers to persistence questions at long 

forecast horizons. If stationari ty is assumed, the answer is 

presupposed (no persistence at all). This is true for stationary 

ARMA deviations about a linear trend, and is the motivation for 

working with differenced data (i.e. starting with an ARIMA(p,1,q) 
model) . 

Section 2: Empirical Illustration 

In this section we illustrate some of our theoretical 
r''' 

~-- findings using quarterly, seasonally adjusted real V.S. GNP from 

1947:4 to 1989:4. 7 In order to illustrate our techniques, we 

focus on two specifications: ARIMA(l,l,O) and the ARIMA(l,1,3). 

We choose the ARIMA(1,1,O) since it is computationally easy (it 
(
~.	 has no MA component) and receives a good deal of support from the 

data. The ARIMA(l,l,3) poses more computational problems8 and the 

likelihood exhibits some interesting properties. By including the 

ARIMA(1,l,O) and the ARIMA(1,1,3) models we are covering both a 

"well-behaved" case and a "poorly-behaved" case. In all cases, 

we use a flat prior on e over the stationarity and invertibility 

regions; hence our Theorem implies that no posterior moments 

exist for Il+~' 

7We use Citibase data series GNP82. Our data only differs 
from that used Campbell and Mankiw (1987) and DeJong and Whiteman 
(1991) in that we include data for 1986 through 1989 which was 
unavailable to the previous authors. 

8We use Kalman filtering techniques to deal efficiently with 
the moving average covariance matrix described in Appendix B. 
Hence, we follow Campbell and Mankiw and use exact methods for 
dealing with the moving average component. 
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For the ARIMA(p,1,3) models, Campbell and Mankiw find that 

the likelihood function is bimodal, and that there is evidence 

for a moving average root of unity. The authors also find that 

results for these models differ radically from any of the others 

they consider. DeJong and Whiteman criticize Campbell and Mankiw 

for ignoring the evidence from the ARlMA(p,1,3) models and argue 

that the evidence in favor of shocks being transitory is much 

stronger if these models are included. DeJong and Whiteman's 

priors differ from ours in that they are either flat over 8 or 

flat over the impulse responses themselves. However, the authors 

do not impose invertibility since they obtain negative lower 

bounds for 95% coverage intervals for the ARIMA(1,1,3) case. 

Furthermore, the second prior rule they adopt implies a different 

prior on e for each forecast horizon, n. 

Table 1 and Figure 1 present results for the ARlMA(l,l,O) 

model. Table 1 presents moment-based quantities, while Figure 1 

plots the posterior for 1'1'+0." Posterior means and standard 

deviations for this simple case are similar to those given in 

Campbell and Mankiw's Table IV. Also, their maximum likelihood 

estimate of I TH1 is 1.571 which is very close to our posterior 

mode of IT+~' However, there is some evidence of excess skewness 

and kurtosis. Figure 1 indicates these departures from Normality. 

Finally, as expected from our Proposition, the posterior density 

of IT+~ is unimodal. 

Given our prior, it is important to note that no posterior 

moments exist for IT+~ but that changing the prior so that p no 

longer comes arbitrarily close to one, leads to all posterior 

moments existing. We reran our Monte Carlo integration program 

using a flat prior for p on [-.9999,.9999] and found that the 

moments for I Hoo were identical to those of IH~l to 3 decimal 

places. This finding indicates that care should be taken not only 

when selecting priors, but when using Monte Carlo integration as 

well. Since the Monte Carlo procedure cannot tell the difference 

between intervals (-1,1) and [-.9999, .9999) with a finite number 

of draws, a naive application of the procedure could lead a 

researcher to report moments of 11 + 00 when no such moments exist. 

Table 2 and Figure 2 plot results for the AR1MA(1,1,3) 
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model. Table 2 indicates a great deal of excess skewness and 

kurtosis, proving that merely reporting means and standard 

deviations may be highly misleading. Figure 2 indicates that at 

an infinite forecast horizon, the posterior of IT+~ is very non­

Normal, viz. mUltimodal and very skewed with fat tails. One of 

c the modes of our poster ior of IT+~ is close to Campbell and 

Mankiw's maximum likelihood estimate of I T+81 (.026) , while 

another mode is around .85. 

When commenting on the ARIMA(p,1,3) models, Campbell and 

Mankiw (1987, p. 866) remark: "These models have a second peak 

in the likelihood function with no moving average root and almost 

the same likelihood... The impulse response function for the 

second peak is similar to that for lower-order models. It The 
c� Bayesian approach takes all the evidence. in the likelihood 

function into account and, thus, unlike Campbell and Mankiw, we 

find that results for the ARIMA(1,1,3) and the ARlMA(l,l,O) 

models given in Tables 1 and 2 are not very different from each 
c other. In addition, formally treating model uncertainty by mixing 

over models as in DeJong and Whiteman (1991) could serve to 

strengthen the evidence in favor of persistence of shocks. 

Note that our results for the ARIMA (1,1,3) model also differ 

c:� sUbstantially from those reported in DeJong and Whiteman, albeit 

for entirely different reasons. Using our results, a 95% coverage 

interval for 1"'+00 is approximately (0,3.0), whereas DeJong and 

Whi teman find (-4.5,2.5) for I ... +K1 • Comparing their Figure 1 with 

our Figure 2 indicates that the difference in our results is due 

to the fact that DeJong and Whiteman do not impose invertibility. 

As we show in Appendix C, one cannot compare impulse responses 

to unit shocks across invertible and non-invertible models. 

Although the empirical evidence from both models considered 

clearly points towards persistence of shocks at an infinite 

horizon9 , the degree of persistence differs. Whereas 

p(IT+oo~lIData) is 1.0 for the ARIMA(1,1,O) case, it is only .43 

for the ARIMA(1,1,3) case. 

90f course, we impose 11'+00>\ in the ARIMA(l,l,O) model, a 
restriction which is relaxed to Il+OC~O whenever MA terms are 
included in the model. 
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section 3: Conclusions 

In this paper we have used a Bayesian approach to analyze 
J 

impulse response functions. For AR1MA(p,1,q) models, we derive 

a simple expression for 1T + oo , i.e. the effect of a unit shock in 

the underlying white noise process on the level of the observable 

at an infinite horizon. We provide a condition sufficient to 

preclude the existence of posterior moments of IT+coI and note 

that this condition relates to seemingly innocuous properties of 

the prior. Given the MA parameters and the last p-l AR 

parameters, we prove unimodality of the posterior of I T+ co1 which 

is apparently lost upon integrating out the remaining parameters. 

On the basis of these theoretical results, which we illustrate 

in an empirical example, we stress that the entire posterior 

density of 1r + oo should be considered. y 
We also provide a theoretical justification for imposing I 

invertibility. The relevance of this justification is shown by 

comparing our empirical results with those obtained by DeJong and 

Whiteman (1991). We base our empirical example on campbell and I 

'~I 
IMankiw (1987), and di scuss the consequences of adopting the 

Bayesian paradigm as opposed to the maximum likelihood approach 

adopted by Campbell and Mankiw. 

In conclusion, and in contrast to the above studies, we find ,~) 

J, 

fairly consistent evidence of persistence of shocks for real U.S. 

GNP. 

) 

) 
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Appendix A: Calculation of Impulse Responses 
) 

The ARIMA (p, 1, q) model with a deterministic component (XI' (3) 
can be written as the following vector process: 

CA.l) 

).where 

/!"Y t x~p €t 

0 
wt = , )l t= , ~t= 

/!"Y t-m.l 0 €t-m+1 

) 

,., :-

Tl m- 1 

) 

m=max{p,q+1}, €l-L LN(O,a/), aj=O for i>p, 11i=O for i>q, and 110=­
1. Note that 

n 

wT+n:A nwT+L A n- i (IlT+i+ R(T') ' (n=l,2, .•• ). CA. 2) 
i=l 

Let e j (i=l, .. ,m) denote the rnxl vector with 1 in the ith 
position and zeros elsewhere, and define 

(;'d=(Td+ei' (1=1, .. ,m), 
:~T• .!' (else ...."here) , 

and 

w~;n=A nwT+L
n 

A n- i (IlT<i+R~~d) • CA. 3) 
). 

i =1 

By def ining s=min {rn, n} and observing that Re j=-11i.\e l , we can 
write 
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W~+n-WT+n= L An-iRei =-L TJi_1 An -iel' 
i~l i-1 

A simple inductive reasoning shows that the first column of Ai- t , 
Aj-!e l , (j=1, 2 , ... ), takes the form 

(A. 4) 

where bh=O for h:s;O, bl=1, and bh=cr1bh_I+.. +crpbh_p for h~2. Thus 

• A I. IAYT.n- YT+n=e1wT+n-elwT+n 
s q (A.5) 

=-2: TJi_1 e;A n- i el =-2: '1jbn_j , 
i=l j=O 

n q n 

IT+n=Y;.n-YT+T,=L (AY;oj-AYTd) =-2: 1')jL bi-j' (A.6) 
i&l j-O i-1 

Equation (A.6) shows how the impulse response at forecast 
horizon n can easily be calculated recursively. The existence of 
I T+<» (the 1imi t of 11'+11 as n approaches CXl) can be shown using the 
properties of A since, using (A.4), we can write (A.5) and (A.6) 
in the form 

and 
n n-1 

1I T•n=L 1')'A i - e1='1' (L A i) e l • 

i=l i-O 

It is well known that ~Ai converges iff all eigenvalues of A are 
less than one in absolute value, which is implied by 
stationarity. Therefore, under stationarity, 

(A. 7)IT+",,=limn~ ..IT+n=-L
q 

1')j2: b i 
j ~O i-1 

is finite.� 
Note also that� 

DO DO DO

L b i =l + L b j =l +Cl 1L b i +· •• +ClpL b j , 

i=l j=2 i-l 1=1 

and thus 
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where we have made use of the fact that, under stationarity,
P=O:j+· .. +0:1'<1. Finally, 

i-A 
I T ...= l-p , J' 

Appendix B: Marginal Posterior of O=(Q',~')' 

Let 

),
I 

or, in matrix notation 

z = Z _et +X~ + U I U - N ( 0 , 0: VI'l) , 

J:
i

where Z= (z I... Zl) " X= (XI' .. Xl) " Z. groups the appropr iate lagged 
values of ZII o:ECp , 'l7EC'I', {3ERk

, and v~ is a TxT matrix with 
elements given by 

2 2 
l+Th+ .. +T]ql ifi=j 

V ij =-T],+th1'lt+l+" ·+1'lq- t 1'lql t=li-jl=l,. "q 

0 , ifli-jj>q. 

The model given in (1) in the body of the text has ZF4~, k=l, 
and X is a column vector of ones. 

Under the prior structure 

p (Pie I 0; Iz (0) ) =P (P)p (0: )p (6 Iz (0) ) 0<P (6 Iz (0) ) 0;2 , 

where (3ERk 
, a,2ERlI OECpxC:, and z(U)=(ZI_p' .. Zo)', the marginal 

posterior density of 0 is 

1 T-k� 
P (e Iz (0) , z) ()( ( I VTj 11 x I V~ 1 X I) -"2 p (e Iz (0») [ (z - Z_et ) IMTj ( z - Z_et ) ] --y� 

where 
I 

) 

I 

see KOS for details. In particular, the conditional density of 
ex given 'YJ is 

) 
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where, 

&11 =(Z~MIlZJ -1Z~~Z I 

S; =(z-Z_a ) I~ <Z-Z_&Il) ,
ll 

and K" is a normalizing constant. Note that this density is 
nonzero over Cp only. 

Consider the linear transformation g:(al, .. ,ap}~ 
(p'''(If·.'''(P.I)=(P "('). The conditional posterior for these 
transformed parameters is 

1p (p I Y Iz , z (0) , 11 ) = K'1- P <P, Y IZ (0) , 1'} ) 

f <[P]I T k G t::; T-k-p G- 1 '7 '}I,/ Z G-1 }
S,p Y - -P, pu,'1' :t P '-. "rl - P , 

8'1 

where Gp is the transformation matrix corresponding to g. The 
density is nonzero over g(C,}. Now it is clear that the 
conditional density for P giv~n (z,z(O)''1,,,() is proportional to 
the product of some univariate Student t factor, and the 
conditional prior density for p, which imposes a tru~cation in 
the right tail at p=l. 

Appendix C: Impulse Responses and Invertibility 

In this Appendix we illustrate, for the MA(l) case, the 
equivalence of impulse responses from invertible and 
noninvertible models. 

Consider a stationary stochastic process, Ut 

(t=0,±1,±2, ... ), with zero mean, finite variance, 0 
2 and 

autocorrelat ion funct ion: Po=l, 0< IPI I$'-2, p,=O, r~2. This process 
has two MA(l) representations: 

ut=€t-fJer.-l' €t-i.i.N(O,O~), (C.l) 

and 
(C.2) 

where 
(C. 3) 

and 
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(C.4) -.J' 

Note that (C. 4) is satisf ied iff either O=YJ or O=l/YJ, and 
therefore (C.l) and (C.2) coincide for O=YJ=l or O=YJ=-l, but are 
different when O<IYJI<l and 0=1/YJ. 

Multiplying (C.4) and (C.3) gives 

2 2 26o Pl=-oe1"\=-o( I 

and thus, for O=l/YJ, we obtain 

(C.S)0(=11"\ 101!' 
) 

Hence, if (C.l) is invertible, then the standard deviation of ~t 
in (C.2) is smaller than the standard deviation of €t in (C.l). 

Since the invertible representation, (C.l), involves a 
different white noise process than the noninvertible 
representation, (C.2), adding 1 to ~I implies a very different 

)magni tude of shock than adding 1 to €t. Impulse responses 
calculated for (C.l) and (C.2) using (6) will equal l-YJ and 1-0, 
respectively. However, these impulse responses are not comparable 
since they are based on different sized shocks. If we consider 
a shock of one standard deviation to (C.l) and (C.2), we obtain 

1
I T+ n ( 0I!) =0 £ ( 1 -1"\ ) =11 0 ( - 0 ( =-0( ( 1 - 6) =I NI. T+11 ( - 0 ~) , 

if 0<1]<1, and 

if -l<YJ<O. The notation in the previous equations makes clear 
that we are considering shocks of one standard deviation, not 
shocks of size one as in the body of the text, and IN1,T+n(.) 
denotes the impulse response calculated using the non-invertible )'
model. 

Thus, a shock of one standard deviation added to €t in (C.l) 
has the same consequences as a shock of minus (if YJ,O>O), or plus 
(if YJ,O<O) one standard deviation added to ~t in (C.2). 

) 

) 
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Table 1: Posterior Moments of Impulse Responses for ARIMA(l,l,O) 

n-1··· Mean St. Dev. Skewness. Kurtosis•• 

1 1.370 .072 .022 .059 

2 1.511 .126 .073 .222 

4 1.591 .174 .148 .484 

8 1. 607 .192 .182 .609 

16 1.608 .193 .185 .620 

20 1.608 .193 .185 .620 

40 1.608 .193 .185 .620 

80 1.608 .193 .185 .620 

IX) 00 IX) 00 00 

'Skewness is measured as E(xl )-E(x)1.� 
"Kurtosis is measured as E(x~)-E(x)4.
 
••• Note that our labell ing convention for forecast horizons� 
differs by one from that used in Campbell and Mankiw (1987) (i.e.� 
in our paper I H1 =1 by definition).� 

Table 2: Posterior Moments of Impulse Responses for ARlMA(1,1,3) 

n-1 Mean st. Dev. Skewness
. Kurtosis•• 

1 .796 .519 .725 1. 498 

2 1. 082 .506 .902 2.314 

4 1.101 .470 .785 2.010 

.430 .658 1. 6808 1.128 

.622 1.58916� 1. 153 .420 

.429 .651 1. 67820 1.157 

2.47240 1.158� .487 .884 

80 1.160� .574 1. 445 5.658 

00IX)� 00 
IX) 00 

'Skewness is measured as E(XI)-E(X)·'. 
"Kurtosis is measured as E(X~)-E(x)4. 
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