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Abstract"--	 _ 

This paper proposes a test for the equality of nonparametric regression curves that does not depend 
on the choice of a smoothing number. The test statistic is a weighted empirical process easy to 
compute. It is powerful under alternatives that converge to the null at a rate n·I12

• The disturbance[	 distributions are arbitrary and possibly unequal, and conditions on the regressors distribution are very 
mild. A simulation study demonstrates that the test enjoys good level and power propenies in small 
samples. We also study extensions to multiple regression, and testing the equality of several regression 
curves. 
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1. INTRODUCTION. 

This article proposes a test for the equality of regression curves of 

unknown functional form. The problem is well motivated and has been already 

investigated using smooth nonparametric estimates of the regression curve: 

[ King (1989). Hirdle and Marron (1990). Hall and Hart (1990) and King et al 

(1991) among others. These tests need to choose a smoothing constant for 

constructing the nonparametric estimates, and their power properties generally 

depend on this choice. Statistics based on automatically chosen smoothing 

numbers are computationally demanding. and their asymptotic properties are

[ difficult to justify. 

Among the above mentioned papers. Hall and Hart (1990) cmu is possibly the 

most attractive from the practical point of view. They proposed a bootstrap 

test quite insensitive to the choice of the smoothing number under {he null 

hypothesis. The finite sample level and nominal level are almost identical for 

different choices of smoothing numbers and sample sizes as small as 15. The 

power of the test crucially depends on the smoothing constant choice. 

The test statistic proposed in this paper resembles in spirit the_ 

Komolgorov-Smirnov. It is easy to compute and performs well in finite samples. 

We observe a random sample {(X .• Y .• Z.>. j=I•...•n) of the random variable
III . 

(X. Y. Z). The variables Y and Z are related to X according to the regression 

model 

E(Y IX- 0;)= 9 (a::) and E(ZIX- 0;)- 9 (a::). 
y . z 

The marginal distribution function of X is continuous. and 9yC.) and 9zLl are 

continuous on X. where Pr(XE X)- 10. We also assume that the regression 

errors. Z- 9 (X) and Y- 9 (X). are independent of X and may have different 
z 2 y 2 2 1 12

distributions. E 19 (X) I <Ill. E 19 (X) I < Ill. 0 < IT - E Y- 9yCX) <III and 
y z y 

o < IT2= El Z- 9 (X) 12< Ill. z z 

The hypothesis to be tested are 

H : 9 (0;)= 9 (a::) for all 0; E X. 
o y z 

versus 

H: 9 (0;)- 9 (0;) for some 0; E X. 
1 Y Z 
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The regressors may be fixed. In this case. we assume that they are coming 

[ 

[ from the unit interval (or a bounded interval). It is also assumed that the 

regressors become dense in the observation interval as the sample size 

increases. the regression function have a bounded derivative in the 

observation interval. the regression errors are independent and do not 

depend on the regressors. and the error varianees are bounded and positive. 

Section 2 presents the test statistic and discusses its asymptotic 

properties. Section 3 reports the numerical results. Section 4 contains final 

remarks. including generalizations to multiple regression and testing the 

equality of several regression functions. 

2. TEST STATISTIC 

[ 
A necessary and sufficient condition for the null hypothesis to hold is that 

t 
(2.1)sup IJ (qy(It)- qz(lt» f(lt) d It I = O. 

-co<t <110 -110 

where ft) is the density function of X. Define D.= Y Z .• the weightedi­1 1 

empirical process 

1 ~ ­
sup I n- L: D. HX.< t)l, 

-co<t <110 J=1 J J 

consistently estimates the left hand side (L.H;S) of (2.U. where HA) is the 

indicator function of the event A. Then. we propose the test statistic 

T = (~-1 (Dj - D.)Z;2) -1/2 sup I (t: D. HX.< t») I. 
n J=l +1 J -1IO<t <110 J=1 J J 

which will take large values under.H and small values under H . A similar
1 0 

type of statistic has been used by 'Hong-zhi and Bing (1991) for testing 

linearity in regression models. 

The statistic is easy to compute. Let r .... ,r be the antiranks of
ID no 

X .....X defined as X >X >...>X .Then note that.[ 1 n rID rr 2I1 nn 
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sup It (Y - Z ) I· 
1:sk:Sn 1=1. r in r in 

Applying Kolmogorov's law of large numbers (KLLN) 

-1~-1 2 2
(2n) L 1' 1 (D. - Dj) --+ v + Varlet (X)~ et (X» w.p.l as n ~ (2.2)

1• J+l Y . Z 

where ·w.p.l' means convergence with probability 1. v2
• v 2+ v 2_ 2tT • and

Y z yz 

v = E((Y- ety(X)}(Z- etz(X)). If the regressors are fixed, andyz 
max (X - Xi )= 0 as ~ 00, the L.H.S of (2.2) converges to v w.p.l. as n -+i i+ 

1 

2 

ClO. under H and H. In this case. the usual variance estimate o 1 
2 n-1i: (D.- n-~ D.)2 converges to a probabilistic limit which dominates v 

1=1 1 Li =1 1 

under HI' The scale estimate on the L.H.S. of (2.2) has been also used by 

Rice (1984). Hall and Hart (1990). and King et. a1. (1990. 

By KLLN 

t 
1 n- t: D. HX.< t) -+ C(t)= J (et (a:)- et (a:» f(a:) da: w.p.1. as n ~ 00. 

J=I J J -GO Y Z 

Since C(t» 0 for some t under the alternative hypothesis, Tn diverges to 

. f' 't t 112In 1nl Y at a ra en. 

In order to investigate the asymptotic distribution of the test statistic 

under H , define c .= Y.- et (X.) and c i= Z.- et (X'>, 1:S i:s n. Since errors o YI I Y 1 Z 1 - Z 1[ are independent of regressors, (c - c ), i> I, are lid with mean zeroYr. zr. 
In In 

and variance v 2
, Donsker's theorem (see Billingsley 1968) establishes that. 

under H ,o 

2 -112 ~ Isup I(na' ) Ll D. HX.< t)
1=1 1 1

-GO<t<oo 

d----+ T- \sup IB(t) I as n --+ ClO. 

O:st:Sl 

where ,~, denotes weak convergence in distribution. and B(t) is a standard 

Brownian motion. Define T such that frCT > T ) - Cl. then 
Cl Cl 
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I im Pr(T >T )- « under H. and I i m Pr(T > T )- 1 under H • 
n~ 00 n« 0 n « 1n ~ 00 

The null hypothesis Ho will be rejected at the «-level of significance when 

T >T . The critical values and p-values can be easily obtained using the factn « .
[ that 

(see Shorack and Weliner 1986). Then. T - 1.96. T • 2.2414. T • 2.8074 
.1 .05 .01 

and T = 3.4808. 
•001 

Consider local alternatives in the fixed design case 

H : qy(a:)- qz(a:)= n-1/Z c II(a:) I for some a: E [0. U.m

where et) is a continuous fixed function and c is a constant. Under H 
. In 

t 
Tn d sup Ic (erZ)-1/2 J II(a:) I f(a:) da: + B(t) as n ~ 00.~ I 

O$t$1 0 

t 

and J Illa:) I f(a:) da: = 0 if and only if l(a:)= 0 for all a:. Then Tn diverges to 
o . 

00 as Ic I~ 00. The test is asymptotically powerful under alternatives 

converging to the null at rate n-1/2. This type of local alternatives does not 

have much sense when the regressors are random. 

3. A MONTE CARLO STUDY 

The fist part of these simulations are based on the same design employed by 

HH. The observations are generated according to the model 

[ Y.- q (Xi) + V i and Zi- q (Xi) + V i' i- 1•...•n. (3.1)1 y y: Z Z 

Let N and N be two independent standard normal variables. The three
1 Z 

choices for the distribution of the errors (V i' V i) were: (a) (N • N ). (b) 

[ 
y z 1 Z 

(IN11 - (2/n)l/z. INzl - (2/n)I/2). (c) (INII - (2/n)lIz. (2/n)I/Z_ INzll. All 

distribution have zero mean. In (a) and (b) the two errors have the same 

distribution and in (c) the error distributions are skewed in opposite 
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directions. The regressors are fixed and evenly spaced. that is Xi- Vn. In 

each case. five sample sizes are used n= IS. 20. 30. SO. 100. For each sample 

size the proportion of rejections of the null hypothesis in 5000 replications 

is reported when Q.y(a:)- Q.z(a:)= I(a:). and (l) I(a:)= O. (i) I(a:)= 1/2. 

OH) I(a:)= 1. Ov) I(a:)= «:12. and (v) l(a:)a a:. 

Table 1 reports the proportion of rejections under (i)-(v) and errors 

distributions (a)-(c). The level of the test is good when n- SO. 100. The 

bootstrap HH's test always performs better under the null. Under the 

alternative. our test also works very well for the different designs. For the 

three values of the smoothing constant chosen in IDI. our test is at least as 

powerful as lDI's test. 

In a second set of experiments. observations are generated according to 

(3.1), but the design is random. X( lid N(O.I). Table 2 reports the 

proportion of rejections. in 5000 replications. under (i)-(v). and (vi) 

l(a:)= 2«:. and under the error distribution (a). which has been the ·1east 

favorat,le 1n terms of power. At each replication new regressors and errors are 

generated. The test performance is still good under the null and alternatives 

(H) and OH). Under alternatives Ov) and (v). power is lower than in Table 

1. because (iv) and (v) are much closer to the null than in the above set of 

experiments. This is why we also report results for alternative (vil. For this 

alternative, the power of the test is reasonably good. 
r-
l ....~ 

4. FINAL REMARKS 

We have obtained an asymptotic test for detecting a difference between 

nonparametric regression curves that works well in small samples, and does not 

depend on the choice of a smoothing number. 

The test can be implemented for testing the equality of several regression 
(I) (p) \ 

curves. Suppose we observe a randC?m sample {(Xr y1 •••••Y ). i-I•..••n, 
(I). (p) VI) (p)

from the random variable (X. Y •...•Y ). The variables Y •...•Y are 

related to X according to the regression models E(y(lt) IX-a:)- Q. (a:). k-l .....p.
k

We want to test the hypothesis 

H : Qc (It)= Q. (a:) all m.k- 1, ....P. and all a: E X. 
o k m 
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versus 

• - -I", (k) k (k) v� 
Defme Yj = P L j=1Y , Dj =Yj - Z j' and� 

The test statistic is 

ItT.� max T • 
n Isksp n 

• Under the alternative hypothesis 

-I t: k ( ) -Itn . D.1Xj<t~(.,;(t)w.p.l.asn~CD,
J=I J� 

where� 

t 
Ck(t)= f (~ (a::)- p-II:':. qj(lt» f(a::) da::. 

k J=I-CD 

and Ck(t» 0 for some k and some t. Under H • T ~ T as n ~ CD. 
o n 

The statistic can be used for testing necessary conditions for the 

equality of multiple regression curves. Suppose that !=(X!,... ,Xp
) is a 

p-dimensional random variable and we observe a random sample «(X. ,Y ,
-I t

Z.).i=l, ... ,n} from the random variable (X, Y. Z). Consider the statistic 
I� ­

~-I 2 ) -1/2 I~ __11: ITnkI: (L: (Dj - D.) /2 sup Lj:.1 Dj UX"j:< t) .
J=I +1 J _<t<CD 

This statistic is valid for testing the hypothesis 

H : E(n (X) Ixk. a::). E(q (X) Ixk. It) for all It E :tt,
01 T y - . Z -

versus 

H : E(n (X) Ixk. It)- E(q (X) Ixk• It) for some It E :tt,
11 T y -� Z ­

where Pr(a::e :tt). 1. Under H , the statistic 
01 
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TO. max T ~ T as n -+ 0lI.
nkn k 

This statistic is valid for testing max IE(9/!) Ixk= «)- E(9 (!) Ixk= «) I= 0k z
all 41:. This is only a necessary condition for the equality of multiple 

regression curves. We may also try other functions of X, say h: RP --+ R, for 
: ­

testing IE(9/!) Ih(!)= 41:)- E(9 (!) Ih(!)= 41:) 1= 0 all 41:. z
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[� 
TABLE 1� 

Proportion of rejections in 5000 replications� 
in the first set of experiments (Xi'"� i/n) when 1(<<)= 9 (<<)-9 (<<). 

[� 
. y z 

Error model (a) 

n ... 15 n ... 20 n =30� n = 100n • 50 

.0784 .0680 .0644 .0554 .0506roosl-~ (1) 1(<<) = 0 
«=.01� .0262 .0210 .0222 .0168 .0126 

.2922 .3448 .4422 .6598 .9242 
(11) 1(<<)� = 1/2 ros 

«=.01� .1586 .1942 .2668 .4364 .7972
[--� ­

.7290 .8514 .9566 .9974 1.0000roos(111)� I(a;) = 1 
«=.01 .5512 .6894 .8732 .9878 .9998 

.1538 .1660 .1928 .2612 .4698 
(Iv) &(a;)� = a;/2 ros 

iJ� «=.01 .0660 .0870 .0706 .1142 .2536 

.3678 .4294 .5468 .7574 .9640ros� -
Cv) &(a;) = a; 

«=.01 .2016 .2456 .3340 .5282 .8782 

1--! Error model (b)
L. 

n = 15 n =20 n =30 n • 50 n = 100 

.0744 . 0704.. . 0602 . 0574 . 0496 
(1) I(a;) = 0� r"os[, «=.01� .0282 .0228 .0168 .0130 .0132 

.5944 • .7058 .8612 .9762 1.0000 
(11) I(a;)� = 1/2 ros 

«=.01� .4044 .5244 .7080 .9186 .9992 

.9844 .9982 1. 0000 1.0000 1.0000L� = 1 r'oos(Ui) I(a;) 
«=.01 .9420 .9870 1. 0000 1.0000 1. 0000 

.2798 .3289 .4232 .6024 .8716roos
Bv) I(a;) = a;/2 

«-.01 .1428 .1668 .2344 .3646 .6996 

[ ros .7124 .8706 .9300 .9920 1.0000 
Cv) I(a;) = a; 

«=.01 .5120 .6256 .8048 .9636 1.0000 

8f-
L.__; 



[' TABLE 1� (cont. ) 

Error model (c) 

11:� 11:[� n 11: 15 n 20 n 11: 30 n 50 n = 100 

.0816 .0162 .0114 .0510 .0566 
Cl} l(a:}� = 0 r-os 

«=.01� .0388 .0302 .0260 .0162 .0140 

.5998 .7288 .8894 .9894 1.0000[.!� = r-os(11)� ICa:) 1/2 
«=.01 .3696 .4900 .7212 .9472 .9998 

.9918 .9998 1.0000 1.0000 1.0000 
(111) l(a:) = 1 r-os 

[ 
«=.01 .9864 .9988 1.0000 1.0000 1.0000 

.2460 .2812 .3968 .5960 .8932 
(1v) ICa:)� = a:l2 ros 

«=.01� .1012 .1260 .1936 .3368 .7186 

.1466 .8526 .9516 .9982 1.0000 
Cv) ICa:)� = a: r-os 

«=.01� .4988 .1312 .8412 .9840 1.0000[~ 

[1 

[I 
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['� TABLE 2 

Proportion of rejections in 5000 replicationsin the second set 

of experiments (X - 11d N(O, 1) when 1(0;)= qy(o;)-qz(o;).i 

[� Error model (a) 

n .. 15 n .. 20 n .. 30 n .. 50 n = 100 

.0762 .0616 .0580 .0502 .0536 

[-- «=.01 .0294 .0214 .0168 .0142 .0112 
(1) 1(0;) .. 0 ros 

.2778 .3574 .4766 .6574 .9242roOS(1i) 1(0;) =1/2 
«=.01 .1496 .1932 .2810 .4354 .7954 

[� rOS .7300 .8598 .9604 .9974 1.0000 
(11)� 1(0;) = 1 

«=.01 .5516 .7038 .8794 .9876 1.0000 

.0882 .0786 .0952 .'1156 .2230 
U v) e (0; ) = tr./2 res 

«=.01 .0310 .0240 .0272 .0262 .0592 

[ rOS .1074 .1160 .1758 .2992 .7176 
(v)� 1(0;) = 0; 

«=.01 .0376 .0320 .0488 .0932 .3490 

rOS .1496 .1912 .3502 .6632 .9920 
(vi)� e(o;) = 20;. 

«=.01 .0464 .0574 .1036 .2764 .8626 

[-~ 
,,. 

[ 
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