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1 Introduction 

The use of frontier models, with the associated evaluation of efficiency of the economic units 

involved has a relatively long-standing tradition in econometrics. We refer the reader to Bauer 

(1990) for a survey of the literature. The production or cost frontier itself is not supposed to 

bE! known exactly to the econometrician and, generally, some symmetric error is attached to it. 

A second type of error is introduced to represent deviations of the individual units from the 

frontier (Le. inefficiency), and is thus, by definition, of a one-sided nature. 

T [lis, so-called, composed error framework was first introduced in Meeusen and van den Broeck 

(19i7) and Aigner, Lovell and Schmidt (1977) and, as Bauer (1990, p. 41) remat1<s "the basic 

set of econometric estimation techniques has changed relatively little in recent years". In fact, 

tc the knowledge of the authors, the entire literature has been embedded in the sampling theory 

paradigm. 

Here we reconsider the basic composed error model with different sampling distributions on 

the efficiency term, the exponential of Meeusen and van den Broeck (1977), the half-Normal of 

Aigner, Lovell and Schmidt (1977), the truncated Normal proposed by Stevenson (1980) and 

a gamma based on Greene (1990), in a formal Bayesian framework. 

The costs associated with this shift of paradigm are mainly of a computational nature, but 

the gains are shown to be worth the effort. We formally take parameter uncertainty into ac­

count in deriving posterior densities for the efficiencies. In addition, we can easily treat our 

urlcertainty concerning which sampling model to use by mixing over them with posterior model 

probabilities as weights. This pooling approach is quite natural in a Bayesian analysis. Given 

a particular model, we assume that all efficiencies are drawn from the same simple distribution,
:.... 
a> 

orlly we do not know which one. We avoid mixing different distributions for each individual 

e:nciency within the sampling model, as this would render the analysis intractable. Rather, we 

deal with simple, tractable, models and mix over thE!m at the final stage. In case we wish to 

c::loose a particular distribution for the efficiency term, we can use Bayes factors or posterior 

odds as a criterion for model selection. 

We propose prior structures on the model-specific parameters Cj that do not affect the salient 

~~atures of the different sampling models and derive a simple procedure for prior elicitation. 

1:: ased on only the prior median efficiency. 

-------------------_._---------------------- ­
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From an economic point of view, the need to survive in a competitive environment of most 

ewnomic units induces a belief that many of them are close to the frontier, Le. full efficiency. 

However, given the dynamic character of competition itself, strategic policies in the long run 

(!.ecular inefficiency) could keep units away from their frontier. In many cases, this will be com­

pounded with organisatorial inefficiency in the short run [see van den Broeck et al. (1991)]. 

Although these economic considerations guide us in forming our prior ideas concerning effi­

c:ency, they do not provide us with exact functional forms for the distribution of efficiencies. 

The latter uncertainty will here be resolved by mixing over a number of contending efficiency 

distributions. 

An empirical application on the data set of Greene (1990) leads us to address some numerical 

h;sues, which might have influenced Greene's (1990) results. We analyse the gamma models 

under a diffuse improper prior on the parameter of the efficiency sampling distribution, and 

use our proper prior structures on OJ to compare them with the truncated Normal model and 

t~e model which imposes full efficiency. 

Model framework 

"-e consider a Bayesian approach to stochastic frontier models of the form 

Yi = h(xj,:3) + Vi - Zi, (1) 

where Yi denotes the log of the output variable (or the negative of log cost) for firm i (i = 

1., ... ,S), Xi denotes the column vector of logs of exogenous variables, Vi is a symmetric 

disturbance capturing measurement error of the stochastic frontier 

(2) 

and Zi is a nonnegative disturbance modelling the level of inefficiency. Vi and Zi are independent 

of each other and across firms. This is the composed error model framework proposed by 

Heeusen and van den Broeck (19;7) and Aigner, Lovell and Schmidt (1977). Any parametric 

Bayesian approach requires full specification of the likelihood function. In order to meet this 
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requirement we assume that h(·,') is known and is cl measurable function of 13 E B ~ Rk , 

ar,d that Vi is Normally distributed with mean 0 and variance (12.1 However, as far as Zi is 

concerned, we shall consider several one-sided distributions, leading to different (competing) 

st atistical models. By attaching prior probabilities to these models, our Bayesian approach 

nhturally leads to their posterior probabilities, that tell us which of the competing models is 

most favoured by the data and also enable us to pool posterior inferences (about quantities 

of interest) based on different distributional assumptions about Zi. Rather than artificially 

imposing a specific form for the density function of Zi, we average out model uncertainty. 

Since the exponential distribution of Zi, proposed by Meeusen and van den Broeck (1977), 

has a considerable theoretical appeal, we will assume it in our model 1, M1 • However, the zero 

mode of the exponential distribution (Le. a gamma distribution with shape parameter 1 and 

unknown scale parameter >.) seemed to be too strict a restriction for some authors. Stevenson 

(1980) considered gamma distributed Zi with shape parameter 2 or 3 as well, and Beckers and 

Hammond (l98i) and Greene (1990) have recently presented maximum-likelihood estimation 

fer the case when Zi is gamma distributed with unknown shape parameter P E R+. In his 

application Greene (1990) finds P = 2.45 (± 1.10) a,s the ML estimate of P. In the case of 

non-integer P, the:.~IL approach requires the evaluation of integrals which have no closed form 

solu tion and for which there are no polynomial approximations available. 

;;ote that considering a gamma distribution with high P makes the shapes of the densities 

0:: v, and Zi hardly distinguishable. Here, in order to dearly distinguish between Zi and Vi, and 

make computations relatively simple,2 we adopt gamma distributions with fixed small integer 

values of the shape parameter as competing hypotheses. Therefore, under Mj 

where Bj E 0 j generally denotes the parameters in Mj, 1(·) is the indicator function, and 

~ > 0 is one of the parameters in 0j, j = 1,2,3. ~ote that for j = 2 the shape of the density 

flmction of Zi is already completely different from that in the exponential case (j = 1), and 

thus we will restrict ourselves to j =1. 2, 3. In the statistical literature, such distributions are 

1 As we show in appendix A. the assumption of Normality of v,'s can be replaced by their joint sphericity. 
and all our results (except those relating to !1

2) hold. 
2~ote that our Bayesian approach requires Monte Ca.rlo integration over the whole parameter space even in 

t~e simplest case ("11 ), 

-._-~~_.~-------------_._---------' 
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referred to as Erlang distributions [see Johnson and Kotz (19iO, p. 166)]. As an additional 

"haseline" model (Mo) we will consider the standard ("average") model which does not allow 

for inefficiency considerations and formally corresponds to Zj == O. We will also consider, as 

3/4 , a two-parameter truncated Normal distribution of Zj, proposed by Stevenson (1980). 

[" 
The baseline model, Mo, is the simplest case without composed error, Le. where all z;s 

ale zero and thus all firms are on the production frontier, which is itself stochastic. We stress 

t~at this model is clearly not meant to describe reality, but we treat it as a benchmark against 

wh.ich the improvements of our various composed error models will be evaluated. The model 

w III thus correspond to the following data densi ty3 

wh.ich will be combined with a prior density Po((Jo) = PoU3, (12) in the usual fashion to obtain 

B.a.yesian posterior and predictive results. 

Since we assume independence over firms, the likelihood function under Mj is generally given 

b~' 

N 

l;(8j ly.X) = Pj(yIX,8j ) = I1pj(Yil x j,8j ) (3) 
i=l 

wh.er.e Y = (Yl, ... ,Yf\;)' and X is the matrix (Xl, ... ,XN)'. Under a prior pj(8j ), the posterior 
.~ 

dmsity will be given by 

(4) 

wh.ere we have defined 

Kj =pj(yIX) = { pj(8j)£j(8jly,X)d8j . (5)
le, 

III the special case of e.g. a Cobb-Douglas production technology, which implies a linear h(Xj, {3),
 

and a natural-conjugate or Jeffreys' diffuse prior for 80 , we can analytically evaluate posterior
 

and predictive densities under Mo.
 

This. however. will not be the case for the composed error models A/j, j = 1,2,3,4.
 

3 Appendix B describes the density functions used in this paper. 
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a	 Posterior and predictive results under Erlang inefficiency 

term 

If Mj, j E {I, 2, 3}, is the model considered, then the joint distribution of Yi and Zi, given Xi 

imd the parameters (}j is: 

(6) 

where the parameters are not model specific, i.e. for j = 1,2,3: (}j = 6. = (,8,0'2,>.) E 0. ~ 

Rk X R+ X R+. For the purpose of inference, the opposite factorization is of interest. It can 

be easily deduced from (6) that the conditional density of Zi given (Yi,Xi,6j) is 

(i) 

f 
where 

(8) 

~(.) denotes the distribution function of N(O, 1), and Wji = Wj(Yi, Xi, (}.) is the appropriate 

integrating constant of (i). Remark that if j = 1, then (7) is just a truncated Normal distri­

bution. and U'Ji = 1. This result was obtained by Jondrow et al. (1982). For j =2,3, W2i 

and 1L'3i are, respectively, the first and the second order moments of that truncated Normal 

distribution, and therefore 

f.~ (710,1)
r~ 

U'2i = mi + 0' ~ (7-) , (9)
I 

(10) 

Let C)i = U·ji~(milO'). Now, from (6) and (7), the sampling density of Yi can be written as 

(11) 

r: 
L, 

----------------- ,------------------------------ ­
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Note that (11) is equivalent to Greene's (1990) general formula (26). However, the correct 

forms of the data densities for the special cases with j = 2 and j = 3 have not been presented 

in the literature. Although in the exponential case (j = 1) our (11) is equivalent to Stevenson's 

(1980) formula (20), his (21) and (22) for two other Erlang cases cannot be deduced from our 

(11) and (9)-(10). 

The likelihood function under Mj (j =1,2,3) is a product of the densities in (11): 

(12) 

and under any prior density Pj(fJj) =Pj(fJ.) the joint posterior density, obtained as in (4) and 

(5j, is too complicated for analytical integration, and thus posterior moments and marginal 

densities will be calculated by (k + 2)-dimensional Monte Carlo integration with importance 

sampling. 

The posterior distribution summarizes all the information about the parameters which is 

contained in the prior and in the observed data. In frontier analysis, however, the main interest 

is not in the parameters themselves, but in the individual efficiency (of the firm i, i E {I, ... , N}) 

measured by fj = exp( -zd.4 The conditional posterior distribution of Zi given Yi, Xi and the 

parameters, presented in (7), exactly corresponds to Greene's (1990) conditional distribution 

(2i). and constitutes the common starting point for inference about individual (in)efficiencies 

in both sampling-theory and Bayesian approaches to stochastic frontier models. The difference 

lies in the treatment of the unknown parameters in (7). The sampling-theory approach of 

Jondrow et al. (1982) and Greene (1990) amounts to conditioning on OJ, an estimate of OJ, 

whereas our Bayesian approach naturally averages out uncertainty about OJ by marginalizing 

(7) w.r.t. the posterior density ofthe parameters. This leads to the following posterior densities 

and moments 

(13) 

(14) 

~ Our model (I) is formulated in terms oflogs of variables. 
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l (15) 

which summarize the evidence on the individual within-sample efficiency under Mj. In (14), 

pj(zdy,X) is evaluated at Zi =-In ri. In (15), g(zd is equal to z? or rl for obtaining posterior 
[', moments, and (k + 3)-dimensional integration over (}j = U3,~2,>..) and Zi will be performed
I 

by Monte Carlo. Note that in the composed error case linearity of h( Xi, /3) no longer leads to 

analytical results. The dimension of /3, k, is what really matters in our numerical integration. 

Apart from the within-sample posterior analysis, some predictive analysis of an out-of­
,<;:;;, 

sample (maybe hypothetical) firm will usually be of interest. Assuming that (1) and (6) hold 

for some i > N, maintaining independence across all the firms under consideration, and using 

j to index the unobserved (forecasted) firm, we obtain 
I 

I 

:';~r~ (16) 

(17) 

[, as the predictive densities of the log of the actual output (Yj) and its inefficiency component 

(Zj), respectively. In (16). Pj(Yjlxj,8j) is the sampling density (of Yf given exogenous xf) of 

the same form as in (11) but with i = j, whereas in (17) pj(>..IY, X) is the univariate marginal 

posterior density calculated from pj(8j ly,X) . 

L, 

.:\ote that (13) and (17) differ substantially in their construction and interpretation. (17) is 

posterior to the data on all the observed firms, but prior to the (yet unobserved) output of the 

firm f, and therefore can be treated as a Bayesian counterpart of the classical characteristics 

of "average" inefficiency (as opposed to individual inefficiency). Again, we marginalize w.r.t. 

'\, using its posterior density, whereas the standard non-Bayesian practice would be to replace 

,\ by its estimate, i Useful summary measures of the "average" efficiency are given by the 

first and second order moments of rj = exp(-zf) given y,X. Since, for q > 0, 

therefore, for j =1,2,3, 



L 

8
 

r ", 
(18) I \ 

L, 

More directly interpretable posterior characteristics of both the individual and "average" effi· 

ciency will be given by the quantiles (e.g. median) ofpj(rdy,X), i E {I, ... ,N}, and pj(rJly,X), 

f g {I, ..., N}, respectively. 

4 Truncated Normal distribution of the inefficiency term 

Let us now present briefly the Bayesian analysis of the stochastic frontier model (1) with Zi 
r 
\ distributed as lV("",W2) truncated at 0, and with"" E Rand w E R+, both unknown. 

This model, denoted by .\14 here, was proposed by Stevenson (1980) who generalized the orig­

inal (half-~ormal) model of Aigner et al. (1977) where Zi '" 12\'(0,w2 )1. 
Reparameterizing ("",w) - ('IfJ,w) with 1/.' =",,/w will prove useful. t/J indicates how many stan­

dard deviations the truncation point °is from the mean of the underlying Normal distribution. 

l:nder .\14 the joint distribution of the observed Yi and the unobservable Zi, given exogenous 

Ii'S and the parameters 84 = (;3,(12,'IfJ,w) E 0 4 C Rk+3, takes the form 

(19) 

which can be rearranged as 

where hi = h(xi,,3). Integration over Zi E [0,+00) leads to the sampling density of Yi under 

(20) 

which is in agreement with formula (5) of Stevenson (1980). Therefore the conditional density 

of ZI given YI' Xi and the parameters is 

('

l. 
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(21 ) 

\: 
a truncated Normal density, which for 'l/J = 0, i.e. for the half-Normal distribution of Zi given 

the parameters, reduces to the density obtained in Jondrow et al. (1982, Appendix). 

Note that, since -Zi can be interpreted as the unknown negative mean of the Nor­

L 
r mal error Yi - h(xi,I3), therefore, apart from truncation, the conditional posterior of Zi 

(given the parameters) shares the well-known properties of the posterior of the Normal mean 

under a :Kormal prior. This untruncated posterior of Zi is Normal, its precision, equal to WJ2l~2 ,
(1 ..., 

is a sum of the "sampling precision" (1/(12) and the "prior precision" (1/w 2 ), and its mean is
 

a weighted average of the "prior mean" (/1 = 'l/Jw) and the"observation" (hi - yd with the
 

weights equal to the proportions of the prior and sampling precisions in the total (posterior)
 

precision.
 

The Bayesian analysis goes along the same lines as under M 1 , M2 or M 3 , Le. we use (3), (4)
 

r and (5) for j =4.L 
Inferences about individual efficiencies of the observed firms will be based on the marginal 

posterior densities of ri's (i = 1, ... , .V), Le. 

where P4(ZiIYi,Xi,84), the density in (21), should be evaluated at Zi = -In(rd. The posterior 

density and moments of the efficiency Tf of a yet unobserved (or "average") firm f will be

f' calculated from 

and 

where P4(v •....:ly.X) is the posterior density of ('l/J,w), obtained as a marginal density of 

._-----_._------------------------ ­
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P4(84Iy, X). Under M4, the Bayesian analysis will require (k + 3)-dimensional Monte Carlo 

integration for calculating posterior results on the parameters, and (k + 4)-dimensional inte­

gration for obtaining both individual and "average" posterior characteristics of (in)efficiency. 

5 Comparing models and pooling inferences 

The Bayesian approach to comparing alternative models is often based on the posterior odds

\: ratio, Le. 

P(Afjly, X) P(Mj) p(yIX, Atj) 
(22)

P(Mlly, X)	 = P(Ml ) . p(y\X, Ml )' 

where P(Mrly. X) is the posterior probability of the r-th model, P(Mr ) is its prior probability, 

and p(yIX,Mr ) = Pr(yIX) is the marginal data density (under Mr ) obtained by integrating 

out the parameters. (22) can be formulated simply as follows: posterior odds are equal to prior 

odds times the Bayes factor. In the case of the comparison between any pair of the models 

considered previously, the Bayes factor is the ratio of the normalizing constants defined in (5), 

Le. 

B _ pj(yIX) _ Kjr'
 
\ ! Jl - Pl(yIX) - Kl'
 
\, 

The p'osterior probability of the j-th model is 

(23)\ 
\ 

Specification of the prior distributions of the parameters of the models being compared de­

serves much caution. For estimation purposes within individual models improper priors are 

I1 
often used. provided that they lead to well-defined posteriors (Le. Kj < +00). 

However. the use of an improper prior results in the dependence of Kj = p( YIX, Mj) on an 

arbitrary positive constant. If the same improper prior is defined on the parameters which are 

common to all compared models, then the same constant appears in all Kj's, and it cancels 

\"	 out when we calculate Bayes factors and posterior model probabilities. An improper prior de­

fined over model-specific parameters, however, leaves posterior model probabilities undefined. 



11� 

Thus, if we are going to compare only stochastic frontier models with different Erlang dis­

tributions of the inefficiency term, Le. models M 1 , M2 and M 3 , we can use pj(9j) = p(9.), 

j = 1,2,3, with p(9.) improper over all the parameters, since they are all common. If, how­

ever, we also consider Mo then). becomes specific to Mj with j = 1,2,3, and in the prior 

structure Pj((J.) = p(}3, ( 2 )pj().I}3, ( 2 ) the last factor needs to be a proper p.d.f. Usually the 

product structure pj(9.) = p(}3,u2 )pj()') with proper Pj().) and possibly improper p(}3,u2 ) 

(.'� 
will be assumed. Here we have implicitly assumed that Pj(}3,u2 ) = p(}3,u2 ), j = 0,1,2,3, 

Le. the prior on the stochastic frontier parameters does not vary over the models under con­

sideration. Analogously, if we want to compare Mo, M1 , M2, M3 with M4, we can assume 

P4((J4) = p(;3,U2 )P4('lj.J,W) with p(}3,u2 ) the same as for the other models (and possibly im­

proper), but P4('!i',W) necessarily proper. 

Having calculated the posterior model probabilities, we do not need to choose among the 

competing models. For inference purposes we can average out specification uncertainty by 

mixing individual posterior densities of a quantity of interest, say rp, into its overall posterior 

density: 

p(.;ly,x) =2: P (Mjly,X)pj(r.p!y,X).� (24) 

L.� J 

Xote that this pooling approach amounts to assuming that the conditional distribution of the 

inefficiency term, Zi, is simple (e.g. truncated Normal or exponential), only unknown. Rather 

than mixing different conditional distributions for each Zi, which would lead to a complicated 

sampling model, we mix over simple models differing in the distribution of all the inefficiency 

terms. Therefore, each model is in itself tractable, and the mixing is trivially performed at the 

final stage, as in (24). 

6� Efficiency distributions and prior elicitation for model spe­

cific parameters 

In the previous sections we have considered for each model Mj (j =1,2,3,4) different condi­

tional distributions of the inefficiency term (z;), which, after taking the Jacobian r;-l =exp(z;) 

into account. lead to the following distributions of the efficiency rj =exp( -Zj): 
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1. pj(riI8j) = pj(riloj), the conditional prior distribution given the parameters, depending 

on the model specific parameters 0;' E tlj only, 

2. pj(rdy, X, 8j) = pj(ri!Yi, Xi, 8j) for i E {I, ... , N}, the conditional posterior distribution, 

3. pj(rily, X) for i E {I, ... , N}, the marginal posterior distribution, 

4. pj(rjly,X) for f ~ {l, ... ,N}, the predictive distribution (posterior distribution of the 

"representative firm" efficiency). 

The last two distributions are of direct interest on the inference stage, since they combine 

all information on the individual or "average" efficiency which is contained both in the prior 

specification and the given set of data. The influence of the observed data can be assessed by 

the comparison between these two posterior distributions (unconditional w.r.t. the parameters) 

and the marginal prior distribution of the efficiency given by 

pj(ri) = lA)r pj(r110j)pj(oj)do;, 

where 

l( 

li 

C: 

and the last density is evaluated at Zi = -/n(rd, ri E (0,1]. 

~ote that the marginal prior distribution of the efficiency, which should reflect the economic 

interpretation of ri and possibly subjective beliefs of a researcher, is a useful starting point for 

eliciting the (hyperparameters of the) prior distribution of the model-specific parameters, OJ 

(j = L 2, 3, 4). The classes of prior densities Pj( OJ) will be simple, allowing straightforward 

analytical derivation of the marginal densities pj(zd and pj(ri), and the elicitation of their 

hyperparameters will be based on quantiles. If there are two free hyperparameters in pj(rj), 

or equivalently in pj(zd, then two quantiles are sufficient, and the following questions could be 

asked: what is the prior probability that a firm (in the industry under consideration) is more 

than (e.g.) 90% efficient. and less than (e.g.) 50% efficient? Eliciting more quantiles would lead 

to more equations than hyperparameters, and therefore some optimization technique should 

be used. An alternative strategy, which will be followed here is to fix all hyperparameters but 

one at convenient values. and then elicit a value for the remaining hyperparameter through the 

[ 

1 __­
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median only. For practitioners, the median seems an easily elicited quantity as a result of its 

intuitive definition and its appealing simplicity. 

In the case of M1 , M2 and Ma, the only model specific parameter is >. (6j = >., j = 1,2,3), 

the scale parameter of the Erlang distributed inefficiency term. Here an obvious choice is 

an inverted gamma prior distribution of >., or equivalently a gamma prior of >.-1, which is 

natural conjugate and gives the diffuse prior p(>') cc >.-1 as the limiting case. Combining 

Pj( Zj I>.) =!G( Zjlj, >. -1) with Pj(>. -1) =!G (>.-1 I~ ,~) leads to the following three parameter 

inverted beta marginal prior of Zj: 

(0 . >'0)
p;(zd = fIB ( Zj 2" ,), 2 ' 

1 

which. in turn, gives for rj E (0,1] 

-1! (I I(0 . >'0)pj(rd = r j lB - n rj 2" ')'2 

as the prior density of the efficiency itself. This last density is not a standard one, but the 

quantile elicitation can be done in terms of Uj = (1 + ~) -1 = (1 - 2l:crj) -1, which is beta 

distributed with parameters (~,j). We have 

21nr",)-1
Pr{ rj < r"IJfj} = Pr{uj < 1 - ~ IMj)( 

1 faCio fll. .
U 2 "..1(1 - uF- 1du= 

B(~,j) 0 1l> ' 

where a" = (1 - 21~:·) -1, and the integral is the incomplete beta function evaluated at a"" 

In order to further simplify our prior elicitation we propose to take (0 =2j. Then Uj has a 

symmetric beta distribution, and thus its median is !, Le. Pr{Uj < n= !. Now the whole 

elicitation procedure reduces to specifying the prior median of the efficiency, Le. such a value 

r"' E (0,1) that Pr{rj < r"'IMj} = !. Since it corresponds to a", =!, therefore >'0 is given by 

the equation ~ = (1 - 21~:·) -1, i.e. >'0 = -21nr"'. 

Summarizing. we propose as a prior on the model specific parameter >.-1 in Mj (j =1,2,3) 
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c­ (25) 
L", 

where r* is the prior median of the efficiency ri. The implied marginal priors of Zj and rj are 

(26) 

and 

(27) 

respectively. In practice, it seems preferable to choose r. independently of the model enter­

tained, Le. Pr{ri < r*I.MJ } = Pr{rj < r*} = !, so that the model dependence in the prior 

is confined to the value of (0 = 2j. This simple way of prior elicitation preserves in a natural 

way the differences that exist between the models conditionally upon the parameters. From 

a gamma (Erlang) distribution with shape parameter j for pj(zil~) we are led to a marginal 

prior pj(zd of the inverted-beta form with' essentially the same behaviour, but thicker tails, 

L' reflecting the prior uncertainty concerning A. The proposed elicitation rule is thus not only 

very simple and easy to use in practice, but also avoids distorting the main characteristics of 

our different Erlang models. 

In the case of Jf4 , there are two model specific parameters, namely 'IjJ and w, the param­

eters of the truncated Normal distribution of Zj given 84 , Here, due to truncation, the usual 

Normal- inverted gamma prior specification for (J,l,w2 ) (with J,l = 'ljJw), natural-conjugate in 

the untruncated case, does not lead to an analytically tractable marginal prior of Zj. Therefore 

we propose the following modified version of the usual natural-conjugate prior 

or. in terms of 10\ 

r 
l ' 

(28) 

and 
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r, 

l\ ( -2) f (-21 L10 b)P4 W = G W 2'2 ' (29) 

\ ' 

where c"" is the normalizing constant of the conditional priors of J1. and t/J given w-2 • The factor 

t( t/J) makes the conditional prior in (28) asymmetric (positive values of t/J are more probable 

a priori than negative ones) and shifts its mean to the right of 0: 

II Although this prior specification clearly favours (as conditional distributions of Zj given w­2 

and 7,.") distributions with t/J > 0, Le. with truncation below J1. = t/Jw, there is enough prior 

mass in the negative tail of t/J to lead to the half-Normal distribution of Zj given w-2 and the 

half-Student marginal distribution of Zj: 

(30) 

and it is obvious that c"" 

and thus 

=2. The latter fact implies that t/J and w­ 2 are a priori independent 

('fa
0< £(1.:) < V-;-' 

From the density of P4 (Zj Iw- 2) we immediately ded uce that the difference between the truncated 

Normal model with unknown t/J (a > 0) and the half-Normal (a =0) is exactly the variance 

inflation. :;';ote that in fact there are only two quantities we can elicit from (30), namely Llo 

and T6 = :0 (1 + a), where a and b are indistinguishable, and the elicitation can be based on 

Student t quantiles. If u is distributed as the untruncated univariate Student t with LlO degrees 

of freedom. location 0 and scale 1, then, for r- E (0, IJ 

= 
= 

lnr­
2Pr{u> --IM4 }. 

TO 

2[1- Pr{u $ (-lnr-)/ToIM4 }], 
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and the median of ri corresponds to the 0.75 quantile of u, UO,7S(VO)' This quantile is 1 for 

Vo =1,0.816 for Vo =2, and tends to 0.674 as Vo approaches infinity. Eliciting r* equal to the 

prior median of the efficiency leads to the equation Uo. 7S(vo) = _I~~· , Le. 

Inr* 
TO = - .	 (31 ) 

UO,7S(VO) 

Since UO,7S(VO) does not change much for Vo > 5, we propose to fix Vo = 10 which gives 

TO = -l~lnr* or TJ :::::: 2In2 r*. This corresponds to the following prior density of the model 

specific parameters of M4 : 

(32) 

and results in the following .marginal prior densities of Zi and ri: 

(33) 

: 

r 
L	 (34) 

whicI\, as a result of our elicitation based on (30) no longer depend on a.
 

As in the Erlang models, the marginal inefficiency distribution has thicker tails than the one
 r given i..}. and the influence of integrating out 'tJ; with the prior in (32) is to relocate the mode 

at the origin and to inflate the variance. Again, prior elicitation rules are very simple and the 

prior densities do not affect the salient features of the model. 

Although the marginal prior densities of Zi and ri do not involve a any longer, posterior and 

r- predictive results will, of course, be affected by the value of a. Rather than complicate our 

elicitation procedure, we could conduct a sensitivity analysis with different values of a, one of 

which would be a = O. corresponding to the half-Normal case of Aigner ~ (1977). As a 

grows, the relative importance of -,:. in achieving the (fixed) stochastics of Zi in (33) becomes 

f '~.	 larger, and the relative influence of the stochastic nature of w2 decreases. Values for a can be 

calibrated against the fact that a approximates the prior variance of'tJ;. 
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Empirical implementation to the US electric utility indus­

try 

As an illustration, let us consider the data collected by Christensen and Greene (1976) for 

123 electric utility companies in the US in 1970. The numbers are listed in the Appendix 

to Greene (1990). Both Christensen and Greene (1976) and Greene (1990) have fitted a cost 

function suggested by Nerlove (1963) and based on the Cobb-Douglas production function, but 

generalized to include a term in squared log of output Q, which permits returns to scale to vary 

with Q. There are three production factors, labour, capital and fuel with respective prices PI, 

Pk and Pf, and the specification of the cost function is: 

(35) 

where Yi =	 -In (cost firm i/Pf'). 

7.1 Erlang Models under Diffuse Priors 

In this subsection. we shall only report results on the Erlang models (j = 1,2,3), which allows 

r us to use independent diffuse prior densities on all parameters, since>' is common to all three 1 
models. 

Thus, under the prior density 

(, 
(36) 

vdth c > 0, we obtain the posterior moments as stated in Table 1. These results have required 

\-~	 seven dimensional integration using Monte Carlo with importance sampling. As importance 

functions we have used a Student t for f3 with 10 degrees of freedom, and inverted gamma 

densities on (12 and >.. Starting from initial importance functions, based on e.g. the mode and 

the Hessian of the likelihood, we iteratively update the hyperparameters of the importance 

r-'	 functions in preliminary runs. 

Final results are based on 150.000 antithetic drawings for j = 1,2 and on 100,000 antithetic 
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[:
 
replications for j =3.
 

The last lines in Table 1 contain values for the relative importance of the symmetric component
 

in the posterior out-of-sample error variance, calculated as VRj = var(vjly,X)/var(vj ­

Zjly,X), as well as for TVj =var(vj - zjly,X). 

Table 1. Posterior Moments of 9. with Diffuse Prior 

j = 1 j=2 j=3 
mean (s.dev.) mean (s.dev.) mean (s.dev.) 

L, 
130 -7.467 (0.3388) -7.442 (0.3427) -7.361 (0.3647) 
131 0.4272 (0.0424) 0.4071 (0.0421) 0.3968 (0.0389) 
32 0.0295 (0.0028) 0.0304 (0.0028) 0.0311 (0.0027) 
83 0.2480 (0.0643) 0.2572 (0.0684) 0.2479 (0.0678) 
84 0.0489 (0.0610) 0.0603 (0.0638) 0.0698 (0.0587) 

(J2 0.0133 (0.0038) 0.0161 (0.0043) 0.01 i1 (0.0036) 

,\ 0.0912 (0.0246) 0.0500 (0.0168) 0.0345 (0.0116) 
,\ -1 11.901 (3.733) 23.446 (11.368) 32.830 (12.246) 

~r Rj 0.5825 0.7059 0.7669 
T\j 0.0228 0.0228 0.0223 

Just like in :\erlove (1963) (without composed error) and in Greene (1990), returns to scale 

tend to go down with output,S and results for 13 under this diffuse prior are not very different 

from Greene's (1990) results. Of course, his results are more comparable to the posterior mode 

than to the posterior mean, and both differ as a result of the fundamental lack of symmetry of 

the posterior density (and in particular the likelihood function). 

As a result of the structure of the likelihood function in (12), it is extremely complicated to 

evaluate correctly for cases where some mi's in (8) are large negative numbers. Indeed, (12) 

involves a product over all firms of Cji'S which then contain some very small numbers, emanating 

from the evaluation of the Normal distribution function for large negative arguments. In 

[1 particular. we found the standard routine CDFN for cumulative Normal density functions in 

~ Returns to scale are given by 1/(31 +2821nQ,) and /32 hu most of the posterior mus in the positive region. 
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GAUSS to be entirely useless6 for evaluating 4»(-) with arguments less than -5, which do occur 

frequently in our computations, especially for j =2,3. Mechanical use of CDFN leads one very 

far astray in evaluating (12), as it appears that the likelihood shoots off to infinity for (12 ­

(which blows up the arguments of the Normal distribution function). Extensive checking of 

such routines against the tables in Pearson and Hartley (1954) has led us to use CDFN for 

arguments ~ -5, and in other cases we use the continued fraction expansion (Abramowitz and 

Stegun, 1964, eq. 26.2.14) to the order 20. The latter gave us almost perfect accuracy up to 

values of the argument of -37 (i.e. for values of 4»(.) as small as 10-300 ). 

These numerical issues are especially critical for the results presented in Tablee'2, where the 

integrating constants, crucial for the posterior odds in (22), are tabulated [for c =1 in (36)]. 

At the posterior mode 9j, we have also evaluated the posterior density function and the likeli­

hood. Note that the latter value seems to agree with Greene's (1990) ML evaluation for j =1, 

but then decreases slightly with j, which is very different from his results for a two-parameter 

gar.lma with j estimated at 2.45 with standard deviation 1.10. Both uur resulLs concerning the 

likelihood at the posterior mode and the integrating constant (Le. the likelihood averaged out 

with the prior (36) where c is taken to be unity) favour the exponential model. Its posterior 

probability is 0.45, whereas for both j = 2 and j = 3 we get about 0.27. In contrast, Greene 

(1990) finds a log likelihood value of 112.72 for the gamma case with free j, which would imply 

\'ery strong evidence against the exponential. Although we fix j and our results are thus not 

formally comparable, we find it quite unlikely that the (otherwise very flat) likelihood would 

shoot up to such a value in between our models M2 and M3. In our view, Greene's (1990) 

findings might have been crucially influenced by the hard numerical problems that we have 

referred to in the previous paragraph. 

Finally, at the cost of adding one dimension to the Monte Carlo integration, we present poste­

rior results for the efficiency of firms within the sample, ri, and the out-of-sample efficiency r J. 

Posterior densities pj(rJIY,X) are graphed in Figure 1 for j = 1,2,3, from which we clearly see 

6In fact, it gives exactly the ~ value to ~(x) for any x ~ -5. Whereas this is accurate for x = -5, it is of 
course far too large for x appreciably smaller than -5. Note that this seriously blows up values for the likelihood 
function in (12). See also Goldstein (1991). Neither CnFN nor any of the two polynomial approximations listed 
in Abramowitz and Stegun (1964) and briefly mentioned by Greene (1990, p. 148) were found to be of any use 

for this application. 
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10gPi(8ily,X) 60.258 59.029 58.370 
10g li(8iIY,X) 67.005 66.127 65.747l' P(Mj ) 1/3 1/3 1/3 
P(Mily,X) 0.4541 0.2706 0.2754 

that for a greater value of j the modes are shifted to the left, in agreement with the properties 

["	 of the sampling model. Using the posterior model probabilities of Table 2, the overall posterior 

density of ou t-of-sample efficiency for Erlang models is also plotted. 

Posterior moments for Tt computed as in (18) and for individual efficiencies Tj (i =1, ... ,5) of 

the first five firms in the sample7 are presented in Table 3. 

Table 3. Posterior Moments of Efficiencies with Diffuse Prior 

j = 1 .1, j=2 j=3
[	 mean (s.dev.) mean (s.dev.) mean (s.dev.) 
I.....' ' 

Tt 0.9169	 (0.0807) 0.9077 (0.0694) 0.9038 (0.0618) 

Tl 0.6169 (0.0777) 0.6645 (0.1246) 0.7435 (0.1007) 
T2 0.9695 (0.0301) 0.9530 (0.0329) 0.9392 (0.0360) 
T3 0.9302 (0.0609) 0.9212 (0.0550) 0.9058 (0.0591) 
T4 0.8901 (0.0878) 0.9052 (0.0660) 0.8960 (0.0654) 
TS 0.9582 (0.0400) 0.9419 (0.0407) 0.9277 (0.0432) 

median Tt 0.94 0.93	 0.915 

Just as the out-of-sample efficiency is more concentrated around the mean for larger j, the 

means of individual firm efficiencies are also less spread out as j goes up. Of course, for very 

large values of j the Erlang distribution tends to a Normal, which will become indistinguishable 

from the symmetric Normal on Vj. All the stochastics will then be attributed to determining 

the frontier itself, and all firms will tend to be equally efficient, although the level of efficiency 

will no longer be identified. 

7These are. respectively. C&!. Pac. Utility. Montana Power, Upper Pen. Pwr., Mt. Cumel Pub. and Bangor 
Hydro. 
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Table 2. Evidence on Model Probabilities with Diffuse Prior 

j =1 j=2 j=3 
logKj 49.403 48.886 48.903 
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Comparing Table 3 with Greene's (1990) results, we note some interesting differences, espe­

L:	 cially with his gamma model, which seems very far off (both from our results and his results 

using other distributions) for firms 1 and 2. Remark that these firms are, respectively, the least 

and the most efficient of the subset of five firms considered here. 

1.2 Overall Analysis 

In order to combine models with varying sets of model specific parameters 6j we shall use 

the prior elicitation rules derived in Section 6. For (/3,0'2) we continue to use the diffuse prior 

L.	 pef3, 0'2) = 0'-2. We now no longer compare sampling models under the same prior assumptions 

(as in the previous subsection), but we compare Bayesian models. Le. combinations of a sam­

pling model and a model-specific prior density. The proper priors in (25) and (28), (29) with 

a = 1, were chosen to preserve the shape and characteristics of the corresponding sampling 

models, and are quite different. In order to isolate the model-specific elements, it is instructive 

to consider Pj( zj) = r::' Pj (Zj 16j )Pj( 6j )d6). Of course, the Zj'S are no longer independent when 
J 

6) is integrated ou.~, so that their contribution to the jth Bayesian model marginalized with 

respect to 6j is nofexactly ni:l pj(zd, but the marginal priors of Zj or, rather, of rj = -In(zd~ 

can nevertheless guide our intuition. Figures 2 and 3 plot the priors of rj for j = 1,2,3,4, 

using (2i) and (34) with r- =0.875 and 0.5, respectively. Clearly, prior 1 is most conservative, 

since its shape is least affected by going from r- =0.875 to r- =0.5, which are very different 

values from an economic point of view. From Figures 2 and 3 it seems that M3 should receive 

most of the posterior probability mass if prior and sample information are in accordance, Le. 

if values of rj close to the prior median r- correspond to high values of t lie frontier likelihood 

p(YjIZj,Xi,~.0'2), which is not model-dependent. 

On the other hand, if prior and sample information are in conflict, the posterior ranking should 

be relatively more in favour of Ml. Note, in passing, that the diffuse prior PP.) IX >.-1 used in 

Subsection 7.1 implies exactly the same marginal prior density pj(rd IX ri1[-ln(ri)]-1 for all 

the Erlang models, irrespective of the value of j. In fact, this implies that the entire difference 

between the models in that case can be summarized by different degrees of dependence between 

the marginal priors on rj. The graph denoted by "a' in Figure 2 describes (with arbitrary scal­

ing) the prior of r1 under this diffuse assumption on >.. 
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Let us first present in Tables 4-6 the results for the prior median efficiency r- = 0.875. In 

view of the posterior median efficiencies in the diffuse Erlang case (see Table 3), prior and 

likelihood each other should roughly be in accordance with each-other here. Indeed, Table 5 

now attributes the bulk of the posterior probability mass to M3 , the Erlang model where the 

marginal prior on ri is most concentrated around its mode. With the exception of M2 , which 

receives about 7% of the posterior probability, the rest of the models get little posterior proba­

bility, in particular Mo, the model which imposes full efficiency. Although the relative ranking 

of the Erlang models is very different from the diffuse case in Subsection 7.1, the posterior mo­

ments of 8_ are hardly affected by the informative priors, as is obvious from comparing Tables 

1 and 4. In fact, the posterior moments of /3 are close to the ones for the baseline model Mo 

under all the efficiency distribu tions considered. Of course, the posterior mean of (72 decreases 

as soon as a composed error is assumed. 

Table 4. Posterior Moments of 8j with Informative Priors on hj (r- = 0.875) 

j=O j = 1 j=2 j=3 j=4(0=1) 
mean (s.dev.) mean (s.dev.) mean (s.dev.) mean (s.dev.) mean (s.dev.) 

30 :-7.205 (0.3397) -7.479 (0.3448) -7.438 (0.3898) ·7.342 (0.3400) -7.374 (0.3187) 
{J1 0.3860 (0.0386 ) 0.4276 (0.0428) 0.4145 (0.0433) 0.3927 (0.0436 ) 0.3988 (0.0391 ) 
32 0.0316 (0.0027) 0.0295 (0.0028 ) 0.0300 (0.0029) 0.0313 (0.0030) 0.0311 (0.0027) 
,33 0.2462 (0.0674) 0.2492 (0.0652) 0.2495 (0.Oil7) 0.2471 (0.0663) 0.2428 (0.0653) 
3t 0.0792 (0.0621) 0.0449 (0.0619) 0.0573 (0.0626) 0.0748 (0.0668) 0.0654 (0.0658) 

(72 0.0>213 (0.0028) 0.0129 (0.0036) 0.0150 (0.0034) 0.Ql71 (0.0033 ) 0.0131 (0.0033 ) 
~ 0.0954 (0.0242) 0.0557 (0.0136) 0.0348 (0.0105 ) 
~ -1 11.273 (3.312) 19.302 (5.907) 32.184 (12.429) 
~, 04130 (0.5792) 
...l 0.0190 (0.0083) 
,.;-2 62.80 (23.89) 
VR, 1 0.5562 0.6721 0.7760 

TV! 0.0213 0.0232 0.0223 0.0220 

Table 5. Model Probabilities with Informative Priors on hi (r- = 0.875) 

j=O j =1 j=2 j=3 j=4(a=1) 
10gKj 48.070 50.294 52.066 54.654 50.134 
10gpj(Bjly,X) 61. ii5 61.161 62.608 64.518 58.452 
P( .Hj ) 1/5 1/5 1/5 1/5 1/5 
P(.Hjly·X) 0.0013 0.0116 0.0683 0.9089 0.0099 

The total error variance TVi • however, is quite stable across models. Comparison with the 
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Table 6. Posterior Moments of Efficiencies with Informative Priors on 0) (T- =0.875) 

[j j=O j=l j=2 j=3 j=4(a=1) 
mean mean mean mean mean 

(s.dev.) (s.dev.) (s.dev.) (s.dev.) (s.dev.) 

TJ 1 (0) 0.91 (0.08) 0.90 (0.07) 0.90 (0.06) 0.83 (0.10) 
Tl 1 (0) 0.55 (0.09) 0.66 (0.10) 0.68 (0.10) 0.70 (0.08) 
T2 1 (0) 0.97 (0.03) 0.95 (0.03) 0.94 (0.04) 0.96 (0.04) 
T3 1 (0) 0.93 (0.06) 0.92 (0.06) 0.90 (0.06) 0.87 (0.08) 
T4 1 (0) 0.89 (0.08) 0.89 (0.09) 0.89 (0.06) 0.84 (0.09) 
TS 1 (0) 0.96 (0.04) 0.94 (0.04) 0.93 (0.05) 0.94 (0.05) 

median Tf 1 0.94 0.91 0.91 0.83 

diffuse prior case in Table 1 shows that variance ratios V RJ are essentially unaffected by the 

added prior information, which does not contradict the data information here. 

Results for the truncated Normal model are more different from Greene's (1990) M L estimates 

fJ 

[, than for the Erlang models (barring the log likelihood value discussed in the previous subsec­

tion). Greene finds a large negative value for fl (with an even much larger asymptotic standard 

error), whereas we find a positive mean of t/;, with a small sample posterior standard deviation 

of the same order of magnitude. 

The resulting truncated Normal distribution of Greene (1990) is close to the exponential dis­

tribution (see his Figure 1), which seems at odds with his strong support for the gamma model 

with shape parameter P estimated at 2.45. Indeed, a positive posterior mean for t/; renders the 

truncated Normal model closer to the Erlang cases with j > 1, which receive most support in 

our findings. The posterior mean for (J2 seems in line with his estimate for the half-Normal, but 

is about twice his estimated value for the truncated Normal (a :F 0).8 Furthermore, Greene's 

estimate of (.;)2, which is 0.1674, is roughly nine times as large as the posterior mean we find 

for the case with a = 1. The latter is, of course, linke to his large negative estimate for Ji. 

The likelihood function seems to be very flat in the direction of Ji and behaves much better 

when parameterized in terms of t/J = Jilw. In addition, the prior on t/J in (28) helps in resolving 

problems of identification. 

Posterior moments for within-sample and out-of-sample efficiencies are close to the diffuse case 

8Table 1 in Greene (1990) is not easy to read. In his notation, ~~ is the variance of v = ~; for the gamma 
models, but ~~ = ~~ + ~~ in the truncated Normal cases where ~~ I which corresponds to our w~, is larger than 
t1ar(u) due to truncation, In addition. the value presented for his ,\ =(h/~. does not seem in accordance with 
his estimates for ~~ and ~~ in the general truncated Normal model. 

[ 

---_.. _--------------------­
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for the Erlang models, with the exception of firm 1, which displays a great sensitivity to prior 

and sampling model assumptions. As it is by far the least efficient of the firms considered and 

thus the furthest out in the tail of the distribution of Zi, it should, indeed, be most affected by 

different forms of tail behaviour of the efficiency distribution. 

Although the individual firm efficiencies are not far from those of the Erlang models, the out· 

of-sample efficiency of the truncated Normal case is shifted away from full efficiency here (see 

Figure 4). 

Comparing Table 6 to Greene's point estimates of inefficiency, we observe again the very high 

values he finds for firms 1 and 2 with the gamma model and the relatively close correspondence 

for the exponential model. In addition, his half-Normal model leads to estimates that are 

similar to our posterior means for j = 3, but the truncated Normal case of Greene produces a 

much larger spread of individual firm efficiencies than found in Table 6 for j = 4. The latter 

is,- of course, to be expected as his truncated Normal model behaves like an exponential and 

induces a relatively flat efficiency distribution. 

Let us now shift the prior median efficiency to a completely different value, r'" = 0.5, which 

is no longer in line with the data information. Tables 7-9 summarize the posterior findings 

\I.'here the probabilities of the Erlang models are now much closer, in line with our expectations 

based on Figures 2 and 3. The large conflict between the prior and the sample information for 

.'11 - .\/4 results in Ala, implicitly assuming full efficiency (which is much more in line with 

the data) taking most of the posterior probability mass. The disaccordance between prior and 

data infc'''uation can be illustrated by computing Bayes factors for the Bayesian models with [ 
common sampling distribution and prior structure, but the different values of r'" used here, 

defined by B; = pj(yIX, r'" = 0.8i5)/pj(YIX, r'" = 0.5). These Bayes factors clearly favour 

r- =0.875 and are given by 218, IOn, 4081, and 317.426 for j =1,2,3, and 4, respectively. 

This also indicates that j = 1 corresponds to the most conservative model. 

Comparing Table 7 with Table 4 we note that less of the stochastics is attributed to the frontier 

in (2) and more to the inefficiency, as could be expected. This is evidenced by the drop in 

~ariance ratios. especially for higher j. Note that this fact reverses the ordering of V RJ among 

the Erlang models. We did not compute V RJ for M4 , but the more than ten-fold increase in 

the posterior mean of .... 2 combined with a decrease in the mean of (12 definitely points in the 
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same direction. In addition, the now negative posterior mean of j.l9 requires large values of w2 • 

Table 7. Posterior Moments of 6; with Informative Priors on 0; (r- =0.5) 

j=O j=l j=2 j - 3 j=4(0-1) 
mean (s.dev.) mean (s.dev.) mean (s.dev.) mean (s.dev.) mean (s.dev.) 

Po -7.205 (0.3397) -7.526 (0.3295 ) -7.532 (0.3193) -7.529 (0.3197) -7.478 (0.3333) 
PI 0.3860 (0.0386) 0.4398 (0.0418) 0.4324 (0.0385 ) 0.4311 (0.0405) 0.4412 (0.0405) 
P2 0.0316 (0.0027) 0.0289 (0.0028) 0.0294 (0.0026) 0.0294 (0.0028 ) 0.0290 (0.0027) 
{33 0.2462 (0.0674) 0.2447 (0.0641 ) 0.2411 (0.0632) 0.2316 (0.0654) 0.2270 (0.0657) 
13. 0.0792 (0.0621 ) 0.0362 (0.0603 ) 0.0385 (0.0599 ) 0.0432 (0.0620) 0.0326 (0.0631) 

(12 
A 

0.0213 (0.0028) 0.0107 
0.1199 

(0.0027) 
(0.0202) 

0.0093 
0.0870 

(0.0028) 
(0.0128 ) 

0.0077 
0.0751 

(0.0029) 
(0.0104 ) 

0.0082 
,,,lIP 

(0.0022) 

A-I 8.586 (1.519) 11.762 (1.856 ) 13.573 (1.872) 

IJ -0.9094 (0.2844) 
.... 2 0.2016 (0.0501) 
.... -2 5.258 (1.270) 
VRJ 1 0.4133 0.3658 0.2971 
TV! 0.0213 0.0259 0.0254 0.0259 

Table 8. 110del Probabilities with Informative Priors on 0;' (r- =0.5) 

[
 

As the prior information is increasingly conservative for j =4,3,2 and 1, the out-of-sample 
r 
l_. efficiency rf in Table 9 is not affected much for j = 1, but more and more as j increases. 

Figure 5 graphically displays the posterior ~nsities of r f for r- = 0.5. Comparing Figures 4 

and 5 the relative robustness of the exponential model with respect to large changes in r- is 

clearly illustrated. Finally, note that for firm 1 the prior does not contradict the sample now, 

50 that its individual efficiency is more concentrated than in the case with r- = 0.875, and its 

mean is increasingly drawn towards the prior median as j grows (Le. as more prior mass is 

concentrated around the median; see Figure 3). 

9For Jf4 with r" = 0.5 the Monte Carlo integration performed better in terms of (IJ, ""') than in (,p, "",). A 
careful analysis of this issue is a topic of further research. Goldstein (1991) proposes to parameterize in terms 

of (!3.1l •• 1l3, ti) where III is the )th central moment of the composed error (Vi - z,) . 

log K j 

10gpJ(OJIY,X) 
P(MJ) 
P(M;ly,X) 

j=O j = 1 j=2 j=3 j=4(a=1) 
48.070 44.910 45.084 46.340 37.466 
61.775 56.067 55.783 56.691 48.892 

1/5 1/5 1/5 1/5 1/5
 
0.7873 0.0334 0.0397 0.1396 0.00002
 

._-----_._----------------' 
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Table 9. Posterior Moments of Efficiencies with Informative Priors on Dj (T* =0.5) 

j=O j = 1 j=2 j=3 j =4(a =1) 
mean mean mean mean mean 

(s.dev.) (s.dev.) (s.dev.) (s.dev.) (s.dev.) 

Tf 1 (0) 0.89 (0.10) 0.85 (0.10) 0.81 (0.10) 0.68 (0.16) 
T1 1 (0) 0.60 (0.07) 0.55 (0.06) 0.50 (0.05) 0.52 (0.04) 
T2 1 (0) 0.97 (0.03) 0.95 (0.04) 0.92 (0.05) 0.97 (0.03) 
T3 1 (0) 0.92 (0.06) 0.88 (0.07) 0.83 (0.07) 0.90 (0.07) 
T4 1 (0) 0.87 (0.09) 0.81 (0.08) 0.77 (0.08) 0.81 (0.09) 
TS 1 (0) 0.96 (0.04) 0.93 (0.05) 0.89 (0.06) 0.95 (0.04) 

median Tf 1 0.92 0.86 0.82 0.65 

8 Conclusion 

A Bayesian analysis of stochastic frontier models was shown to be both theoretically and prac­

tically feasible. A simple application of the rules of probability calculus leads to posterior 

densities of efficiencies, both within-sample (firm-specific) and out-of-sample (average), where 

parameter uncertainty is entirely taken care of. This paradigm thus allows direct posterior in­

ference on firm-specific efficiencies, avoiding the much criticized two-step procedure of Jondrow 
._\ 

et al. (1982). The difficult choice of a particular sampling model for the inefficiency error term 

is avoided by mixing over different models, reflecting the spectrum of distributions proposed 

in the literature. Inherent to this mixing and the associated computation of posterior model 

probabilities is the fact that proper priors are required on those parameters that are not com­

mon to all models considered. We propose a set of prior structures that preserve the main 

characteristics of the different sampling distributions. In addition, they allow for very simple 

prior elicitation rules, based only on one number, the prior median efficiency. 

'\~e apply these results to the analysis of 123 US electric utility companies in 19iO, a data set 

used and listed in Greene (1990). We briefly treat some numerical issues that appear quite 

crucial for this application, and were partly overlooked in the previous literature. The empirical 

analysis relies on Monte Carlo integration with importance sampling for all parameters and 

the efficiency term. Although this is numerically not a trivial exercise, 10 it provides us with a 

10 A full implementation of our Gauss-386 programmes with the computation of a posterior density plot for r, and first and second order moments for 11 through 1~ ra.n at the rate of 10,000 antithetic drawings per hour 
an iI. 386-33 personal computer with coprocessor. Typical runs were of the order of 100,000 drawings. 



27 

wealth of informa.tionj the actual posterior densities of e.g. average efficiency can be plotted, 

taking into account all prior and sample information and with parameter and model uncer· 

tainty averaged out. We highlight the main differences with the sampling theoretical approach D 
in Greene (1990) and perform the analysis both under diffuse and proper priors. 

In the latter case, the choice of prior median efficiency, r-, naturally affects our results. How­

ever, as expected, the exponential model is least affected by shifting from a prior median in 

accordance with the data to one in severe conflict with sample information. In this particular 

a.pplication, the truncated Normal model is found to be most sensitive to the choice of r- and 

turns out to be the least favoured of all composed error models considered. 

c
 

[J
 

c
 

[J
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Appendix A Joint sphericity of the disturbances of the
[ 

stochastic frontier 

Here we will show that, under the usual diffuse prior of (72, all the posterior results (on quantities 

other than the scale parameter (7 of Vi'S) are perfectly robust w.r.t. departures from Normality 

[ within the class of joint spherical distributions of V =(VI, .•., VN)'. 

Assume that the vector v of N random disturbances of the stochastic frontiers· (2) has a 

continuous spherical distribution with scale parameter (7, and is independent of all Xi'S and 

Zj's. Therefore, under any Mj (j = 1,2,3,4), the density of v takes the form 

[ 
(A.l) 

where 6j groups the model specific parameters of Mj, and U(·) is a known nonnegative function o	 such that 

[00 li.	 N li.la u 2 -IUN(u)du = f( 2" )1l'- 2,	 (A.2) 

[ 

which is both necessary and sufficient to make (7-NUN( CT- 2V'v) a proper, normalized density 

func\ion, see e.g. Dickey and Chen (1985). 

Assume that UN(-) is not indexed by (7 and consider the following (improper) prior structure 

for the parameters of Mj: 

c
pj(l3,6j,CT) =p((7)pj(l3,cj) = -pj(I3,6j),	 (A.3]

(7 

C	 where c is a positive constant and pj(I3,6j) is functionally independent of (7. Thus the joint 

(improper) density of v and (7 given Xi'S, zi's and (/3, 6j) is given by 

[ 
Now the transformation from (J to u = (J-2 v'v, with the Jacobian iu#-, can be used to 

facilitate the integration over (7 E (0, +(0). Since this transformation does not affect UN('), 

which is not indexed by (J, we can use (A.2) in order to obtain the (improper) density of v: 

[ 
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[ 

c N _l!. I _l!. 
= - r( -)11' 2 (v v) 2.	 (AA)

2 2 

[	 Remark that the form of this density is not affected by the particular form of the function 9N(') 

and remains exactly the same for any 9N(') fulfilling (A.2). Since (AA) can also be viewed as 

the density of the observation vector Y given (X, Zt, ... , ZN, (3,6j ), the joint density 

[J 
and the posterior Pj(Zl, ... , ZN, (3, 6j IY, X) remain unaffected by the change from Normal to any 

other spherical distribution of v. If joint sphericity of (v' vJ)' is assumed, then, under (A.3), 

full robustness of the predictive density of YJ given (y, X, Z J) holds as well. 

The result presented here was first proven in the general case of nonlinear regression with 

elliptical errors by Osiewalski and Steel (1992). 

[ 

[ 

[ 

[ 

-------,-- ­



Appendix B Probability density functions
 

A k-variate Normal density on z E RII: with mean vector bE RII: and PDS k x k covariance
[ matrix C: 

[ 
A k-variate Student t density on z E RII: with r > 0 degrees of freedom, location vector b E RII: 

and P DS k x k precision matrix A: 

[ 
A-gamma density on z > 0 with a, b > 0: 

[ 

A beta density on v E (0, c) with a, b > 0:
 

r(a+ b) v a-I V b-l
 [ !B(vla,b,c) = cr(a)r(b)(;) (1-;) . 

A three-parameter inverted beta or beta prime density on w > 0 with a,b,c > 0 [see Zellner 

(19i1, p. 376)]: 

) - f(a +b) (~)b-l(l + ~)-(Q+b)f ( I blB wa, ,c - cf(a)f(b) cc' 

[ 
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