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1 INTRODUCTION 

In industral applications, it is often necessary to determine which factors 

among a great number of possibilities can aifect a process. As factorial 

designs require a number of runs that grows exponential1y with the number 

of factors to be analysed, the application of full replicated factorial designs 

is both costly and unnecessary, and the sequential use of factorial designs is 

to be recommended, as it al10ws the identification of more significant eifects 

and considerably reduces the number of runs to be carried out. 

In the analysis of this type of design the absence of replications makes 

it impossible to estimate the residual variance, the latter being necessary to 

contrast which factors and interactions are active. In ful1 factorial designs, or 

in high-resolution designs, the higher order interactions can be supposed not 

active, and the squared mean of their estimates can be used as the residual 

variance estimator. This procedure, apart from other disadvantages, is not 

applicable to low-resolution fractions (for example, saturated designs), since 

there are no interactions whose estimates can be used in the calculation of 

the scale estimator. 

The first acceptable solution for the analysis of unreplicated designs was 

suggested by Daniel (1959, 1976). His method consists of drawing on normal 

probability paper the estimates of the eifects: on the graph, the correspon­

dent estimates to non-active columns (the majority) form an approximately 

straight line and the significant eifects appear at a distance as outliers in a 

regression lineo This procedure has been of great use and, with diiference, 

the most recommended (see for example, Box, Hunter and Hunter, 1978). 

The main inconvenience of the graph is its subjectivity, and frequentIy only 

experienced analysts can judge if an apparent deviation from the linearity is 

significant or noto 

Box and Meyer (1986) approached the problem from a more formal point 

of view, based on the Pareto principIe, "only a reduced number of eifects are 

significant." Accepting the hypothesis that the estimated eifects come from 
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a normal contaminated distribution, (1 - a)N(O, q2) + aN(O, k2q 2) where a 

and k are supposedly known, the probability that an effect is active can be 

calculated by Bayes's theorem. The necessary calculations involved in the 

application of this method are complex and it is essential to make use of 

specialized programs in order to carry them out. 

Peña (1987) suggested judging what effects are significant, by using as 

a reference a robust estimate of the scale parameter. The procedure is ex­

tremely simple and provides the same results as the far more complex pro­

cedure of Box and Meyer's Bayesian plot. In Peña and Juan (1989) this 

procedure is presented, proposing as scale estimator the median of the abso­

lute value of the estimates. This article studies the properties of this method 

in depth, justifying each one of the decisions taken. An analysis based on 

simulations on a computer proves that the procedure is very powerful and 

this together with its simplicity makes it a useful complement to the existing 

methods. 

Benski (1989) applies a normality test (Olsson 1979, 1981) in order to 

identify the significant effects, combined with a test of outliers that uses the 

fourth-spread as a scale robust estimator. The author himself recognizes, "in 

fact, the fourth-spread outlier test has shown to be a useful tool on its own 

since it can also identify the same significant effects, when applied to the 

same data set as the normality test." In point 3 the advantages of taking the 

median of the absolute values as a scale estimator are determined as opposed 

to the fourth-spread. 

Wang and Lawson (1988) using the Bayesian approach, obtain an esti­

mate of the residual variance. To apply this it is essential to use a sophisti­

cated computer program, and this requirement has the same problem as Box 

and Meyer's method. 

Final1y, Lenth (1989) has suggested a related method to the one pre­

sented in this article. Both procedures will be compared in section 5. 

In this article an effect refers in general to any column of the design 
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matrix. In the case of fractions of factorial designs, each column or contrast 

will consist of a linear combination of effeets defined by the aliases. 

e 2 FUNDAMENTALS 

( 

e 

If we accept the hypothesis that only a reduced number of effects are active 

(Pareto principIe), their identification in unreplicated factorial designs is re­

duced to the problem of identifying the outliers of a sample. The problem 

from this new point of view is the following: consider a factorial design, 2h- p , 

being N = 2h -
p the number of runs. Let (Oh O2, ••• ,On) be the estimates of 

the effects except the mean, n = N-lo A generally accepted hypothesis is 

that these estimates come from normal distributions with possibly different 

means, but with the same unknown variance. That is, if the effect i is not 

active, o¡ comes from a N(O, u2 ) distribution, and if it is active it comes from 

N(O¡, u 2 ), where O¡ is a nonzero real number. If we suppose that a priori the 

set of parameters O¡ corresponding to active effects follows a N(O, un with 

u, ~ u, the predictive distribution of Oí, if i is active, is N(0,u2 + u¡). 

Let a be the probability that an effect is active, then (Ol! O2, ••• ,On) 

are independent and identically distributed values of a contaminated normal 

distribution (Box and Meyer, 1986) 

where 

e, 

e 

The problem, bearing in mind the previous contaminated model, is re­

duced to estimating u avoiding the infiuence of contaminating "observations" 

(active effects). One solution is to use robust estimators for u with a high 

break-down point (see Hampel et al, 1986) which are efficient with high levels 

of contamination (Box and Meyer estimated for a set of published examples 

that the contamination level a is in the neighborhood of 0.1 to 0.3). 
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3 ROBUST SCALE ESTIMATORS 

e 

Three robust scale estimators offrequent use (Iglewicz, 1983) for (Oh O2 ,,,,, en) 

are: 

1. The median of the absolute deviation to the sample median 

MAD = median{IO¡ ­ MI}, (1) 

e where M = median{O¡}. 

2. The median of the absolute value of the observation 

MADo= median{IO¡I}· (2) 

e 3. The fourth-spreadj difference between the third and first quartile. 

dF = Fu - FL' (3) 

If we wish to estimate the standard deviation (J, we should standard­

ize these estimators in such a way that they are consistent in the case of 

the normal distribution. To do this, we must divide MAD and MADo by 

~-1(3/4) = 0.6745 and dF by 2~-1(3/4) = 1.349, where ~ is the distribution 

function of the standard normal. 

e 

e 

e 

The comparison of performance for these three estimators in the case of 

the proposed contaminated model has been carried out by the Monte CarIo 

method, with designs of 16 and 32 runs, values of a = O to a = 0.30 and 

values of k = 5, 10 and 15. In each case 1000 simulations were performed. 

The results for different combinations of the sample size and k are sim­

ilar, consequently only the results for the case k = 10 and n = 15 will be 

commented on. Figure la shows the graphs of the average bias estimated 

as a function of the value a. The three estimators tend to overestimate (J, 

the bias growing as a grows. We may conclude from these simulations that 

for high levels of contamination the three robust estimates have consider­

ably high bias which make their use not very recommendable, especially the 
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fourth-spread which with Q = 0.3 produces an average positive bias of 70%, 

due without doubt to its smaller break-down point (0.25). 

e 

Given the differences of observed bias it would seem advisable to compare 

these three estimates from the mean squared error (MSE) point of view. 

Figure lb represents the graph of the MSE obtained in the simulations for 

these three estimates as a function of Q. A log-scale is used for the MSE to 

enhance the resolution of the plot. The similarity between MAD and MADo 
can be appreciated: the smaller bias of MAD is compensated by the smaller 

variance of MADo, and confirms the bad behaviour of dF , which is not only 

the most biased but also the least efficient. The first conclusion obtained 

from the simulations is the difference of performance between dF and the 

other two estimators: On the other hand, when the percentage of outliers is 

high, none of the robust estimators studied have good properties. 

4 PROPOSED METHOD 

( 

4.1 An Iterative Estimator 

In order to confirm if an iterative procedure improves the previous results, a 

new robust estimate IMADo (MADo iterative) is defined as follows: 

1. Compute MADo using (2) with the n estimates of the effects, 

2. Take those values Oi which satisfy 

c (4) 

w being a previously determinated value which, as will be justified in 

the Appendix, must be such that w > 2. 

3. With those values recalculate MADo. If the new estimate is different 

from the previous one, repeat step 2, otherwise, the procedure termi­

nates and the last MADo is the IMADo. 
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As in the case of the robust estimators in section 3, it is necessary to 

divide the new scale estimator by a correction factor aw in order to obtain a 

consistent estimator for (J in the normal case. 

IMADoe q= (5) 

This correction factor is a function of w and it is obtained for any w > 2 as 

solution t > Oof the equation (see Appendix) 

~(t) = !~(wt) + ~ (6) 

The solution for the previous equation is obtained recursively in a few itera­

tions. Note that for w --+ 00, aw = ~-1(3/4), and for other values of w it will 

satisfy aw < ~-1(3/4). In Table I the solution of equation (6) for different 

values of w is shown. 

TABLE I. Solution t = aw oí equation (6) íor different values oí w. 

w 2.5 3 3.5 4 4.5 5 5.5 6 6.5 

e aw 0.5424 0.6285 0.6578 0.6686 0.6725 0.6739 0.6743 0.6744 0.6745 

The most adequate value of w will be the one which provides an estima­

tor with smallest bias and M8E. To determine this value some simulations 

have been carried out for different combinations of n, k and a following the 

contaminated model. For each of the samples the value of IMADo was cal­

culated for values of w varying from 2.5 to 8; this procedure was repeated 

1000 times. Figures 2a to 2d include graphs for average bias and M8E of 
(J the standardized estimator (divided by aw ) for non-contaminated samples 1 

(n = 7), 2 (n = 15), 3 (n = 31), and for contaminated samples 4 (n = 7, 

a = 0.1, k = 5), 5 (n = 15, a = 0.2, k = 10) and 6 (n = 31, a = 0.3, 

k = 15). It can be seen how (Fig. 2a) the iterative estimator is biased even 

for the non-contaminated model and how the bias becames smaller as the( ) 

sample size increases. The three graphs present a minimum for w in the 

neighborhood of 3 to 4. As expected, the bias is larger for the contaminated 
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models (Fig. 2b) showing a shift upwards of the graphs if one compares them 

with those corresponding to the non-contaminated samples, in these graphs 

one can observe more clearly the existence of a minimum. Figure 2c shows 

the decreasing MSE curves of the estimator for non-contaminated samples. 

If contamination is present (Fig. 2d), the MSE increases¡ a rise and the 

existence of minumum points can be seen in the graphs. Figures 2b and 2d 

show how the value w which minimizes the MSE does not coincide with the 

one that minimizes the bias. The election of w will ultimately depend on 

the criterion fol1owed, either minimum bias or minimum MSE, and on the 

sample size. In the examples shown and in others analysed the optimal w 

value becames smal1er as the sample size increases. On the other hand, any 

value of w in the interval (3,4) provides acceptable values for the bias and 

e the MSE¡ the value of w = 3.5 is recommended for the most frequent designs 

of 8 to 64 runs and it has been chosen to analyse the examples presented in 

section 6. 

e 4.2 Comparison with other estimators 

Figure la also shows the graph of the iterative estimator (w = 3.5) as a 

function of a. The bias is considerably smal1er than in the previous cases 

and the rate of growth for increasing values of a is fairly moderate. IMADo 

has an average bias of 7.8% for a = 0.25, as opposed to the 33% bias of 

MADo. These differences of behaviour remain favourable to the iterative 

estimate when we compare them in terma of MSE, as shown in Figure lb. 

el 
For the maximum value of alpha utilized (0.3), the iterative estimator is 

about 20% more efficient than MADo. 

The previous procedure for calculating IMADo at the same time pro­

vides the set 1 of observations which are considered as outliers according 

to this criterion, 1 = {i : ¡Oil > wIMADo}. If we eliminate these observa­

tions from the sample, the rest are, hypothetical1y, independent observations, 

identical1y distributed from a Normal distribution with mean Oand unknown 
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variance, (72. In this case, the most efficient estimate for the variance is the 

one obtained as the mean square of the observations, 

where m is the number of outliers. It is known that this value coincides 

with that obtained through the residual variance of the model which only 

takes into account the estimated active effects. Figure 3 represents the M8E 

of this estimator (SR) and its comparison with the IMADa estimator. For 

levels of contamination lower than 20%, sR, as expected, has a lower M8E 

than the robust estimator. However, this difference is reversed and grows 

when the level of contamination o: is raised above 0.2. This result, which in 

principIe can seem surprising, has a simple interpretation: when o: is large 
( 

'-'	 there exists a high probability of observations generated by the normal of 

greater variance appearing, and not being considered outliers as they appear 

within the defined limits. These observations are indistinguishable from the 

"good" observations and inflate SR, while they have lesser effect on the robust 
e estimate. This leads us to the following conclusion: once the outliers are 

identified the robust estimator is preferable to SR, especially when the number 

of detected outliers is large (above 20%). 

4.3 Testing	 for outliers 

Once we have a reasonably good estimator of the variance, the next step is 

to define a testing procedure based on this estimator so that we can decide 

which effect is active. A rule based on the principIe of simultaneous testing of 

n contrast that yields acceptable practical results is considering active those 

effects satisfying 

(7) 

where, given {J, Zc	 is obtained by 

(8) 
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where Z is a random variable N(O, 1), (that is Zc = ~-l(l+(l~,8)l/n)). In most 

regular designs of 8, 16 and 32 runs, if {3 = 0.05, then Zc is equal to 2.68, 2.93 

and 3.15, respectively. Using (5) and defining W c = zc/aw , the inequality (7) 

can be written as 

and if we use the recommended w = 3.5, then W c will take the values 4, 4.4 

and 4.8 for the designs with 8, 16 and 32 runs, respectively. 

5 COMPARISON WITH LENTH'S METHOD 

If the iterative process to calculate IMADa is stopped in the second itera­

tion, making w = 3.75, the robust estimate obtained is the same as the one 

proposed by Lenth (1989). This estimate was named PSE (pseudo standard 

error) by its author. Both estimates behave similarly when the level of con­

tamination is low, but as a increases, the bias and the MSE of IMADa tend 

to decrease. In Figure 4a a comparison is made between the biases of the two e 
estimators; IMADa has a smaller bias than PSE for any level of contamina­

tion, but	 PSE is less variable when a is small, for large values of a, IMADa 

has both	 a smaller bias and less variability (Fig. 4b). 

The behaviour of the estimates in the limit case (when n -+ 00) can help 

to compare with the finite size sample. The limiting values of IMADa will 

depend on the model parameters a, k, (J and the chosen value for w. When 

a = O, assuming without loss of generality that (J = 1, aw is obtained for any 

w > 2 as the solution t > Oof the equation (6). In the case of a mixture of 

normals, a =1= O, aw is obtained in the same way from the solution t > O of 

(see Appendix) 

~(t) =	 2(1 ~ a) - 1 : a ~ (~) 
+4(1 ~ a) ((1- a)(2~(wt) -1) + a(2~ (:t) -1)). (9) 

For O ~	 a ~ 0.3 and k ~ 5, it can be shown (Lenth, 1989) that in the 
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worst case (k = 5, a = 0.3) the limiting value oí PSE is 15% greater than u, 

while with the iterative estimator this bound is reduced to 8%. 

6 EXAMPLES 

In order to illustrate the suggested procedure, four examples oí factorial 

designs are analysed. These examples have been analysed by Box and Meyer 

using the Bayes plot and were presented and solved in Daniel (1976), Taguchi 

and Wu (1980), Box, Hunter and Hunter (1978), and Davies (1954). Table 

11 presents these four sets of data and Table 111 the estimated effects. 

We will illustrate the application oí the developed procedure using Da­

niel's data. The effects have been estimated in the usual manner and the 

results are displayed on the first column of Table 111. The normalized IMADo 

is equal to 0.02, so those effects whose estimates in absolute value exceed 

0.088 (4.4MADo) will be considered active. According to this, effects 2, 4 

and 8 are active. 
e 

The robust procedure and Box and Meyer's method have been applied 

to all four of the examples. Both methods found the same active effects in aH 

cases. The active effects are also the same as those obtained when applying 

Daniel's method (Box and Meyer, 1986). 

Figure 5 graphically illustrates the results for the four examples employ­

ing the robust procedure proposed in this artic1e, indicating the intervals 

where the non-active effects are situated. The numbers correspond to the 

columns of the designo 

In examples 1, 2 and 3 a dot plot of the estimated effects is sufficient to 

find which of the estimated effects are significant. Figure 5 shows that 2, 4 

and 8 in example I as weH as 14 and 15 in example 11 and 4, 12 and 13 in 

111, are noticeably separated from the resto In this case, to apply Box and 
(v 

Meyer's method would be an unnecessary complication. 

The analysis of example IV (a full factorial design) involves more diffi­
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TABLE 11. Four examples of 16-Run Two-Level factorial designs (1. Daniel (1976), 11. 
Taguchi and Wu (1980), 111. Box, Hunter and Hunter (1978), and IV. Davies (1954)). 

Response 
Run O 1 2 3 6 6 7 8 9 10 11 12 13 16 I 11 III IV 

1 + + + + + 0.23 .3.7 1•.0 0.08
• l. 

+ + + 
2 + + + + + + + + 0.30 .0.2 16.8 0.0. 
3 + + + + + + + + 0.62 .2.• 16.0 0.63 

e + + + + + + + + 0.6. • •.7 16.• 0.•3•
6 + + + + + + + + 0.70 .2.• 27.6 0.31 
6 + + + + + + + + 0.76 .6.9 2•.0 0.09 
7 + + + + + + + + 1.00 .2.2 27.• 0.12 
8 + + + + + + + + 0.96 .0.6 22.6 0.36 
9 + + + + + + + + 0.32 .2.• 22.3 0.79 
10 + + + + + + + + 0.39 .6.6 17.1 0.68 
11 + + + + + 0.61 .3.6 21.6 0.73+ + + 
12 0.66 .0.6 17.6 0.08+ + + + + + + +( , 
13 + + + + + + + + 0.89 ••.0 16.9 0.77l. + + + + + + + + 0.97 .0.2 21.9 0.38 

+ + + + +16 + + + 1.07 .2.6 16.7 0 .•9 
16 1.21 .6.6 20.3 0.23+ + + + + + + + + + + + + + + + 

TABLE 111. Estimated Effects in the four examples of Table 11. 

i 
Column I 11 111 IVe 

1 .06 .13 -.6 -.19 
2 .25 -.15 -.4 -.02 
3 -.01 .30 -.6 .00 
4 .50 .15 4.6 -.08 
5 .00 .40 .9 .03 
6 -.02 -.03 -.2 -.07 
7 .00 .37 -.3 .15 
8 .14 .4 ··1.2 .27 
9 .03 -.05 .7 -.16 
10 -.01 .42 .1 -.25 
11 .02 .13 .3 -.10 
12 .04 .13 ··5.5 -.03L 
13 .02 -.37 3.8 -.01 
14 .01 2.15 .1 .12 
15 .02 3.10 -.6 .02 
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culties. In the original publication (Davies, 1954), the three- and four-factor 

interactions are combined to give an estimate of error variance and, after 

carrying out a doubful analysis of variance, the authors assert that effects 8 

and 10 are active. The normal probability paper method does not lead to 

a clear and evident solution¡ out of other possible interpretations the most 

reasonable is to consider that none of the effects are significant. Calculating a 

robust estimate of the variance of the estimates we reach the conclusion that 

none of the effects are active. Box and Meyer's method offers different re­

sults depending on the initial hypothesis, although considering the graph the 

authors decide that there is not sufficient evidence to conclude the existence 

of significant effects. 

7 CONCLUSIONS 

Unreplicated factorial designs can be analysed using various procedures: (1) 

a subjective method suggested by Daniel based on the normal probability 

paper, (2) an objective method proposed by Box and Meyer which requires 

very complex calculations and (3) other methods based on a robust estimator 

of the estimates' scale parameter. 

This article proposes a very simple method which leads to the same 

results as the previous methods. It can be used as an alternative and com­

plement to Daniel's graph and the Bayesian method. 

Simulation experiments show that it is only necessary to iterate when 

the expected number of active effects is large, (larger than 20%). In these 
(1 

cases, the proposed method has clear advantages over the one described by 

Lenth(1989). 

From the simulations we conclude that it is advantageous to use as a 

scale estimator of a contaminated sample the robust estimator rather than 

that obtained through the residual variance of the model which only takes 

into account the estimated active effects. 
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APPENDIX 

Limit Value of IMADo in the N'ormal Case 

We will prove in this Appendix that the iterative process described in 4.1 

converges in the limit (n -+ 00) to a positive number (aw , the factor used for 

normalization) when w > 2. Supposing that no significant efi'ects exist and 

that n is large (in the limit equal to 00), the estimates of the efi'ects can be 

seen as a random variable X, N(O, q2). For q = 1, T = IXI has the distri­

bution function FT(t) = 2Cl)(t) - 1, t ~ O and its median is to = Cl)-I(3/4). 

From the first iteration we obtain a variable XI, with normal standard dis­

tribution, truncated between (-wto,wto), where w = zc/Cl)-I(3/4), in such a 

el way that T = IXII has the following distribution function 

2Cl)(t) - 1 
(10)FT(t) = 2Cl)(wt ) _ l' O ~ t ~ wto 

o

and its median tI is obtained from the equation 

1 1
Cl)(t l ) = -Cl)(wto) +-, 

2 4 

which may be generalized for any iteration m 

The succession tm generated is bounded and decreasing, so it converges. As 

Cl) is continuous, the limit of the successioIl t must verify equation (7). Such 

an equation has a trivial solution for t = O. Other solutions are the zeros of 

the function 
1 1 

g(t) = Cl)(t) - 2Cl)(wt) - 4' 

and as gis continuous, g(oo) = 1/4, g(O) = Oand g'(0) = Jt:(1- I) then for 

w > 2 the equation (7) has a non-trivial solution, a > O, satisfying g( a) = O. 

The form of g'(t) for t > O, allows us to conclude that the root is unique and 

positive, if w > 2. For 1 ~ w ~ 2 there is no solution apart from the trivial 

one; other values of w are not reasonable. 
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To conclude, it is necessary to prove that the succession tm , when w > 2, 

converges to the non-trivial solution a > O. It is sufficient to prove that 

a is a lower bound of tm • This will be demonstrated by induction. As 

to = ~-1(3/4) > a, supposing that tm > a, then wtm > wa and as ~-l is 

increasing, it verifies that 

4>-1 C4>(WI;) + 1)) > 4>-1 C4>(W~ + 1»). 
where the left-hand side of the inequality is tm+l and the right-hand side is 

a, implying tm+l > a, as we wished to proveo 

Limit Value of IMADo in a Mixture of Normals 

If X has a distribution (1 - a)N(O, 1) + aN(O, k2) 

truncated in (-wtm_¡, wtm_¡) (as in the previous case, it is supposed 

u = 1), the distribution function of the random variable T = ¡XI is 

p.	 ( ) (1- a)(2~(t) - 1) + a(2~(t/ k) - 1) 
T t = (1 - a)(2~(wtm_¡) - 1) + a(2~(tm_dk) - 1)' 

the median tn is the value FT(tm ) = ~, so that 

(1 ) _ _ a_~ (tkm ) + (1 ) ((1 _ a) (2~(wtm_¡) - 1)
21-a 1-a 41-a 

+a(2~ (wt;-l) -1))	 (ll) 

and as ~ is continous, if {tm } ~ t, this limit must verify (8). Analogously 

to the normal case, it can be shown that tm converges to a solution t =! O of 

the previous equation, when w > 2. 
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