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O. Introduetlon. lbe aim of thls paper ls to outllne an algebralc ¡enera­

lization of the rough set theory that would provlde a cammon framework for 

varlous rough set appllcatlons and models and, posslbly, enhance the scope of 

such appllcatlons. lbe contents of thls paper are a result of some earller 

works concerning group preferences, multicriterlal declslons and human cate­

gorlzations and concepts, and lt 15 author's hope that It may be useful In 

modeling and analysls of preferences and coalltion structures. 

The theory of rough sets and informatlon systems, presented for the first 

tIme In 1981 by Pawlak, see [23), has been initlally proposed as a framework 

for a systematlc study of impreclse or lncomplete knowledge. Pawlak has 

lntroduced new concepts of lndependence, rough dependence and rough approx­

lmation, as well as the notlon of reductlon of informatlon systems. lbese 

concepts play an essential role both In further development of the theory and 

in its various appllcations, and proved to be useful tools also outslde the 

initially intended fleld of application. 

The scope of successful applications of rough set methods to empirical 

problems 15 constantly lncreaslng, and ranges from industrial control systems 

[19] and expert systems Ul, (17], to analysis of empirlcal data In psycholo­

glcal problems of declsion and cognition [4], (13], (14), or In medIcine 

[27]. Various computer programs of rough analysis are commerclallzed, or 

distributed by academic channels. Flrst rough ehtps are being manufactured. 

The rough set notlons aroused also a more theoretical lnterest, especially 

in the computer-orlented areas of mathematics, related to expert systems, de­

cision making, artificial lntelllgence, etc. Varlous papers have been pub­

lished since 1982 concerning relations between rough and fuzzy theories of 

sets, e.g. [5), rough sets theory and evldence theory, e.'g. [31], rough and 

probabilistic approach to lndetermined situatlons, e.g. [28), etc. Several 

rough logLes have been constructed and Investigated, as well as knowledge 

representation and machine learning systems (see, for example, [l8] and the 

bibliography of [5)). A number of rough-set-based models has been proposed 

for empirlcal sclences, such as, for example, that of contextual structures 

of natural concepts, [7], [15], or of natural categorlzatlon rules, [13], 

(16). The concept of rough dependeney seems to be of some importance for new 

models and solutlons of declslon problems, and much has been done In this 

direction (see, for example, [3), [14], [24]). 

Parallelly, several purely theoretical studies of formal structures arls­

ing in rough set theory have been performed. Some results concerning alge­

bralc structure of rough sets were presented, for example, In [8] and [30) 
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(see also the blbliography of (20)).. and the llmlt propertles of rough ap­

proxlmatlons have been studled, (l8]. Some new results have been obtalned by 

applying algebraic technics to the famIlies of information sYStems (21l, 

[22]~ 

At the same time, the development of the rough set theory ltself ls be­

ing strongly lnfluenced by practlcal needs. One of the effects of thls influ­

ence ls the necesslty of some generallzatlons, since the origInal Pawlak's 

approach (and the majorlty of the works mentloned aboye 1s based on It) Is In 

a sense a very restrlctlve one: on the Interpretatlve level, lt enables to 

analyze only such sltuatlons In whlch objects under analysls are - or are not 

- equlvalent (see Appendlx) and does not take Into account other posslble 

types of relatlon between objects, such as, for example, slmilarlty or order. 

Recently, several papers have been publlshed proposing some generaliza­

tions of the theory. For example, Pawlak, Wong and Zlarko present In (28] a 

theory of probablllstic Informatlon systems, Pomykaia (29] and Nlemlnen [20] 

introduce two dlfferent approaches based on tolerance (a slmilarlty) relat­

ions, and In [lO] and [11] a framework for a theory based on arder relations 

ls proposed. In the paper [l2] a generalized concept of rough approximatlon 

ls lntroduced whlch allows to propose a general algebralc scheme called rough 

order, and to apply 'rough methods' In the sltuatlon in whlch the approxlmat­

ing objects are not sets but concepts (in the sense of Wllle, cf. (32)). 

Present paper can be regarded as belonging to the latter group. As we have 

already mentioned at the beglnnlng, lts maln objective ls to propase a gener­

al and unlform algebralc framework for varlous "rough theorLes", as well as 

to open new possible fields of application such as, for example, analysis of 

preferences, declslons and coalltion structures. 

One of the models of the theory presented here ls the orIginal Pawlak's 

approach, which ls partially characterized in varlous examples throughout· the 

text, and in the Sectlon 10. A conclse summary of the basic concepts of rough 

sets and lnformation systems theory ls annexed at the end of the papero For 

more lnformation, see the orIgInal papers (23] - (27]. 

In the Sectlon 1 we Introduce the algebralc counterparts of the baslc 

concepts of the rough set theory. 

Sectlons 2 to 6 are devoted to the problems of approxlmatlon In lattlces. 

We define general rough structures called rough orders and general approxl­

matlon operators called preclosures, and lnvestigate thelr properties (sec­
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tlons 2 and 3). Sectlons 4 and 5 contaln some resuIts concernlna Interdepen­

dence between algebralc propertles of rouah orders, and the properties of 

approximatlon operatlons defined In them; concepts of approJdmAtton Bp&ee and 

complete rough lattLce are Introduced. Sectlon 6 15 devoted to 10wer approxl­

matlon operators, and some algebralc propertles of familles of such operators 

are analyzedi the concept of approxtmatton system Is Introduced. 

In the sectlon 7 we Introduce some quantitative e1ements: descriptions of 

quallty of approximations, and the measures of roughness of objects which 

allow to introduce the concept of panul dependence. Some properties of par­

tial dependence are analyzed in the section 8. 

Sectlon 9 is devoted to what we caU normal famUles of sets, and it 15 

intended to provide a uniform conceptual base for those models, appllcations 

and generallzations of original rough set theory, in which approximated ob­

jects are sets or famUies of sets. 

In the section 10 we show that the basle facts of the theory of rough sets 

and rough approxlmation can be derived from the general results presented 

here. 

Throughout the text we sha11 use a standard lattice theory notation and 

terminology, following that of Grltzer [6]. 

An order is a partially ordered set, that 15, a system ~ • (R, <) where R 
2is a nonempty set and < S; R is a partial ordering of R: it 15 reflexlve, 

transitive and antisymmetrlc. 

Ji = (L,<) will denote a bounded partially ordered set whlch Is a latttce. 

The symbols O, t denote the bounds of L; A and v are the meet and Jofn opera­

tions in L, respectively: avb • sup(a, b) and aAb • inf(a, b). For any subset 

A of L, I\A and VA denote its infimum and its supremum. In a complete lattice 

a11 subsets of its universe have their suprema and minima; we recall that 

1\(0) = 11 and V(0) -= o. 
We shall also consider semUatttces. A meet-semUatttce ,. (S,<) 15 a 

partially ordered set such, that for any pair a,b of Its elements there exists 

their fnftmum aAb E Si lt 15 complete iff for any A S; S there exists Its in­

fimum M. The definitlon of Jotn-semUatttce 15 the dual one. It 15 a wel1 

known fact that any complete meet-semilattice bounded from aboye Is a lat­

tlce, and the dual for joln-semilattices holds. 

The symbol '.' denotes end of a proof, of an example, or of a remark. 
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1. Independence In meet-.emUattlces. Let ~ • (5.<) be a complete meet­

semilattlee. and let A. B be subsets of 5. 

DEFINITION 1. We shall say that A and B are equtvalent 1ff M - AB. 

Obvlously. the equlvalenee of sets Is an equlvalenee nlatlon in the ae­

neral sense of the termo Observe that A Is equlvalent to {AA}; the empty set 

ls equlvalent to the slngleton {t}. The followlng observatlon will be useful 

later on: 

Let meA) be the set of all mlnimal elements of a nonempty set A; lt ls 

evident that M <AndA) sinee meA) ls a subset of A. If. in additlon. for any 

a E A there exlsts a m te meA) such that m < a (which ls true in the case of 

finlte A. for example). then AndA) - M: A and meA) are equivalent sets. 

DEFINITION 2. Let A be a subset of 5. We shall say that: 

10 an element b te 5 Is superfluous in A lff A Is equlvalent to A-{b}. 

that ls. lff A(A-{b}) o:: Mi 

2O the set A ls f.ndependent lff there are no superfluous elements In lt; 

1f a set ls not lndependent. then it Is caUed dependent. 

Observe that any element not belonglng to A ls superflúous In lt. If b ~ a 

for some a E A. then b ls superfluous In A; lt follows that any lndependent 

set is an antichaln in fI. 

The empty set ls lndependent. and lt ls equivalent to the set {t} which•. 

consequently. is not lndependent. Therefore. a one-element set {a} ls lnde­

pendent iff a ., 11. 

Any subset of an independent set ls also independent: lf b ls superfluous 

in B and B ~ A. then 

AA o:: ACA-B) " AS .. A(A-B) " A(B-{b}) 

o:: A(A-{b}). 

The same argument implles that any superset of a dependent set 15 dependent 

as weU. 

We shaU sayo by analogy. that a set B ~ 5 ls superfluous In A lff· A and 

A - B are equivalent sets. 

It follows that lf B is superfluous In A. then any element of B ls super­

fluous in A. since M < A(A-{b}) < A(A-B) o:: M. for any b E B (the lnverse ls 

not true. cf. Example 2). 

A set B depends on the set A iff AS ~ M. This fact wll be - when conven­

lent - as A -+ B. Obvlously. A and B are equivalent lff A -+ B and B -+ A. 

compare Sectlon 8. 
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ExAMPLE 1. Let !I be a meet-sem1lattiee containing the fragment represented 

by the fo11owin¡ diagram: 

a b 

A{a,b,e} 

The set A. {a,b,e} ls not Jndependent, sinee b ls supeñluous in it: 

ACA-{b}) • M: 80Y two-element subset of A 15 independent. {a,e} ls equiv­

alent to A, the sets {a,b} 80d {b,e} depend on A (8Od on {a,e} as well). _ 

ExAMPLE 2. Let ~ be the Boolean algebra of all subsets of R
2
• Let D=DCO,U 

be the open unlt disc, 80d let Pe denote the open halfplane containing D and 

tangent to it at the point e beloqiq to tbe unlt circle C. lbe inflmum of 

the family A • {Pe: e E C} ls equal to D, 80d " is independent, .inee for 80Y 

eEC 

ACA - {Pe}) • D v {c} ¡ D. 

On the other hand, if D and P are the correspondin¡ closed sets, then anye 
element of the famUy 2J of a11 closed halfplanes Pe ls superfluous in it: 

AC2J -{P }) • D for any e E C.e . 
(we omit the easy geometric proof). _ 

DEFINITION 3. Let A ~ S be a set of elements of a meet-semilattiee !I, and 

let R be a subset of A. We shall say that R is a reduct ol A iff R is 

independent an equivalent to A. The family of a11 reducts of A will be 

denoted by RElDCA). 

PROPOSITION 1. If R is a reduct of A, then it is a maximal independent 

subset of A. 

Proof. Let R be a reduct of A. Assume that there exists an independent set 

M ~ A such that R ¡ M. Therefore M < AM < AR, the latter inequality being 

implied by independence of M. On the other hand, M • AR, since R is a reduct 

of A. It follows that M < AM < M, which is a contradiction. _ 

Observe that Proposition 1 implies that a reduct is not contained in any 

other reducto 

REMARK 1. It has been conjectured, [28], that the inverse is also true: a 

set is a reduct iff it is maximal independent. Example 1 shows that it not 

so: the set {a,b} is a maximal independent subset of {a,b,e}, but it is not a 

reducto (This fact has been observed independently and by other means by No­

votny and Pawlak in the paper [22].) _ 
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We shall say that a te A ls absolutely superfluous ln A lff lt does not 

belong to any reduct of A. If a subset P of A ls maximal independent and lt 

contains an element which ls absolutely superfluous in A. then obvlously P ls 

not a reduct of A. Maximal independent subsets which are not equlvalent to 

the entlre set are called subreducts. [22]. 

An element a te A ls lndl.spensable ln A lff lt belongs te all reducts of A. 

The set of all indispensable elements i& called the core of A, and denoted by 

core(A). Obvlously. 

core(A) - ORED(A). 

PRoposmoN 2. Any finlte set has at least one reducto 

fJ::Q.gí. Let A be a f1n1te set of elements of a meet-sem1lattlce ~. If A ls 

independent. then lt 1& lts own reducto If noto then there ex1sts an a te A 
1 

whlch ls superfluous In A. Let A - A-{a); the set A i& equlvalent to A: 
111 

M == AA. If A ls independent then lt ls a reduct of A. lf noto then there 
1 1 

exists an element a superfluous In A. and so on. In a finlte number of 
2 2 

steps we obtain an AL which ls lndependent and equlvalent to A. that ls. a 

reduct of A (we recall that the empty set ls independent). _ 

Notice that. In view of the remark following the definitlon of equlvalent 

sets, any finite set A has a reduct whlch ls a reduct of the subset m(A) of 

its minimal elements, slnce a reduct of a subset whlch ls equlvalent to A ls 

a reduct of A. 

No sufficlent conditlons are known for an lnfinite set to have a reducto 

The aboye Example 2 lmplles that even In complete Soolean algebra there may 

exist dependent sets wlth no reducts - the family !J • {Pe. has thls property. 

since the existence of a reduct of !J would be equlvalent to the exlstence of 

a subset of the unit circle e that Is dense In e and has no condensatlon 

polnts, which Is imposslble. 

2. ROUlh order. and preclosure map.. Let 'l - (R. <) be an order. It ls 

said that a mapping e: R -+ R is closure map In 'l lff lt ls ldempotent 

(c(c(r)) • c(r) for all r E R). Is extensLve (c(r) > r for all r E R). and is 

lsotonLc (c(r) > c(s) for all r > s In R). If c(r) • r for some r te R. then r 

Is a closed element of R (for detalls. see [2]. [6]). A mapplng d 15 a dual 

closure Iff It 15 a closure map In the dual order 'ld • (R. ». 

DUINITION 4. Let 'l • (R. <) be a bounded order and let p be a mapplng of 

R Into ltself. We shall say that p ls a preclosure map In 'l lff lt ls exten­
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sive and Idempotent. 

of R. 

If p(r) ... r for some r E R, then r ls a p-exact element 

Observe that p(t) ... t by the extenslvlty of p. If, additiona11y, píO) • O, 

then p will be ca11ed upper .pproxlmatLon map In fi. If p ls a dual preclosure 

In fi, that Is, a preclosure in (R, ;'), and p(t) • " t.hen lt wl1l be ca11ed 

lower approxlmatLon map In fi. 

Evldently, any o-preserving closure ls an upper approximation map, and any 

t -preserving dual closure ls a lower approximation map, sinee any closure Is 

a preclosure. 

Let fi • (R,<) be a bounded order, let E be a subset of R such that O,, E E 

and let the system ~ • (E,<'), where <' • <I fi ' be the corresponding suborder 

of fi. 

DEFINITION 5. 

triple (R, E, <) 

elements of R. 

If 

Is 

the order ~. 

a rough order; 

(E, <') ls a 

the elements 

complete lattlee, then the 

of E wl1l be ca11ed exact 

e 

If, additiona11y, fi 15 a structure: semilattice, lattlce, complete lat­

tice, boolean algebra etc., and ~ Is a corresponding substructure of fi, then 

(R, E, <) will be ca11ed, respectlvely,rough semUattLce, rough lattLce, 

rough complete lattLce, rough boolean algebra, etc. 

ExAMPLE 3. Let U be a nonempty universe, and let C • {Cl' C
2

, ... , Cn} be 

a finite partition of U. Let Do(C) be the family of a11 unlons of elements of 

C, and let D ... D(C) ... D (C) u {12J}. Obvlously, !) ... (D, ~) 15 a sub-order of o 
the family P ... P(U) of a11 subsets of U ordered by Inclusion. It 15 a finlte 

lattice with respect to set unlon and set Intersection, and It contalns the 

bounds of P: 12J E D, and U ... UC E D. Therefore the triple (P, D, ~) 15 a 

rough algebra of sets. Define, now, for any X ~ U: 

D(X) n{DED: X~D} , 

D(X) U{DED: X~} • 

An elementary verlficatlon shows that O: P~ D 15 an upper approxlmation map 

In P, and D: P~ D 15 a lower approxlmatlon; observe that they are a closure 

and a dual closure, respectively. In both cases the family D 15 the set of 

a11 exact elements of P. • 

REMARJc 2. There Is a one-to-one correspondence between partltlons of U and 

equlvalence relatlons In U. If we assume that the elements of the partltlon C 

are equivalence elasses of an equlvalence relatlon In U, then the operatlons 

D and D are the approxlmation operators consldered In Pawlak's theory of 

rough sets and approxlmation spaces, see Appendlx or [25]. • 
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3. Approximatlon In rouah orden. Let ~ • (R. E. <) be a rough order. For 

any r E R the set M(r) .. {e E E: e > r) Is nonvold. sinee E • t > r. Let U(r) 

be the set of a11 minlmal elements of M(r). 

We shall say that r ls recognlzable from aboye (or: u-recognlzable) in ~ 

lff M(r) has the fo11owina property: 

(U) for any m E Af(r) there exLsts a u E U(r) such that u < m. 

Observe that any element of E ls reco¡n1zable from above••inee r E E lm­

pUes that U(r) • {r): r ls the only minimal element of M(r). ando of course. 

the property (U) holds wlth u • r. Notlee. too. that lf E ls a finlte subset 

of R. then any element of R ls reco¡n1zable from above. 

Let r E R be u-recognlzable in ~. Define 

E(r) .. VU(r). 

The correspondenee r--+ E(r) ls we11 defined for a11 u-reco¡nlzable elements. 

slnce 8 .. (E. <) ls a complete lattlee and V ls taken In E. 

If R is the set of a11 u-recognizable elements. then ~ .. (R • E. <) ls a u u u 
rough order (sinee E S;; R ) In which a11 elements are u-recognlzable. A simi­

u 
lar construction leads to the concept of l-recognlzable elements.e 

Let. for r E R. K(r) be the set of a11 lower bounds of r belonglng to E: 

K(r) .. {e E E: e > r). and let L(r) be the set of a11 maxlmal elements of 

K(r). We sha11 say that r ls recognLzable from below (or l-recognLzable) in ~ 

iff the fo11owing holds: 

(L) for any m E K(r) there exLsts an 1 E L(r) such that 1 > m. 

It fo11ows that a11 elements of E are l-recognizable. and that a11 ele­

ments of R are l-recognizable in the case of finite E. 

For any l-recognizable r E R there exists in E the g.l.b of the set L(r). 

Let 

E(r) .. "L(r). 

The correspondence r--+E(r) is a partial map in R whose domain ls the set R¿ 

of a11 l-recognizable elements. The structure ~l .. (R • E. <) ls a rough or­
l 

der in which a11 elements are l-recognizable. 

PROPOSITION 3. Let ~ • (R. E. <) be a rough order. and let E. E. R • and 
- u 

R¿ be defined as above. Then 

(i) The operation E is an upper approximatlon map in ~u and E ls the set 

of a11 E-exact elements of R . u 
(H) The operation !. is a lower approximation map in ~u and E 15 the set 

of a11 !.-exact elements of R •
l 
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fI:QQf. m If e E E then, as we have seen aboye, E(e) • V{e} • e¡ there­

fore E(e) • e for 80y e E E. For 80y r E R the element E(r) belongs to E by
u 

definltion. Hence, r(r) • E(E(r» E E, 80d the operation E Is Idempotent in 

R • On the other band, for 80y u-recognizable r E R there exists 80 u E U(r)u u 
sueh that r < u <E(r) (by the condition (U», whieh fmplies that E Is 

extensive. Consequently, It 1s 80 upper .approximation map in ~ • Now, If 
u 

E(r) • r holds for some r E R, then r E E, and It follows that E Is the set 

of a11 E-exaet elements, whieh ends the proof of m. The proof of (iU Is 

the dual one. _ 

Reca11 that the elements of E are ca11ed enet elements (Definltion 5). 

Proposition 3 implies that 80 r E R Is exaet in (R, E, <) Iff It 18 E-exaet 

and iff it is E-exaet. 

RE:MARK 3. In general, the preclosure E is not a closure, even If (R, <) is 

a lattiee. For example, if (R, <) Is described by the fo11owing diagram 

t 

a/"'b�
"'c/�

I 
() 

and if E = {O, a, b, 11}, then (R, E, <) is a rough lattice sueh that a > c 

and E(a) < E(c), sinee 

E(a) • a < t • a v b • E(c). 

The dual example will show that E needs not to be a dual closure. Observe 

that in this example both (R, <) and (E, <) are lattiees, but the seeond Is 

not a sublattiee of the first. _ 

4. Approximation spaces. Any rough order eontains a rough sub-order ~o in 

whieh a11 elements are recognizable, that Is, are ¡-reeo¡nizable and u-ree­

ognizable: ~ • (R , E, <'), where R • R¡nR. and <' • <IR' The strueture ~ o o o u o o 
is a well-defined rough order, sinee R¡2 E and R 2 E by Proposition 3, whieh u 

e 

r implies that R o2 E. 
'-o 

OEFINITION 6. If in a rough order ~ • (R, E, <) a11 elements are reeogniz­

able: R • R • R¡ ,then R will be called approxtmatton space¡ if R • R 
u u 

then it is upper approxtmatton space, and it is ¡ower approxtmatton space 

whenever R • R¡. 
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PROPOSITION 4. The fo11owing conditions are sufficient for a rough order 

~ • eR, E, ~) to be an approximation space: 

m eE, ~) is a finite lattice; 

(in eR, E, ~) is a complete rough lattice ethat is, eR, ~) 15 a complete 

lattice and eE, ~) is its complete sub-lattice). 

Proof. If Ci) holds, then the thesis is obvious, since in a finite E both 

eU) and eL) hold. 

Assume now that (in holds. Let r be arbitrary ~lement of R, and let, as 

before, Mer) be the set of a11 upper bounds of r in E. Let eo. Ar!"er). The 

element r is one of the lower bounds of Mer) in R, therefore r ~ e . The con­
o 

dition eH) means that Ar!" • Al!-' for any M s:; E. In particular, e o-A E!4er) E E. 

It fo11ows that e E Mer), and e ~ m for a11 m _ Mer). Consequently, e is the 
o o o 

unique minimal element of Mer), and the condition eU) ls satisfied with u-e . o 
This means that r is u-recognizable, and that Eer) • V{e } • e . o o 

A dual reasoning demonstrates that any r E R is l-recognizable, and that 

E =V¡;Ker) • V¡fer), where Ker) is the set of a11 10wer bounds of r in E. • 

CoROLLARY. If the condition· eH) of Proposition 4 holds, then upper ap­

proximation and lower approximation are closure and dual closure, resp. 

e Indeed, if s ~ r, then Mes) ~ Mer). Consequently, Ar!"es) ~ AI!4(r), which. 

means that Ees) ~ E(r). Therefore the upper approximation operation is a 

isotonic preclosure, that is, a closure. A dual argument shows that E is a 

dual closure. 

For finite approximation spaces the inverse is also true: 

PROPOSITION 5. Let ~ = eR, E, ~) be a finite approximation space such that 

eR, ~) is a lattice. Then ~ is a rough lattice iff the approximation opera­

tions E and ~ are closure and dual closure, respectively. 

Proof. Observe, first, that in the finite case the concepts of sublattice 

and complete sublattice coincide. The 'only if' part of the thesis is, there­

fore, a consequence of the previous Coro11ary. 

Let A' be the meet operation in the lattice eR, ~). Assume that E is a 

closure in R; E is the set of a11 closed elements of R, by Proposition 3(i): 

E = EeR). It is we11 known esee, for example, Birkhoff [2], or compare [6], 

Theorem 1.6.4) that for any closure c in R the sub-order ec(R), ~) of the 

lattice (R,~) is a lattice eceR), A, v) in which A· A' Ic(R)' It fo11ows 

that E is closed with respect to A' in eR, ~), that is, eE, ~) is a meet­

subsemilattice of the lattice (R, ~). A dual argument shows that if E is a 

dual closure then (E, ~) is a join-subsemilattice of eR, ~). Therefore (E, ~) 

is a sublattice of (R, ~). • 
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In an approximation space (R. E. <) both E(r) and E(r) exist for any rER. 

OEFINITION 7. We shall say that the paIr (!:(r). E(r» 15 the rough II.pprox­

tmateon of r. and the functlon E: R --+ Efl defined as follows: 

wl11 be called the rough II.pproxlmatlon operll.tor. 

RDwuc 4. The Image -
~(R) of R. which 15 a subset of E 2 , can be 'equlpped' 

with an algebraic structure. slnce both E and R do posses such structures. 

The questlon 15. what 15 the 'natural' way of doing lt? 1hls problem has ben 

investlgated only in the case of R being the power set of some universe U. In 

the paper [8J of Iwb\skl E(R) resulted to be a de Morean algebra. and an 

alternative approach of Pomykaia & Pomykaia [30J leads to a Stone algebra. _ 

5. Complete rough lattlces. We recal1 that 1l • (R. E. <) 15 a complete 

rough lattice lff (R. <) ls a complete lattlce and (E. <) 15 complete sub­

lattice of 1l. In this case (see Proposltion 4 and the correspondlng Coro­

llary). 1l is an approximatlon space in which upper and lower approximations E 
e 

and E are closure and dual closure. resPectively. and they are described by 

the formulae 

E(r) =VK(r). where K(r) • {e E E: e < r). 

and 

E(r) = AM(r). where M(r) • {e E E: e > r). 

PROPOSITION 6. In a complete rough lattice the following conditions are 

satisfied, for any r. r' E R: 

(i) E(r A r') • E(r) A E(r'). (i') E(r v r') • E(r) v E(r'). 

(ii) E(r v r') > E(r) v E(r'). (U') E(r A r') < E(r) A E(r'). 

Proof. It ls sufficient to prove (l) and (ii): (1') and (U') will hold by 

duality. Let r. r' E R. 

(i) The map ~ 15 a dual closure. therefore E(r) < r and E(r') < r'. It 

foUows that E(r) A E(r') < r A r' In R. The element E(r) A E(r') belongs 

toE. therefore ~(E(r) A ~(r'» • E(r) A !:(r'). Hence, by lsoton1c property of 

E. E(r) A E(r') < E(r A r'). On the other hand. E(r) > E(r A r') and E(r') > 
> E(r A r') by the same property. Consequently. E(r) A E(r') > E(r A r'). and 

it follows that (l) holds. 

un E(r) v E(r') < r v r'. because E(r) < r and E(r') < r'. Both E(r) and 
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!:(r') belong to E, thus E(r) V E(r') also belongs to E, slnee E Is a sublat­

tiee of R. Therefore E(r) V E(r') • E(E(r) V E(r')) ~ E(r V r'), which ends 

the proof. _ 

Ri:wAu 5. The anal0iY between E, E and topological operatlons of interior 

and closure is obvious (but superficial, see Section lU; the element~ of E 

play the role of clopen (. closed and open) sets here. Notice that In the 

proof of the properties (l) - Ui') we bave used only the fact that E is a 

dual closure, and E 1s a closure in R, and not the specific definltions of 

approximatlon operations. lbe results (II) and m') can not be strengthened, 

slnce for any exact r, r' equalities appear instead of inequalities, but in 

80y non-trivial complete rough lattiee there exist elements r and r' such 

that the sharp Inequality holds in (iI). _ 

Let (R, E, <) and (R, G, ~) be two complete rough lattiees with G ~ E. 

Observe that (G, <) i5 a complete 5ublattice of (E, ~) , sinee Af!d • AJ!4 • 

• AdJ and Vf!d • Vjf • VJrf for any M ~ G. 

If r E R, then ~(r) < !:(r), since G(r) i5 one of the lower bounds of r 

in E. Observe, too, that G(E(r)) < G(r) by isotonicity of ~. Moreover, 

(f E G) 1\ (f < r) iff «fEG) 1\ (fEE)) 1\ (f<r) 

iff (fEG) 1\ «fEE) 1\ (f<r)) 

iff (fEG) 1\ (f<E(r)), 

and it follows that G(r). ~(E(r)) for all r E R. Furthennore, it obvious 

that G(r) E(~(r)), since G(r) is E-exact. The dual equalities and inequali­01: 

ties for upper approximations can be obtained in the sam.e way. Thus we have 

demonstrated the following 

PROPOSITION 7. If (R, E, <) and (R, G, <) are complete rough lattices 80d 

G S; E then, for 80y r E R, 

(i) E(~(r)) • G(E(r)) • ~(r) < E(r) < r, and 

(1') E(G(r)) • G(E(r)) • G(r) ,. E(r) ,. r. _ 

In other words, if G ~ E, then !:oG • ~oE • G, and the dual holds. 

Rnwuc 6. An exam.ple can easily be constructed showing that in general it 

is not true that EoF • FoE. _ 

Let (R, E, <) 80d (R, F, <) be two complete rough lattices. Notice that 

the complete lattices (E,~) and (F, <) are con5istent in the sense that 

Af!d • A¡:M and Vt' • VP for any M S; E f\ F. Let G • E f\ F. Then it follow5 

from (i) and (1'), respectively, that for any r E R 
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and 

C(F(E(r))) • C(E(F(r))) • G(F(r» - G(E(r» • G(r) • 

6. ApproxlmatloD8Yatems. Let Jl • (R, .;) be a complete 1attice, .an 1et 

z: DC~1'(R) be a function defined on a subset D of R.Z 

DE:rINITION 8. The pair (Jl, l) will be called approxlmatlon system Iff the 

fo11owing conditions are satisfied: 

(i) the panial order (D ' .;) ls a meet-subsemilattice of (R, .;);
Z 

(ii) for any e E D the system (R, He), .;) ls a complete rough lattlce;
Z� 

(Ui) for any e E D ' e E L(e);�Z 
(iv) if e .; f, then He) :2 Hf), for a11 e, f E Dr 

In other words, the partlal function Z defines a family of complete sublat­

tices of (R, .;) In 5uch a way that the 'sma11er' 15 element e, the 'finer' ls 

the correspondlng approximatlon space. 

EXAMPLE 4. Let R+ • (O, +oo)v{+oo} be the 'closed' set of real Don-negative 

numbers ordered by s, and let D = {2-
n: n E tU, where ~ ls the set of posi­

-n· ~ 
Uve lntegers. Define Un) • {m2 : m E ~} U {O, +oo}. The palr ((R ,s), l) is 

an approximation system. (~ore suggestive examples will be presented below. 

in the section 10). 

Let (~. 1) be an approxlmation system. We shall adopt the fo11owlng nota­

tion: lf e E D and r E R. then e(r) will denote the lower approximatlon of rz 
in the complete rough lattlce (R. He)• .;): 

e(r) = U(e»)(r). 

PROPOSITION 8. For arbitrary e. f E D¿ and r. s E R the fo11owing condi­

tions hold: 

(1) e(e) • e; 

(2) e(e(r» • e(r); 

(3) e(rAS) • e(r)I\e(s) and e(rvs) > e(r)ve(s); 

(4) Ir e .; f. then e(r) > f(r); 

(5) Ir e .; f. then e(f(r» • f(e(r)) • f(r); 

(6) (eA/)(r) > e(r)vf(r); 

(7) (evf)(r) .; e(r)I\f(r) whenever e vRf E Dr 
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Pr0of. The mapplng e ls a dual closure map in (R. ~). ud He) 15 the set 

of aU e-closed elements of R. by Proposltlon 5. Therefore (2) holds. ud U) 

ls a consequence of Definltion 8Ull). The propertles (3) are equlvalent to 

those stated in Proposltlon 6(U); (4) ls implied by Definitlon 8Uv). and 

(5) ls equlvalent to Proposltlon 7(1) In vlew of the same condltlon. The In­

equalitles (6) and (7) are a simple consequence of (4). • 

7. Quantltatlve approximatlon. Let R - (R. E.~) be an approximatlon 

5pace.� and let E· ~ Efl be deflned as foUows: 

E• • {Ce. I}: e. I E E and e ~ I} • 
•We shall say that a non-neptlve real-valued functlon v defined on E: 

• + 
v: E --+ R • 

ls an esttmatton lunctton In R lff lt satlsfies the foUowIna condltlons: 

(i) v(e. e) • O for aU e E E. 

(H) lf� e ~ e < e < e • then v(e • e ) s v(e. e );
1234 23 14 • 

observe that (H) and (i) lmply that v(e. 1) ~ O for aU (e. 1) E E (it ls 

sufficient to take e =: e =: e • e and I =: e ).
123 4 

Let v be an estimation function In (R. E. <l. 
r 

OEFINITION 9. The system Q'R,= (R. E. v. <) ls a rough esttmatton space, and 

for any r E 'R the number 

p(r) =: v(E) • v(E. E) 

ls called the degree 01 roughness of r. 

When convenlent, we shaU say roughness lnstead of degree 01 roughness. 

Observe that if r is exact, then it foUows from the Proposltion 3 that lts 

roughness is O, by the conditlon (i) of the definltlon of estlmatlon func­

tlon. If the estlmatlon functlon v ls strlctly lsotonlc, that ls, lf v(e. 1)= 

= O implies e a: 1, then lnverse ls also true: r ls exact lff p(r) • O. 

One can ImagIne varlous ways of constructing estimatlon functions. One of 

them could be the foUowing one: 

If J.l is a positive real-valued function defined on E which is lsotonic 

with respect to the ordering relatlon ~ : 

if e < I then J.l(e) s ".(/) for aU e. I te E. 

then 

V : V (e. 1) •� ".(f) - ".(e)
". ". 

is an estimation functlon. The functlon J.l will be caUed approxLmatLng mea­

sure in (R, E, <l. The degree of roughness in this case can be expressed as 

foUows: p(r) • ".(E(r» - ".(E(r». 
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Observe that the functions Il and Il - Il - p(O) yield the same estimation o 
function; from now on we shall always asume that p(O) - o. Notiee. too. that 

Il is a bounded function. slnee t • e and p(t) ~ p(r) for all r E E. It fol­

lows that Il· (Il(t))-lis an approximating measure. too. 

DErOOTION 10. If Q - (R. E. v • <) is a rough estimation -ce and v ls 
Il -- . Il 

deflned by an approximating measure p on E. then Q will be caUed rough 

approxtmatton space. For any r E R the numbers p(E) and Il(E) will be caUed. 

respectively. the upper measure and the lower measure of r. 

For example. lf (U. m. Il) ls a measurable &pace. R ls a family of subsets 

of U ordered by Inclusion. m ls a v-algebra of measurable sets. Il ls a bound­

ed measure. and all elements of E are measurable sets (E ~ m). then Il is an 

approximatlng measure In (R. E. ~). Notlce that In th1s case v (e.f)-Il(f-e).
Il 

where '-' 15 the set difference symbol. In partIcular. lf Il 15 a probability 

measure. then the corresponding function v could be called probabU tty estt-
Il 

matton functton. If U is a finite universe and Il(e) 15 the cardinality of e. 

then the derived estimation function corresponds to the approach adopted in 

the Pawlak's theory of rough sets. 

EXAMPLE 5. Let us return to the situation considered In the Example 3. 

with the addltlonal assumptlon that the universe U is a finlte set: (p. D. ~) 

is an approxlmation space In which P is the power set of U. D is the lattic~ 

of sets generated by the elements of a given partltion e of U. C={cl' ...•c }.n
and ~ is the set incluslon in P. Let Il be defined as follows: 

card(D)
Il(D) - card(U) • for all D E D. 

The corresponding estimation function is 

veD. D') - c~:~~für) , for all D.D'E D. D ~ D'. 

(p. D• •10'. ~) is a rough approximation space and for any set X ~ U (that 

is. for any X E P). and the degree of roughness of X 15 equal to 

card (D ( X ) - D ( X ) 
p(X) - ------­

card (U)� 
The degree of roughness corresponds in this case to the Pawlak's measure of 

the 'doubtful reglon' (or 'boundary') of the set X (see Appendix. Al). • 

The approach presented above can be roughly characterized as 'based on the 

welghts of elements·. An altemative one can be 'based on the weight of rela­

tion between elements': 

If ep - (p. <) i5 a partial order then a chatn In ep ls any linear sub-order 
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of f>; observe that any single element can be regarded as a cha1n. A maxLmal 

chatn ls a maximal (with respect to the Inclusion in p2
) linear sub-order of 

f>. An edge in f> ls a pair (e, 1) such that I covers e, that ls e < I and 

there ls no g in P such that e < g < l. For any e,1 E P, ir e llIIIí 1, then there 

exists at least one chatn 1: joinlng e with 1, that ls, a linear sub-order of 

E with e being lts minimal element and I the maximal one; consequentli, there 

exists at least one maximal chaln joinlng e with l. If 1: ls a maximal chaln 

Joinlng e with 1, and lt ls finite: 

1:: e. e < e < e < •••< e • 1,o 1 2 n 
then the number n ls called the length of the chain; the length of the chaln 

e • I ls equal to O. Observe that in this case any pair (eL- , eL) ls an 
I 

edge. Therefore the length of 1: ls the number of lts edges. "!be leqtb of an 

inflnite chain 15 .... The leqth of an order ls defined as the supremum of 

the lengths of all lts chains; lt ls equal to the supremum of leqtbs of a11 

lts maximal chalns. 

Let (R, E, llIIIí) be an approximation space, and let v(e, f) be the maximum of 

the lengths of all chains joining e and 1, for any e, I E E such that e llIIIí l. 

If the length of E is a finite number, then the function v ls a rough mesure; 

we sha11 refer to it as the algebralc estimation function. 

The latter construction can be generallzed as follows. Let E be a lattice, 

and assume that a non negative funetion 1( ls given which ls defined on the 

set of a11 edges of E¡ for any edge (e, 1) the value 1(e, f) is ca11ed the 

weLght of the edge. For any maximal chain 1: in E we sha11 define its weLghted 

length as O if it ls trivial, that ls, consists of one element¡ as ... if it 

contains a non-trivial subchain with no edges (any segment of a real Une 

ordered by :Si has this property); and, otherwise, as the (possibly infinite) 

sum of the weights of a11 its edges. The weLghted length of E is the supremum 

of the weighted lengths of a11 maximal chains In E. 

Now, if (R, E, llIIIí) ls an approximation space in which the edges of E are 

weighted, and if the weighted length of E i5 finite, then we can define a 

number v(e, 1) for any pair e llIIIí I as the supremum of the weighted lengths 

of a11 maximal chains joining e with l. The function v coincides with the 

algebraic estimation function when 1( • 1, 

It is easy to see that, in general, v ls an estimation funetion. Indeed, 

v(e, e) • O, and the condition m of the definition of estimatlon function 

is 5atisfied. If e lll111í e llIIIí e llIIIí e., and 1: ls a maximal chain joining e with 
2 3 2 

e then there exists a maximal chain 1: joining e with e and containing 1:,
3 11. 

which implies that (i1) holds. 
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8. Partlal dependenee. If ~ • (R, E, <) Is a complete rou¡h lattlce and 

(R, E, vfl' <) ls a rough approximatlon &pace, then, foUowing our terminolo­

¡y, we should say that (R, E, v , <) ls a complete rough approxtmatlon space.
fl 

To be short, we shall caU lt a c.r.a. space, and denote lt by (~, fl). 

Wlthout loss of generallty we can assume that the approxlmating measure fl 

ls a restrlctlon to E of an isotonlc (with respect to <) funetlon fle defined 
e 

on the whole R; lt ls sufflclent, for example, to define fl (r) as the mean of 

fl(E(r)) and fl(E(r)). The correctness of such an extenslon .ls an .lmmedlate 

con5equence of the assumptlon of completeness: both E and E lsotonlc. 

In this section we shall assume that fl ls defined on R. 

Let (~, fl) be a complete rou¡h approximatlon space. For any r E R we have: 

fl(~(r)) ~ fl(r) ~ fl(E(r)) , 

Ilf r ls exact then fl(E(r)) • fl(r) • fl(E(r)) and 

fl(O) = O. 

If the approxlmatlng measure fl ls strletly lsotonic in R (that ls, r < s 

lmplies fl(r) < fl(s)) , then stronger conditlons hold: 

fl(~(r)) = fl(r) lff E(r) = r iff fl(E(r)) • fl(r) , 

and 

fl(r) = O lff r·O. 

In other words, In thls case fl(r) • fl(~(r)) lff r ls an exact elemento 

Let '1E(r) = fl(E(r))' (fl(r))
-1 for r - O and '1rO) 11I: 1. The aboye observa­

tlons can be resumed as fo11ows. 

PROPOSITION 9. If (~, fl) ls a c.r.a. space and fl 15 strlctly lsotonlc, 

then for any r E R 

'1E(r) • O iff ~(r) • O, 

and 

'1E(r) • 1 lff r Is an exact elemento -

Conslder, now, an approxlmatlon system ", • (~, 1); by Definltlon 11, for 

any e In the domaln of 1, the system ~e • (R, He), <) ls a complete rough 

latUce. If fl ls an lsotonlc non-negatlve functlon on R wlth fl(O) • O, then 

for any e E 1>1 the palr (~e' fl) ls a complete rough approxlmatlon space. 

The triple (~, 1, fl), which can be ldentlfied wlth the famUy {(~e' fl): 

e E D } of a11 c.r.a. spaces generated by 1, wlll be called rough approxtma­
1�

t ton system.� 

Let (~, 1, fl) be a rough approximation system, let e E D and let1,� 

E = He).� 
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OEFINITION 11. Let r E R. TIte number )'E(r) wlll be caBed the degree of 

clependence of r on e (shortly: dependence e -+ r J. and lt wlll be denoted by 

)'(e -+ r). 

In other words, )'(e -+ r) ls the relatlve measure of e(r) wlth respect 

to r. and lt can be interpreted as the measure of the 'lower l(e)-exactness' 

of the rough element r. 

In particular, when Il ls strlctly isotonlc, then r fully depends on e lff 

r ls l(e)-exact: L 

)'(e -+ r) - 1 lff r E l(e) • 

PROPOSITION 10. Let e. f E E and r. s E R. TIten 

(O� 
and� 

(m� 

Proof. Ci>. e(rAS). e(r)Ae(s) by Proposltion 8(3). TIterefore ll(e(rAS»:S 

:s mln{lJ(e(r». lJ(e(s»} by lsotoniclty of Il. Now lt ls sufficlent to observe 

that lJ(e(y» = )'(e -+ Y)·IJ(Y) for any y E R. by definltlon. 

r~ 

\, 
(ií). If lJ(r) • O. then both members of (11) are equal to O by definltion 

of )'. Assume that lJ(r) - O. TIte inequality 

lJ«eA/)(r» ~ lJ(e(r) v f(r» ~ max{lJ(e(r», Il(f(r»} 

holds by. consecutlvely. Propositlon 10(6) and lsotoniclty of Il. Dlvldlng lt 

,
\ 

by the non-negatlve number lJ(r) we obtaln (m. _ 

RntARx: 7. TIte Proposition 10 ls a generalizatlon of results of Novotny and 

Pawlak, [21], concerning dependence of faroilies of sets. _ 

9. Normal familles. Let U be a nonempty universe. We sha11 say that a fa­

mily L • {L : tEr} of nonempty subsets of U ls a normal farnUy lff Lt~ L
t s 

lmplies that L - L ' for a11 t. s E T. TIte class of a11 normal famllles oft s 
subsets of U wlll be denoted by L(U). or l. TIte class of a11 finlte normal 

faroilles wlll be denoted by F(U) (or F). and C(U) (or C) wlll stand for the 

class of a11 partltlons (-elasslficatlons) of U. Observe that 

L(U)= F(U) lff U 15 a flnlte seto 

TIte symbol t wlll stand for the one-element normal famlly {U); t belongs to 

C(U), an therefore to F(U) and L(U). TIte empty famUy ls a normal famUy; lt 

wlll be denoted by O: O - 12I E F(U). We sha11 also assume. for the sake of 

convenience. that O E C(U). 
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Observe that If S ls arbitrary family of subsets of U, then the family 

M(S) of all Its maxJmal elements Is a normal one. 

Let U be a unlverse. L • UU), and let L. L'E L. 

DE:FooTION 12. We shall .y that L Is ff.ner than L' Cshortly: L < L') Iff 

for any L E L there exlsts an L'E L' such that L ~ L'. 

PROPOSITION 11. The system .!(U) - (L(U), <) Is a bounded partlal order. 

f!:2g(. It Is obvlous that < Is reflexlve and transltlve. To prove antl­

symmetry, assume that L < L'< L for sorne L, L'E L. It fo11ows that for any 

set L E L there exlst L'E L' and L"E L such that L ~ L'~ L", which lmplles 

that, consecutlvely, L - L" (by normallty of L), L'. L and L ~ L'. The same 

assumptlon lmplles that L'~ L. Therefore L - L', what means that < 15 a antl­

symmetrlc relatlon. To close the proof, It Is sufficlent to observe that 

O < L < 11 for any L E L. • 

Consequently. also , = JCU) - (F(U), <) and ¡; • ¡;(U) • (C(U). <) are par­

tial orders. 

The fo11owlng properties are Immedlate consequence of the deflnltlon of 

the relatlon fLner: 

If L E l and L E L then {L) < L¡ 

if L E l and L' S; L. then L' E L and L' < L; 

if L. L' S; U, then {U. {L'} E L. and: {U < {L'} lff L S; L'. 

It 15 we11 known. [6J. that the set of a11 equlvalence relatlons on U 15 a 

partial order (with respect to Incluslon In U
2

) whlch 15 Isomorphlc wlth ¡;(U) 

- the empty relatlon corresponds by deflnltion to the 'empty partltlon' O. 

Hence. we can Interpret C(U) as the partla11y ordered set of a11 equlva­

lence relatlons on U. when convenient. It 15 also known that ¡;(U) 15 a com­

plete lattlce. The fo11owlng observatlons wlll be useful In the analysls of 

the algebralc structure of !(U) and F(U). 

LEMlttA 1. If L. L'E L and there exlst L E L. L'E L' such that L R L', then 

It Is not true that L < L'. 

~. It 15 a simple consequence of the fact that L 15 a normal famUy. • 

LEMMA 2. If Y, Y'E F are finlte normal famllles. then there exlst In L 

sUP {y. Y'} E F and LnfL{Y, Y'} E F.
l 

fJ:.QQf. U. Let S • Y u Y'. and let U • M(S) be the set of a11 maxlmal 

(with respect to ~) elements of S; U 15 a finlte normal family. The fact that 

S 15 finlte ImpUes that for any S E S there exlsts a:n M E U such that S S; M 
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(observe that thls may not be true in the case of lnfinlte S). Hence. U ls an 

upper bound of both F and F'. and lt belongs to F. 

Let V be an upper bound of (F. F'). For any S e S there exlsts an V e V 

such that S S; V. In particular. the same holds for any S e U. 8ince U S; S. 

Therefore U < V. It fo11ows that U 15 the l.u.b. of (F. F'). 

2). Let P • (FnF': FeF. F'eF'. FnF'. (lJ). and take I • M(P). 1 15 a" flnlte 

normal family. and 1 S; P. It fo11ows that for any 1 e 1 there exlst F e F and 

F' e F' such that 1 S; F and 1 S; F'. that ls. 1 < F and 1 < F': 1 ls a 10wer 

bound of (F. F'). 

Conslder. now. an arbltrary normal family J which Js a 10wer bound of 

(F. F'). For any J e J there exlst F e F and F'e F' such that J S; F and 

J S; F'. Consequently. J S; F n F'. and J S; 1 for some 1 E l. by the definltion 

of the famUy l. Therefore 1 15 the g.l.b. of (F. F'). • 

Observe that lf L. L'E C(U). then also tnf(L. L'} 15 a partltlon. It 15 

not so In the case of the lowest upper bound: lf card(U) ~ 3 then there exlst 

L. L' such that sup<L. L'} ~ C(U). To see that. It 15 sufflcient to take 

L = Ha. b}. <eH and L'. Ha}. <b. cH. where a. b. e are three dlfferent 

elements of U. In such a case sup<L. L'} • Ha. b}. (b. eH ~ C(U). 

LEMw. 3. If U 15 an lnflnlte universe. "then there exlst In LCU) faml1les L 

and L' such that there ls no tnf<L. L'} in L(U). 

Proof. Let A • <a : n E N}, B = lb : m E N} be two disjolnt subsets of U: n m 
a - b for aH n. m E N (N is the set of a11 posltlve Integers). Let AJe. n m 
= <a : n s Je} and BJe • <b : m ~ Je} for aH Je E N. Conslder L' • (A). and n m 
L= <LJe: Je E N}. where LJe = AJe u BJe • It 15 easy to see that L 15 a normal 

famUy. that a11 <Ale} are lower bounds of L. and that none of them 15 the 

¡reatest lower bound of L. slnce <Ale} < <AJe+l} for a11 Je. 

Assume now that M 15 a lower bound of <L. L'}. It fo11ows that for any 

M E M there exists a Je such that 

M S; A n LJe • <al" a2..... ale} • Axr. AJe+1" 

which Implies. by Lemma 1, that <AJe+l} 15 a lower bound of <L. L') whlch 15 

not flner than M. Consequently. no lower bound of <L. L') Is the ¡reatest 

lower bound of the palr. • 

LEMlotA 4. If U 15 an lnflnlte unlverse. then there exlsts a set of flnlte 

normal faml1les wlth no supremum In F(U). 

f!:e2[. Let A. B. A • B and LI. be deflned as in the proof of Lemma 3. The n m A 

set f. • HLJe}: Je E N} 15 a set of flnlte normal faml1les. 

Let Lx be defined as fo11ows: 
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Each Lit ls a finite family. and lt ls normal, smee A ' A for all n, and n 
BmÑ. Bit for m <It. Uoreover. Lit > {Ll } for all It. 1 E ~, smee Ll~ Bltv A for 

1 ~ It. Notiee that LIt+1< Lit for all It E ~, smee Lit' Bltv A. Thus all Lit are 

upper bounds of f. and none of them ls the lowest upper bound. 

Suppose. now, that K • {K K ••••K¡} ls a finite normal family which 15
1
, 

2
, 

an upper bound of f. For any It E ~ there exists an lCIt) E U•••.• I} such 

that Lit ~ KL(It)" Consequently, there exists lo sueh that Lit ~ K for infi­
Lo 

nitely many It. Therefore 

(..) KL ;jt U{Lj( 1(1t) • LJ • Bit v A • 
o o 

where It • mLn{It: Lit ~ K }. smee {A } ls an increasing, and {B } a deereas­o to n n
ing sequenee of sets. 

Consider K' • Lito. The conditions K > {Lit} and C·_) lmply that K' < K. It 

follows that if there exists a supremum of the set f in F, then it must be of 

the form (-). whieh is a contradietion: suJTf does not existo _ 

REMARJe 8. Observe that suP f == {L : m E N}. It ls easy to prove that, inl m 
general, if L == {L : t E T} is a normal family, then L • suP {{L }: t E T}. _t l t 

Now we are able to formulate the following 

PROPOSITION 13. The partial orders ,f(U) • (UU), <), '(U). (F(U), <) and 

~(U) == (C(U), <) have the following properties: 

a). ,f(U) is a lattiee iff the universe U is a finite set; if it is a lat­

tiee. then a complete one. 

b). f(U) is a lattiee for any U. and it is a complete lattiee iff U is 

finite. 

e). ~(U) 15 a complete lattiee for any U; it is a meet-subsemilattice of 

'(U), but not a sublattiee if eard(U) ~ 3. 

Proof. We have already observed that .f(U) == ,(U) iff U is a finite uni­

verse. It follows that a) and the first part of b) are implied by Lemmas 2 

and 3.; the second par! of b) ls a consequenee of Lemma 4 and of a); the 

first part of e) ls a well-known theorem (see. for example, [6]), and the 

second part of e) is a eonsequenee of the observation preceding Lemma 3. _ 

10. Pawlak approxlmatlon .ystems. The aim of this seetion 15 to show that 

the basie faets of the Pawlak's theory of Information .ystems and rough sets 

are derivable from the general eonstruetion presented here, and some new re­

sults can be added (ef. Appendix). 

Let U be a finite universe. 
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The set C • C(U) of a11 partltlons of U (the empty partltlon included) 15 

a complete meet-semilattlce wlth respect to the ffner relatlon. Therefore a11 

the concepts introduced In the Sectlon 1 (equlvalence, Independence, super­

fluousness, reducts, etc) are applicable to the subsets of C and, In particu­

lar, the concluslons of Proposltlons 1 and 2 are ftlid. (Compare, for exam­

pie, the results of [25], [22]; see also sectlons A2 and A3 of the Appendlx·). 

Let C E C(U) be arbltrary partltlon of U:� 

C E {C : t E T} •�t

Denote by ~(C) the algebra of subsets of U eenerated by the partltlon C: 

X E ~(C) lff (:3 T'íJ' (X • U(C t : t E T'}) or X • 0 ) : 

the elements of ~(C) are ca11ed C-deflnable seu. S(C) 15 a subalgebra of 

1'(U), and (1'(U), ~(C), 5;) 15 a complete rouah algebra of sets, In whlch all 

elements of 1'(U) are recognlzable. Therefore It 15 an approxlmation space, 

and the operatlons of lower and upper approxlmation are a closure and dual 

closure, respectlvely (see Sectlons 2, 3 and 4). A subset of U Is ~(C)-exact 

iff It 15 C-deflnable. The system (1'(U), ~(C), 5;) 15 a complete rough lattice 

for any C, and It follows that the concluslons of both Proposltlon 6 and 

Proposition 7 are valid. 1 (Compare the results of [16J, (23J, [26]; also Al 

and A4). 

Furthermore, slnce U 15 a flnlte unlverse, cardinaUty 15 a measure on 

1'(U) and, consequently, It 15 an approxlmating measure In the approxlmatlon 

space (1'(U), ~(C), 5;). It follows (compare Example 5 of Section 7) that the 

degree of roughness of any subset of U can be measured, and, slnce cardi­

nality 15 a strictly Isotonlc on flnlte sets, a set 15 C-deflnable Iff Its 

roughness 15 equal to o. Observe, too, that the degree of dependence of a set 

X 5; U on a partitlon C E C(U) can be deflned (cf. Deflnitlon 11). 

Let, now, 1(C) be the set of all normal families of C-deflnable sets, and 

let 1(0) • L(U). 

The mapplng C --+ 1(C) 15 deflned on C(U) 5; L(U), and It Is easy tosee 

that the pair 

(f(U), 1) 

is an approxlmatlon system (Definltlon 8, Sectlon 6), slnce 

- the conditlon (l) of Deflnltlon 8 15 lmplled by Proposltlon l3,cl: DI • 

•� C(U), and the latter 15 a meet-subsemllattlce of UU); 

- the palr U(C), <) 15 a complete sublattlce of f(U), which Implles that 

1 Notlce that In the Example 3 we have not assumed that U 15 flnlte. 
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the condition un Js satisfied: (UU), l(C), <) Js a complete rough lattice 

for any C; 

- um Js satisfied by definition of l(C), sinee C is a normal family of 

c-deflnable sets: C E l(C); 

- Uv) Js a simple consequenee of the fact that a partition C' Js finer 

than C iff it Js a sub-partition of C, which implies that ~(C') ;;2 ~(C) and, 

consequently, l(C') ;;2 HC). 

Therefore, the assert10ns U) - (7) of the Proposition 8 are valid for 

approximation by partitions; U), (2) and (4) are obvious in this modelo As 

far as the author knows, (3), (5), (6) and (7) are stated for the first time 

here (the first part of (3) and (6) are implicit in [lm 

Cardinality can be extended in a natural way to a function 1 defined on 

L(U): if L E L(U) and L • (Li tEn, then 

I(L) • 1: eard(L ) . t t 

Notice that '1' Ls not an approximating measure on UU), if only U has 

more than two elements Uf a, b, e E U then R • {{a, b}, {b, eH Js finer 

than 5 • {a, b, e}, but I(R) • 4 > 3 == 1(5)). The same function is strictly 

lsotonic with respect to the relation fLner on the set D • D(U) of a11 dLs­
é ,. joint (and thus normal) families of subsets of U. Observe that D(U) ;;2 C(U)). 

Let :D(U) == (D, <), and, for any partition C, let d(C) denote the set of 

a11� familles of disjoint C-definable subsets of U. 

The triple (f)(U), d, 1) will be ca11ed Pawlak approxfmatLon system. 

It is easy to see that it is a rough approximation system. ConsequenUy, 

the concept of partial dependence can be introduced (cf. AS). A disjoint fa­

mily L fully depends on a partition C iff all elements of L are Cefinable 

sets, and the inequalities (I) and (ii) of Proposition 10 hold for approxi­

mations by partitions (they have been proved for this case in [23] and, in a 

slightly more general formulation, in [ll], Theorems 5.1 and S.l). 

It is worthwhile to observe that it can be demonstrated that the degree of 

dependence in (f)(U), d, 1) satisfies the triangle lnequality: ,"
r(L --+ M) + r(M --+ N) ~ r(L --+ N) 

for arbitrary categorizations L, M, N and, consequently, the function 

(-'. p(L, M) • i<r(L --+ M) + r(M --+ L» 
, 

is a distance function on C(U) (for details, see [llJ). 

REMARK 9. It is possible to define relatLve superfluousness, independence 

and reducts in purely algebraic terms in such a way that they coincide in 
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(2'(U), d, .) with the respective Pawlak's concepts (cf.A6). The corresponding 

results wlll be presented in the final venion of this work. _ 

Concludin¡ remaro. We have left many 'loase encls' in thls presentation. 

This is due to various reasons. One of them was the intention of an~l)'Zing 

the 'most general' situations, which led to constant chan¡e of usumptions 

about structures under consideration. Another one ls that there are spectfic 

models that have lnfluenced the approach adopted here, but are not explicitly 

present in the texto For example, the notion of preclosure introduced in the 

section 2 has not been used later on. Nevertheless, lt plays an important 

role in the rough concept model, cf. [121 and 1151. Stlll another Is that 

there are certain Ideas that seem to be interestina, but have not been inves­

tigated yet: this is the case - and the only reason of existence in this 

paper - of recognlzable elements (section 3). 

We have devoted much more attention to the lower approximations than to 

the upper approximations. This is due to the fact that the former seem to 

play more important role in various known models and applications, and that 

the concept of dependence is based on them. Nevertheless, some more 

exhaustive study of upper approximations properties would be interesting, at 

least from the algebraic point of view. 

There is also another aspect of this problem. Pomykala has observed in his 

paper [29] that the analogy between topological closure-interior operations 

and lower-upper approximations, respectively, is in a sense characteristic 

for Pawlak theory. He has demonstrated that in his general approxlmatlon 

spaces (based on tolerances instead of equivalences, cf. Al) the upper and 

lower approximations are not topologically dual: they are dual iff the under­

lying tolerance relation is an equivalence. It would be interesting to obtain 

some general characterization of those approximation spaces Un our sense) in 

which this topological duality holds. 

The Section 9 devoted to normal families seems to be excessive - its re­

sults practically have not been used in this texto Nevertheless, they consti­

tute a common framework for the ideas present in papen of Novotny & Pawlak 

[211, Pomykala [291 and Nieminen [201, as well as for the original informa­

tion system theory. 

Madrld-Getafe, July 11, 1991 
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APPENDIX:� 

Rough sets and informatlon .ystems� 

(baste concepts)� 

It ls assumed that all the sets consldered here are finite ones. TIte ter­

minology we use here has been introduced in the author'. ¡Nlper 19] and dif­

fers s11ghtly from the 'orthodox' one, see 124]. 

Al. Approxlmatlon space. Let U be a finite set of obJects called untverse. 

If R ls an equlvalence relatlon in the Wllverse U, then the palr (R, U) ls 

called approxfmatton space• 
•Let R be the set of all equlvalence classes of R. A set X ~ U ls R-deft­

nable lff lt ls empty, or lt can be represented as a Wllon of some elements
•of R • 

If X ~ U ls not definable, then lt 15 cal1ed rough seto 

For any rough set X there exlsts a Wllquely determined maximal R-definable 

subset of X. It ls called the lower approxfmatton of X wlth respect to R, and 

is denoted by ~(X). 

Similarly, the minlmal R-definable set containin¡ X 15 called lts upper 

approxtmatton with respect to R, and is denoted by R(X). 

The set BdR(X) • R(X) - R(X) ls called the boundary regton of X. 

Observe that a set X ls R-definable lff X • R(X) and/or X • R(X). It fol­

lows that X is R-definable iff 

#X • #R(X), 

where #X denotes the cardlnality of X. If #X < #R(X), then X ls a rough seto 

The number 
#R( X) 

"R(X) • ---­
#X 

can be lnterpreted as a measure of tnternal roughness of X (the external 

roughness can be deflned In a similar way). Notlce that O :s "R(X) :s 1, and 

"R(X) • 1 lff X ls a definable seto Accuracy measure of the set X ls deflned 

as 
#R(X) 

IlR(X) • --­
#R(X) 

IlR(X) • [O, l.J for any X ~ U, and IlR(X) • 1 lff X ls exacto 

A2. Attrlbutes and lnformatlon _y_tems. If U ls a Wllverse, V ls a non­a 
vold set of values and a 15 a functlon from U onto V ,then a ls called an a 
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attrLbute on U. If Va~ Re then a Is a numerLcal attrLbute. Numerlcal attrlb­

utes are also called seales or varlables, especially in social sclence. 

If A ls a nonvoid set of attrlbutes on U, then tbe palr (U, A) Is cal1ed 

LnformatLon system. 

Let a be an attrlbute on U. With each value v of a we can associate 

the set a
-1

(v) of all elements x of U such that a(x) • V: 

a -1(v) • {x E U: a(x) • v}. 

This set Is called the tndLscemLbULty clus (or atom)corresponding to the 

value v of the attrlbute a. Indiscernibility classes corresponcl1n¡ to differ­

ent values of a are disjoint subsets of U,and each element of U belongs to 

exactly one indiscernibility class. Hence, tbe family of a11 Indiscern1bllity 

ciasses ls a partLtLon (or a categorization) of tbe universe U. Thls family
•w11l be denoted by a . 

Two attrlbutes a,b are said to ·be equLvalent Iff a - b . Any attrlbute ls 

equivalent to a numerlcal attribute whose values are posltive integers (we 

recal1 that by definition an attribute Is a finitealued function). 

More general1y, If A Is a family of attributes, then two elements x ,y of U 

are said to be LndLscernLble with respect to A, lf for every a E A holds: 

a(x) = a(y). 

Any maximal set of Indiscernible elements is cal1ed LndLscernLbULty class, 

or atom, of A. (On the Interpretative level, an indiscernibility class ls a 

set of a11 elements that have the same description by the scales belonging to 

Al. As aboye, the set of al1 IndiscernibUity cluses corresponding to A ls a 
•partition of the universe U. it w11l be denoted by A • 

Let A and B be two families of attributes on U. It is said that A and B 

are equLvalent iff the corresponding indiscernibility partltions are are 

equal: A - B Lff A • B • 

A3. Independence and reducts. Let A be a set of attributes on the universe 

U. An attribute a E A Is said to be superfluous in A iff A - (A-{a)). If 

tbere are no superfluous attributes in A, then A Is Lndepend.ent. 

A set of attrlbutes B is a reduct of A iff B ~ A, B - A and B 15 Indepen­

dento It can be demonstrated that any nonempty let of attributes has at least 

one reducto 

Intersection of a11 reducts 15 called the core of A, and the elements of 

the core are LndLspensable attributes. 

If (U, Al is an information 5ystem, then a11 the concepts Introduced aboye 

are referred to the system, rather than to the set A. 
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A4. Approxlmatlon In informatlon .ystems. Let (U, A) be an lnformation 

system. The JndiscernlbUlty relatlon -A corresponding to the set A is an 

equivalence relation and, consequently, the palr (U'-A) is an approximation 

&pace.. 

Therefore - A-approximatlons of any X s:;; U can be deflned. They are referred 

to as A-approxlmations and are denoted by ACX) and A(X). Now a11 the concepts 

relative to approxlmation space can be introduced here and, in particular, 

A-definabUlty, A-roughness, and A-accuracy are we11 defined notions. 

AS. Dependence of attrlbute HU. Let A and B be two sets of attrlbutes on 
•the same universe U. If a11 elements of B (that is, a11 indiscernibUity 

classes of B) are A-definable sets, then the set B is said to be (totally) 

clependent on A. This fact is symbolically expressed as A -+ B. 

Observe that in this case L • #A(B) • #U , or, equivalently,� 
BEB ­

( L • #ACB) )·c#ur1 
• 1 .� 

BEB -�

If A and B are one-element sets {a} and {b}, respectively, and {a} -+ {b}, 

then it is said that the attribute b depends on the attribute a, and expres­

sed as a -+ b. 

The intuitive justification of thls notion of dependence is based on the 

following fact. If B is dependent on A, and x 15 arbitrary element of U, then 

the knowledge of values of attributes belonging to A on x i5 sufflcient for 
•finding this indiscernibility class of B to which x belongs. In other words, 

the description of x by attributes belonging to B is uniquely determined by 

i ts description by attributes belonging to A. 

This notion of dependence can be generalized in the following way. 

Let, as before, A and B be two sets of attributes. Let 

B•• {X ,X ,X , ... ,X }. 
1 2 3 n 

Obviously, U Xt • U, and Lt#Xt • #U. The number 

#U 

is a generalization of the measure of internal roughness. It indicates 'how 

much' of the partition B· can be defined, or explained, in terms of attrib­

utes belonging to A. 
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The index 7(~B) is cal1ed the degree 01 dependency 01 B on A. Observe 

that 7(~B) • 1 iff B is totally dependent on A. If 7(A--.B) < l. then it is 

sald that B partf.ally depends on A. 

A6. Decision .ystems and relative reduction. In certain applications the 

following scheme proved to be useful. 

Let (U. A) be an information system and assume that A • e v D. with enD-0. 
TIte triple (U. e. D) is called dectslon system. Elements of e are called con­

dtttons, and elements of D are dectslons. 

Now. from the appUcative point of view. one can be interested in reduc­

tLon of the system (U. e) (eUmlnation of superfluous condltions). and in 

analysls of dependence of decislons on conditions. and that can be done by 

the means descrlbed above in the sectlons A3. A4 and AS. 

Moreover. this scheme leads to the concepts of relatlve equlvalence and 

reduction: 

- two sets of conditions B'.8" ~ e are said to be l)-equtvalent Iff 

7(B'--. D) • 7(8"--+ D)¡ 

- a set B ~ e Is a D-reduct of e Iff it Is a mlnlmal subset of e whlch is 

D-equivalent to C. 
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