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Abstract

An outline of an algebraic generalization of the rough set theory is presented in the
paper. It is shown that the majority of the basic concepts of this theory has an immediate
algebraic generalization, and that some rough set facts are true in general algebraic
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Key words: Rough set; information system; rough dependence; rough lattice;
approximation space.

* Institute of Applied Mathematics and Mechanics, Warsaw University, Poland. This paper
was prepared while the author was visiting the Department of Economics of the University
Carlos lll de Madrid.



0. Introduction. The aim of this paper is to outline an algebraic genera-
lization of the rough set theory that would provide a common framework for
various rough set applications and models and, possibly, enhance the scope of
such applications. The contents of this paper are a result of some earlier
works concerning group preferences, multicriterial decisions and human cate-
gorizations and concepts, and it js author’s hope that it may be useful in
modeling and analysis of preferences and coalition structures.

The theory of rough sets and information systems, presented for the first
time in 1981 by Pawlak, see [23], has been initially proposed as a framework
for a systematic study of imprecise or incomplete knowledge. Pawlak has
introduced new concepts of independence, rough dependence and rough approx-
imation, as well as the notion of reduction of information systems. These
concepts play an essential role both in further development of the theory and
in its various applications, and proved to be useful tools also outside the
initially intended field of application.

The scope of successful applications of rough set methods to empirical
problems is constantly increasing, and ranges from industrial control systems
(19] and expert systems [1], [17], to analysis of empirical data in psycholo-
gical problems of decision and cognition [4], [13], [14], or in medicine
[27]. Various computer programs of rough analysis are commercialized, or
distributed by academic channels. First rough chips are being manufactured.

The rough set notions aroused also a more theoretical interest, especially
in the computer-oriented areas of mathematics, related to expert systems, de-
cision making, artificial intelligence, etc. Various papers have been pub-
lished since 1982 concerning relations between rough and fuzzy theories of
sets, e.g. [S], rough sets theory and evidence theory, e.g. [31], rough and
probabilistic approach to indetermined situations, e.g. [28], etc. Several
rough logics have been constructed and investigated, as well as knowledge
representation and machine learning systems (see, for example, [18] and the
bibliography of ({5]). A number of rough-set-based models has been proposed
for empirical sciences, such as, for example, that of contextual structures
of natural concepts, [7], [15], or of natural categorization rules, [13],
{16]. The concept of rough dependency seems to be of some importance for new
models and solutions of decision problems, and much has been done in this
direction (see, for example, [3], [14], [24]).

Parallelly, several purely theoretical studies of formal structures aris-
ing in rough set theory have been performed. Some results concerning alge-

braic structure of rough sets were presented, for example, in [8] and [30]




(see also the bibliography of [20]), and the limit properties of rough ap-
proximations have been studied, [18]. Some new results have been obtained by
applying algebraic technics to the families of information systems [21],
[22). *
At the same time, the development of the rough set theory itself is be-
ing strongly influenced by practical needs. One of the effects of this influ-
ence is the necessity of some generalizations, since the original Pawlak's
approach (and the majority of the works mentioned above is based on it) is in
a sense a very restrictive one: on the interpretative level, it enables to
analyze only such situations in which objects under analysis are -~ or are not
- equivalent (see Appendix) and does not take into account other possible
types of relation between objects, such as, for example, similarity or order.
Recently, several papers have been published proposing some generaliza-
tions of the theory. For example, Pawlak, Wong and Ziarko present in [28] a
theory of probabilistic information systems, Pomykala [29] and Nieminen [20]
introduce two different approaches based on tolerance (= similarity) relat-
ions, and in [10] and [11] a framework for a theory based on order relations
is proposed. In the paper [12] a generalized concept of rough approximation
is introduced which allows to propose a general algebraic scheme called rough
order, and to apply 'rough methods’' in the situation in which the approximat-

ing objects are not sets but concepts (in the sense of Wille, cf. [32]).

Present paper can be regarded as belonging to the latter group. As we have
already mentioned at the beginning, its main objective is to propose a gener-
al and uniform algebraic framework for various "rough theories”, as well as
to open new possible fields of application such as, for example, analysis of
preferences, decisions and coalition structures.

One of the models of the theory presented here is the original Pawlak’s
approach, which is partially characterized in various examples throughout the
text, and in the Section 10. A concise summary of the basic concepfs of rough
sets and information systems theory is annexed at the end of the paper. For
more information, see the original papers [23] - [27].

In the Section 1 we introduce the algebraic counterparts of the basic
concepts of the rough set theory. .

Sections 2 to 6 are devoted to the problems of approximation in lattices.
We define general rough structures called rough orders and general approxi-

mation operators called preclosures, and investigate their properties (sec-
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tions 2 and 3). Sections 4 and 5 contain some results concerning interdepen-
dence between algebraic properties of rough orders, and the properties of
approximation operations defined in them; concepts of approximation space and
complete rough lattice are introduced. Section 6 is devoted to lower approxi-
mation operators, and some algebraic properties of families of such operators
are analyzed; the concept of approximation system is introduced.

In the section 7 we introduce some quantitative elements: descriptions of
quality of approximations, and the measures of roughness of objects which
allow to introduce the concept of partial dependence. Some properties of par-
tial dependence are analyzed in the section 8.

Section 9 is devoted to what we call normal familles of sets, and it is
intended to provide a uniform conceptual base for those models, applications
and generalizations of original rough set theory, in which approximated ob-
jects are sets or families of sets.

In the section 10 we show that the basic facts of the theory of rough sets
and rough approximation can be derived from the general results presented
here.

Throughout the text we shall use a standard lattice theory notation and
terminology, following that of Gratzer [6].

An order is a partially ordered set, that is, a system R = (R,) where R
is a nonempty set and € & R is a partial ordering of R: it is reflexive,
transitive and antisymmetric.

¥ = (L,K) will denote a bounded partially ordered set which is a lattice.
The symbols O, 1 denote the bounds of L; A and v are the meet and join opera-
tions in L, respectively: avb = sup{a, b} and aab = inf{a, b). For any subset
A of L, AA and VA denote its infimum and its supremum. In a complete lattice
all subsets of its universe have their suprema and minima; we recall that
M) = 1 and V{0) = O.

We shall also consider semilattices. A meet-semilattice ¥ = (S,€) is a
partially ordered set such that for any pair a,b of its elements there exists
their infimum aab € S; it is complete iff for any A & S there exists its in-
fimum AA. The definition of join-semilattice is the dual one. It is a well
known fact that any complete meet-semilattice bounded from above is a iat-
tice, and the dual for join-semilattices holds.

The symbol 'w’ denotes end of a proof, of an example, or of a remark.
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1. Independence in meet-semilattices. Let ¥ = (S,<) be a complete meet-
semilattice, and let A, B be subsets of S.

DeriniTION 1. We shall say that A and B are equivalent iff AA = AB.

Obviously, the equivalence of sets is an equivalence relation in the ge-
neral sense of the term. Observe that A is equivalent to {A4); the empty set
is equivalent to the singleton {1}). The following observation will be useful
later on: . '

Let m(A) be the set of all minimal elements of a nonempty set 4; it is
evident that AA < Am(A) since m(A4) is a subset of A. If, in addition, for any
a € A there exists a m € m(A) such that m < a (which is true in the case of
finite A, for example), then Am(4) = AA: A and m(A4) are equivalent sets.

DEFINITION 2. Let A be a subset of S. We shall say that:
1° an element b € S is superfluous in A iff A is equivalent to A-{b),
that is, iff A(4-{b}) = AA;
2° the set 4 is independent iff there are no superfluous elements in it;
if a set is not independent, then it is called dependent.

Observe that any element not belonging to A is superfluous in it. If b » a
for some a € A, then b is superfluous in A; it follows that any independent
set is an antichain in ¥.

The empty set is independent, and it is equivalent to the set {1} which,.
consequently, is not independent. Therefore, a one-element set {a) is inde-
pendent iff a # 4.

Any subset of an independent set is also independent: if b is superfluous
in B and B & A4, then

A = NA-B) A AB = N(A-B) A N(B-{b})
= A(A-{b}).

The same argument implies that any superset of a dependent set is dependent
as well.

We shall say, by analogy, that a set B € S is superfluous in A4 iff A and
A - B are equivalent sets. ‘

It follows that if B is superfluous in A, then any element of B is super-
fluous in A, since AA € A(A-(b}) € A(4-B) = AA, for any b € B (the inverse is
not true, cf. Example 2).

A set B depends on the set A iff AB » AA. This fact wil be - when conven-
ient - as A — B. Obviously, 4 and B are equivalent iff A — B and B — 4,
compare Section 8.
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ExavpLE 1. Let ¥ be a meet-semilattice containing the fragment represented
by the following diagram: '

a b c

Ala,b,c)
The set A = {a,b,c} is not independent, since b is superfluous in it:
AA-{b}) = AA; any two-element subset of A is independent; {a,c} is equiv-
alent to A, the sets {a,b) and {b,c} depend on A (and on {a,c}) as well). =

EXAWPLE 2. Let £ be the Boolean algebra of all subsets of R%. Let D=D(0,1)
be the open unit disc, and let Pc denote the open halfplane containing D and
tangent to it at the point c belonging to the unit circle C. The infimum of
the family &4 = (Pc: c € C) is equal to D, and 4 is independent, since for any
ceC

A - (P }) = D v {c} R D.
On the other hand, if D and Pc are the corresponding closed sets, then any
element of the family B of all closed halfplanes Pc is superfluous in it:

AB ~{P)) = D for anyc eC.
(we omit the easy geometric proof). =

DEFINITION 3. Let A &€ S be a set of elements of a meet-semilattice ¥, and
let R be a subset of A. We shall say that R is a reduct of A iff R is
independent an equivalent to A. The family of all reducts of A will be
denoted by RED(A). ‘

ProposiTIoN 1. If R is a reduct of A4, then it is a maximal independent
subset of A.

Proof. Let R be a reduct of A. Assume that there exists an independent set
M S A such that R & M. Therefore AA € AM < AR, the latter inequality being
implied by independence of M. On the other hand, AA = AR, since R is a reduct
of A. It follows that AA < AM < AA, which is a contradiction. =

Observe that Proposition 1 implies that a reduct is not contained in any
other reduct.

REMARK 1. It has been conjectured, [28], that the inverse is also true: a
set is a reduct iff it is maximal independent. Example 1 shows that it not
so: the set {a,b) is a maximal independent subset of {a,b,c}, but it is not a
reduct. (This fact has been observed independently and by other means by No-
votny and Pawlak in the paper [22].) . =
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We shall say that a € A is absolutely superfluous i{n A4 iff it does not
belong to any reduct of A. If a subsei P of A is maximal independent and it
contains an element which is absolutely superfluous in A, then obviously P is
not a reduct of A. Maximal independent subsets which are not equivalent to
the entire set are called subreducts, [22).

An element a € A is tndispensable in A iff it belongs to all reducts of A.
The set of all indispensable elements is called the core of A, and denoted by
core(A). Obviously,

core(A) = {\RED(A).
ProrosITION 2. Any finite set has at least one reduct.

Proof. Let A be a finite set of elements of a meet-semilattice ¥. If 4 is
independent, then it is its own reduct. If not, then there exists an a e A
which is superfluous in A. Let An = A-("x)‘ the set Al is equivalent to A:
A}ll = M. If Al is independent then it is a reduct of A; if not, then there
exists an element a, superfluous in Az, and so on. In a finite number of
steps we obtain an At which is independent and equivalent to A, that is, a
reduct of A (we recall that the empty set is independent). =

Notice that, in view of the remark following the definition of equivalent
sets, any finite set 4 has a reduct which is a reduct of the subset m(4) of
its minimal efements, since a reduct of a subset which is equivalent to 4 is
a reduct of A.

No sufficient conditions are known for an infinite set to have a reduct.
The above Example 2 implies that even in complete Boolean algebra there may
exist dependent sets with no reducts - the family B = (I-"c) has this property,
since the existence of a reduct of B would be equivalent to the existence of
a subset of the unit circle € that is dense in € and has no condensation

points, which is impossible.

2. Rough orders and preclosure maps. Let R = (R, ) be an order. It is
said that a mapping ¢: R — R is closure map in R iff it is idempotent
(cle(r)) = c(r) for all r € R), is extensive (c(r) » r for all r € R), and is
isotonic (c(r) » c(s) for all r » s in R). If c(r) = r for some r € R, then r
is a closed element of R (for details, see [2], [6]). A mapping d is a dual
closure iff it is a closure map in the dual order R? = (R, »).

DEFINITION 4. Let R = (R, €) be a bounded order and let p be a mapping of
R into itself. We shall say that p is a preclosure map in R iff it is exten-
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sive and idempotent. If p(r) = r for some r € R, then r is a p-exact element
of R.

Observe that p(1) = 1 by the extensivity of p. If, additionally, p(0) = O,
then p will be called upper approximation map in R. If p is a dual precloﬁure
in R, that is, a preclosure in (R, »), and p(1) = 4, then it will be called
lower approximation map in R.

Evidently, any O-preserving closure is an upper approximation map, and any
1-preserving dual closure is a lower approximation map, since any closure is
a preclosure.

Let R = (R,<) be a bounded order, let E be a subset of R such that 04 € E
and let the system € = (E,<'), where €' = <|R , be the corresponding suborder
of R.

DeriniTIoON 5. If the order € = (E, <') is a complete lattice, then the
triple (R, E, €) is a rough order; the elements of E will be called exact

elements of R.

If, additionally, R is a structure: semilattice, lattice, complete lat-
tice, boolean algebra etc., and & is a corresponding substructure of R, then
(R, E, ) will be called, respectively, rough semllattice, rough lattice,
rough complete lattice, rough boolean algebra, etc.

ExampLE 3. Let U be a nonempty universe, and let C = (Cl. C.s «oo Cn) be
a finite partition of U. Let Do(C) be the family of all unions of elements of
C, and let D = D(C) = DO(C) v {@}). Obviously, D = (D, <€) is a sub-order of
the family P = P(U) of all subsets of U ordered by inclusion. It is a finite
lattice with respect to set union and set intersection, and it contains the
bounds of P: @ € D, and U = |JC € D. Therefore the triple (P, D, €) is a
rough algebra of sets. Define, now, for any X € U:

D(X) = (\{DeD: X<D} ,

D(X) = |J{DeD: X2D} . _
An elementary verification shows that D: P— D is an upper approximation map
in P, and D: P— D is a lower approximation; observe that they are a closure
and a dual closure, respectively. In both cases the family D is the set of
all exact elements of P. =

REMARK 2. There is a one-to-one correspondence between partitions of U and
equivalence relations in U. If we assume that the elements of the partition C
are equivalence classes of an equivalence relation in U, then the operations
D and D are the approximation operators considered in Pawlak’s theory of

rough sets and approximation spaces, see Appendix or [25]. =
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3. Approximation in rough orders. Let R = (R, E, <) be a rough order. For
any r € R the set M(r) = {e € E: e » r} is nonvoid, since E 3 1 » r. Let U(r)
be the set of all minimal elements of M(r).

We shall say that r is recognizable from above (or: u-recognizable) in R
iff M(r) has the following property: v .

(V) for any m € M(r) there exists a u € U(r) such that u < m.

Observe that any element of E is recognizable from above, since r € E im-
plies that U(r) = {r}: r is the only minimal element of M(r), and, of course,
the property (U) holds with u = r. Notice, too, that if E is a finite subset
of R, then any element of R is recognizable from above.

Let r € R be u-recognizable in R. Define
E(r) = VU(r).
The correspondence r— E(r) is well defined for all u-recognizable elements,
since & = (E, <) is a complete lattice and V is taken in E.

If Ru is the set of all u-recognizable elements, then Ru‘ (Ru’ E, €) is a
rough order (since E § Ru) in which all elements are u-recognizable. A simi-
lar construction leads to the concept of l-recognizable elements.

Let, for r € R, K(r) be the set of all lower bounds of r belonging to E:
Kir) ={e €e E: e » r}, and let L(r) be the set of all maximal elements of
K(r). We shall say that r is recognizable from below (or l-recognizable) in R
iff the following holds:

(L) for any m € K(r) there exists an | € L(r) such that | » m.

It follows that all elements of E are l-recognizable, and that all ele-
ments of R are l-recognizable in the case of finite E.
For any l-recognizable r € R there exists in E the g.l.b of the set L(r).
Let
E(r) = AL(r).
The correspondence r—E(r) is a partial map in R whose domain is the. set Rl
of all l-recognizable elements. The structure Rl = (Rl' E, €) is a rough or-

der in which all elements are l-recognizable.

ProposITION 3. Let R = (R, E, <) be a rough order, and let E, E, R, and
Rl be defined as above. Then

(i) The operation E is an upper approximation map in Ru and E is the set
of all E-exact elements of R, .

(ii) The operation E is a lower approximation map in Ru and E is the set

of all g_-exact elements of Rl .
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Proof. (i) If e € E then, as we have seen above, E(e) = V{e)} = e; there-
fore E(e) = e for any e € E. For any r € R, the element E(r) belongs to E by
definition. Hence, EX(r) = E(E(r)) € E, and the operation E is idempotent in
R . On the other hand, for any u-recognizable r € R, there exists an u € U(r)
such that r < u < E(r) (by the condition (U)), which implies that E is
extensive. Consequently, it is an upper approximation map in Ru . Now, if
E(r) = r holds for some r € R, then r € E, and it follows that E is the set
of all E-exact elements, which ends the proof of (i). The proof of (ii) is
the dual one. =

Recall that the elements of E are called exact elements (Definition S5).
Proposition 3 implies that an r € R is exact in (R, E, <€) iff it is E-exact
and iff it is E-exact.

Remark 3. In general, the preclosure E is not a closure, even if (R, <) is
a lattice. For example, if (R, <) is described by the following diagram

1
a/ \b
N
I
0
and if E= {0, a, b, 9}, then (R, E, <) is a rough lattice such that a > c
and E(a) < E(c), since
E(a) =a <1 =avb=El). _
The dual example will show that E needs not to be a dual closure. Observe

that in this example both (R, ) and (E, <) are lattices, but the second is
not a sublattice of the first. =

4.‘ Approximation spaces. Any rough order contains a rough sub-order 320 in
which all elements are recognizable, that is, are l-recognizable and u-rec-
ognizable: R = (R, E, <), where R = RnR and <" = <| Ro- The structure R
is a well-defined rough order, since Rl2 E and Ru2 E by Proposition 3, which
implies that R 2 E. ’

DerFINITION 6. If in a rough order R = (R, E, <) all elements are recogniz-
able: R = Ru = Rl , then R will be called approximation space; if R = Ru
then it is upper approximation space, and it is lower approximation space

whenever R = Rl'
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Prorosition 4. The following conditions are sufficient for a rough order
R = (R, E, <) to be an approximation space:

(i) (E, <) is a finite lattice;

(ii) (R, E, €) is a complete rough lattice (that is, (R, <) is a complete
lattice and (E, <) is its complete sub-lattice).

Proof. If (i) holds, then the thesis is obvious, since in a finite E both
(U) and (L) hold.

Assume now that (ii) holds. Let r be arbitrary element of R, and let, as
before, M(r) be the set of all upper bounds of r in E. Let e ARM(r). The
element r is one of the lower bounds of M(r) in R, therefore r < e The con-
dition (ii) means that ARM = A EM for any M S E. In particular, e O-A EM(r) € E.
It follows that e M(r), and e°< m for all m € M(r). Consequently, e, is the
unique minimal element of M(r), and the condition (U) is satisfied with u=e_.
This means that r is u-recognizable, and that E(r) = V{e o) =e.

A dual reasoning demonstrates that any r € R is l-recognizable, and that
E = VEK(r) = VRK(r). where K(r) is the set of all lower bounds of r in E. =

CoroLLARY. If the condition (ii) of Proposition 4 holds, then upper ap-
proximation and lower approximation are closure and dual closure, resp.

Indeed, if s < r, then M(s) 2 M(r). Consequently, ARM(s) < ARM(r). whichA
means that E(s) € E(r). Therefore the upper approximation operation is a
isotonic preclosure, that is, a closure. A dual argument shows that E is a
dual closure. '

For finite approximation spaces the inverse is also true:

ProrosITION 5. Let R = (R, E, €) be a finite approximation space such that
(R, €) is a lattice. Then R is a rough lattice iff the approximation opera-
tions £ and E are closure and dual closure, respectively.

Proof. Observe, first, that in the finite case the concepts of sublattice
and complete sublattice coincide. The ‘only if' part of the thesis is, there-
fore, a consequence of the previous Corollary.

Let A’ be the meet operation in the lattice (R, ). Assume that E is a
closure in R; E is the set of all closed elements of R, by Proposition 3(i):
E = E(R). It is well known (see, for example, Birkhoff [2], or compare [6],
Theorem 1.6.4) that for any closure ¢ in R the sub-order (c(R), €) of the
lattice (R, €) is a lattice (c(R), A, V) in which A = A,Ic(R)’ It follows
that E is closed with respect to A’ in (R, <), that is, (E, €) is a meet-
subsemilattice of the lattice (R, <). A dual argument shows that if E is a
dual closure then (E, ) is a join-subsemilattice of (R, ). Therefore (E, <)
is a sublattice of (R, <). =

10
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In an approximation space (R, E, <) both E(r) and E(r) exist for any reR.

Dermrtion 7. We shall say that the pair (E(r), E(r)) is the rough approx-
imation of r, and the function E: R — E? defined as follows:

E(r) = (E(r), E(r))
will be called the rough approximation operator.

REMARK 4. The image E(R) of R, which is a subset of E?, can be 'equipped’
with an algebraic structure, since both £ and R do posses such structures.
The question is, what is the ’natural’ way of doing it? This problem has ben
investigated only in the case of R being the power set of some universe U. In
the paper ([8) of Iwinski E(R) resulted to be a de Morgan algebra, and an
alternative approach of Pomykala & Pomykala [30] leads to a Stone algebra. =m

5. Complete rough lattices. We recall that R = (R, E, ) is a complete
rough lattice iff (R, <) is a complete lattice and (E, <) is complete sub-
lattice of R. In this case (see Proposition 4 and the corresponding Coro-
llary), R is an approximation space in which upper and lower approximations E
and E are closure and dual closure, respectively, and they are described by
the formulae

E(r) = VK(r), where K(r) = {e € E: e <1},
and

E(r) = AM(r), where M(r) = {e € E: e » r).

ProrosITION 6. In a complete rough lattice the following conditions are
satisfied, for any r, r’ € R:

(i) E(r A r’) = E(r) A E(r), (i) E(r v r’) = E(r) v E(r'),

(if) E(r v r’) » E(r) v E(r), (ii*) E(r A r") < E(r) A E(r).

Proof. It is sufficient to prove (i) and (ii): (i’) and (ii’) will hold by
duality. Let r, r’ € R.

(i) The map E is a dual closure, therefore E(r) < r and E(r’) < r’. It
follows that E(r) A E(r’) € r Ar’ in R. The element E(r) A E(r’) belongs
toE, therefore E(E(r) A E(r’)) = E(r) A E(r’). Hence, by isotonic property of
E, E(r) A E(r’) < E(r A r’). On the other hand, E(r) » E(r A r’) and E(r) »
» E(r A r’) by the same property. Consequently, E(r) A E(r’) » E(r A r’), and
it follows that (i) holds.

(i) E(r) v E(r') < r v r’, because E(r) < r and E(r’) < r’. Both E(r) and

11
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E(r’) belong to E, thus E(r) v E(r’) also belongs to E, since E is a sublat-
tice of R. Therefore E(r) v E(r’) = E(E(r) v E(r’)) € E(r v r’), which ends
the proof. =

REMARK 5. The analogy between E, E and topological operatlons of interior
and closure is obvious (but superficial, see Section 11); the elements of E
play the role of clopen (= closed and open) sets here. Notice that in the
proof of the properties (i) - (ii’) we have used only the fact that E is a
dual closure, and E is a 'closure in R, and not the specific definitions of
approximation operations. The results (ii) and (ii’) can not be strengthened,
since for any exact r, r’ equalities appear instead of inequalities, but in
any non-trivial complete rough lattice there exist elements r and r’ such
that the sharp inequality holds in (ii). =

Let (R, E, € and (R, G, €) be two complete rough iattices with G € E.
Observe that (G, <) is a complete sublattice of (E, €) , since AEM = A dw =

=AGMandVEM-VI{W=V6MforanyMSG.

If r € R, then G(r) < E(r), since G(r) is one of the lower bounds of r
in E. Observe, too, that G(E(r)) € G(r) by isotonicity of G. Moreover,

(f € G) A (Ff <r) iff ((feG) A (feE)) A (f<r)
iff (feG) A ((feE) A (f<r))
iff (feG) A (f<E(r)),

and it follows that G(r) = G(E(r)) for all r € R. Furthermore, it obvious
that G(r) = E(G(r)), since G(r) is E-exact. The dual equalities and inequali-
ties for upper approximations can be obtained in the same way. Thus we have

demonstrated the following

ProposiTioN 7. If (R, E, €) and (R, G, <) are complete rough lattices and
G <€ E then, for any r € R,
(i) E(G(r)) = G(E(r)) = G(r) < E(r) < r, and
(i") EG(r) = GE(r) =G(r) »E(r) r. =

In other words, if G € E, then EoG = GoF = G, and the dual holds.

REMARK 6. An example can easily be constructed showing that in general it
is not true that EoF = FeE. =

Let (R, E, €) and (R, F, <) be two complete rough lattices. Notice that
the complete lattices (E, €) and (F, €) are consistent in the sense that
AEM SAFM andV£M =V,MforanyM SEnF.LetG = FE n F. Then it follows
from (i) and (i’), respectively, that for any r € R
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g(f_‘(E(r))) = g_(_lg(f(r))) = g(f_(r)) = g(l_-.'(r)) = g_(r)
and
G(F(E(r))) = GEEF(r)) = G(F(r)) = GE(r)) = G(r) .

6. Approximation systems. Let R = (R, <) be a complete lattice, ‘an let

l: Dl—-)?(R) be a function defined on a subset Dl of R.

DermutioNn 8. The pair (R, 1) will be called approximation system iff the
following conditions are satisfied:

(i)  the partial order (Dl' <) is a meet-subsemilattice of (R, <);
(ii) for any e € Dl the system (R, l(e), <) is a complete rough lattice;
(iif) for any e € Dl’ e € le);

{iv) if e € f, then l{e) 2 U(f), for all e, f € Dl'

In other words, the partial function 1! defines a family of complete sublat-
tices of (R, ) in such a way that the ’smaller’ is element e, the ’finer’ is

the corresponding approximation space.

EXawPLE 4. Let R' = [0, +w){+w} be the ’closed’ set of real non-negative
numbers ordered by =, and let D = (Z-n: n € N}, where N is the set of posi-
tive integers. Define l(n) = (m2 : m € N} U {0, +w). The pair (R',s), 1) is
an approximation system. (More suggestive examples will be presented below,
in the section 10).

Let (R, l) be an approximation system. We shall adopt the following nota-
tion: if e € Dl and r € R, then e(r) will denote the lower approximation of r
in the complete rough lattice (R, l(e), <):

e(r) = (L(e))(r).

ProrosiTION 8. For arbitrary e, f € Dl and r, s € R the following condi-
tions hold:

(1) ele) = g;

(2) e(e(r)) = e(r);

(3) e(ras) = e(r)ae(s) and e(rvs) » e(r)ve(s);

(4) if e € f, then e(r) » £(r);

(5) if e € f, then e(f(r)) = fle(r)) = f(r);

6 (eaf)(r) » elr)vf(r);

(7) (evf)(r) € e(r)af(r) whenever e va € Dl'

13




~ Proof. The mapping e is a dual closure map in (R, <), and l(e) is the set
of all e-closed elements of R, by Proposition 5. Therefore (2) holds, and (1)
is a consequence of Definition 8(iii). The properties (3) are equivalent to
those stated in Proposition 6(ii); (4) is implied by Definition 8(iv), and
(5) is equivalent to Proposition 7(i) In view of the same condition. The in-
equalities (6) and (7) are a simple consequence of (4). = .

7. Quantitative approximation. Let R = (R, E, €} be an approximation
space, and let E' S E? be defined as follows:
E‘-((e, fke, feEande< f}.
We shall say that a non-negative real-valued function v defined on E‘:
v: E' >R, ’
is an estimation function in R iff it satisfies the following conditions:
(i) vie, e) = O for all e € E,
(ii) ife <e <e, <e, then vie, e,) s vie, e4); .
observe that (ii) and (i) imply that wv(e, f) 2 O for all (e, f) € E (it is

sufficient to take e = e =e =¢e and f = e 4).

Let v be an estimation function in (R, E, <).

DeriniTioN 9. The system QR= (R, E, v, £) is a rough estimation space, and
for any r € R the number

ptr) = v(E) = v(E, E)
is called the degree of roughness of r.

When convenient, we shall say roughness instead of degree of roughness.
Observe that if r is exact, then it follows from the Proposition 3 that its
roughness is O, by the condition (i) of the definition of estimation func-
tion. If the estimation function v is strictly isotonic, that is, if wv(e, f)=

= O implies e = f, then inverse is also true: r is exact iff p(r) = O.

One can imagine various ways of constructing estimation functions. One of
them could be the following one: »
If u is a positive real-valued function defined on E which is isotonic
with respect to the ordering relation < :
if e < f then p(e) s u(f) for alle, f € E,
then
vu: vu(e. f) = p(f) - ple)
is an estimation function. The function p will be called approximating mea-
sure in (R, E, €). The degree of roughness in this case can be expressed as
follows: p(r) = p(E(r)) - p(E(r).

14




Observe that the functions pu and B, =4~ p(0) yield the same estimation
function; from now on we shall always assume that u(0) = 0. Notice, too, that
¢ is a bounded function, since 1 € ¢ and u(4) = u(r) for all r € E. It fol-
lows that u-(u(i))-lis an approximating measure, too.

DermiTion 10. If Q = (R, E, v“. <) is a rough estimation space and vu is
defined by an approximating measure u on E, then Q will be called rough
approximation space. For any r € R the numbers p(E) and u(E) will be called,
respectively, the upper measure and the lower measure of r.

For example, if (U, M, u) is a measurable space, R is a family of subsets
of U ordered by inclusion, M is a o-algebra of measurable sets, u ié a bound-
ed measure, and all elements of E are measurable sets (E € M), then u is an
approximating measure in (R, E, €). Notice that in this case vu(e.f)ﬂl(f-e).
where ’'~' is the set difference symbol. In particular, if u is a probability
measure, then the corresponding function vu could be called probability esti-
mation function. If U is a finite universe and u(e) is the cardinality of e,
then the derived estimation function corresponds to the approach adopted in
the Pawlak’s theory of rough sets,

EXAMPLE 5. Let us return to the situation considered in the Example 3,
with the additional assumption that the uhiverse U is a finite set: (P, D, <)
is an approximation space in which P is the power set of U, D is the lattice
of sets generated by the elements of a given partition C of U, C=(Cl,....Cn).

and € is the set inclusion in P. Let p be defined as follows:

. card(D)
ﬂ(D) -c-m » for all D € D.

The corresponding estimation function is

card(D-D’)

v(D, D’) = Zard

, for all D,D’e D, D € D’.

(P, D, ,v, €) is a rough approximation space and for any set X € U (that
is, for any X € P), and the degree of roughness of X is equal to

4 card(D(X)-D(X)
p(X) =

card(U)
The degree of roughness corresponds in this case to the Pawlak’s measure of

the 'doubtful region’ (or 'boundary’) of the set X (see Appendix, Al). =

The approach presented above can be roughly characterized as 'based on the
weights of elements’. An alternative one can be 'based on the weight of rela-
tion between elements’:

If P = (P, €) is a partial order then a chain in # is any linear sub-order
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of P; observe that any single element can be regarded as a chain. A maximal
chain is a maximal (with respect to the inclusion in Pz) linear sub-order of
. An edge in P is a pair (e, f) such that f covers e, that is e < f and
there is no g in P such that e < g < f. For any e,f € P, if e < f, then there
exists at least one chain © joining e with f, that is, a linear sub-order of
E with e being its minimal element and f the maximal one; eonsequentlj, there
exists at least one maximal chain joining e with f. If ®© is a maximal chain
Joining e with f, and it is finite:
€: °'°o<°1<ez<"'<en'f’

then the number n is called the length of the chain; the length of the chain
e = f is equal to O. Observe that in this case any pair (et-n’ et) is an
edge. Therefore the length of € is the number of its edges. The length of an
infinite chain is +w. The length of an order is defined as the supremum of
the lengths of all its chains; it is equai to the supremum of lengths of all
its maximal chains.

Let (R, E, <) be an approximation space, and let v(e, f) be the maximum of
the lengths of all chains joining e and f, for any e, f € E such that e < f.
If the length of E is a finite number, then the function v is a rough mesure;

we shall refer to it as the algebraic estimation function.

The latter construction can be generalized as follows. Let E be a lattice,
and assume that a non negative function m is given which is defined on the
set of all edges of E; for any edge (e, f) the value mnle, f) is called the
welght of the edge. For any maximal chain & in E we shall define its weighted
length as O if it is trivial, that is, consists of one element; as +o if it
contains a non-trivial subchain with no edges (any segment of a real line
ordered by = has this property); and, otherwise, as the (possibly infinite)
sum of the weights of all its edges. The weighted length of E is the supremum
of the weighted lengths of all maximal chains in E.

Now, if (R, E, <) is an approximation space in which the edges of E are
weighted, and if the weighted length of E is finite, then we can de_f ine a
number v{e, f) for any pair e € f as the supremum of the weighted lengths
of all maximal chains joining e with f. The function v coincides with the
algebraic estimation function when n = },

It is easy to see that, in general, v is an estimation function. Indeed,
vie, e) = 0, and the condition (i) of the definition of estimation function
is satisfied. If e 1< e, < e, <e, and ® is a maximal chain joining e 2 with
e, then there exists a maximal chain l‘s’ljoining elwith e, and containing ¥,
which implies that (ii) holds.
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8. Partial dependence. If R = (R, E, <) is a complete rough lattice and
(R, E, vu. ) is a rough approximation space, then, following our terminolo-
gy, we should say that (R, E, v“. <) is a complete rough approximation space.
To be short, we shall call it a c.r.a. space, and denote it by (R, p).

Without loss of generality we can assume that the approximating measure u
is a restriction to E of an isotonic (with respect to <€) function u' defined
on the whole R; it is sufficient, for example, to define u‘(r) as the mean of
#(E(r)) and p(E(r)). The correctness of such an extension is an immediate
consequence of the assumption of completeness: both E and E isotonic.

In this section we shall assume that p is defined on R.

Let (R, u) be a complete rough approximation space. For any r € R we have:
H(E(F)) = u(r) s pEr) ,
if r is exact then u(E(r)) = u(r) = u(E(r)) , and
u(0) = 0.
If the approximating measure u is strictly isotonic in R (that is, r< s
implies p(r) < u(s)), then stronger conditions hold:

H(E(r)) = u(r) iff E(r) = r iff u(E(r)) = p(r) ,
and
u(ry = 0iff r = 0.

In other words, in this case u(r) = u(E(r)) iff r is an exact element.
Let 7E(r) = M(E(r))'(u(r))'l for r # 0 and 'rE(O) = ]. The above observa-

tions can be resumed as follows.

ProposiTion 9. If (R, u) is a c.r.a. space and u is strictly isotonic,
then for any r € R
'rE(r) = 0 iff E(r) =0,
and

7£(r) = 1 iff r is an exact element. =

Consider, now, an approximation system o = (R, l); by Definition 11, for
any e in the domain of !, the system Re = (R, l(e), ) is a complete rough
lattice. If u is an isotonic non-negative function on R with u(0) = O, then
for any e € Dl the pair (Re, u) is a complete rough approximation space.

The triple (R, I, p), which can be identified with the family {(R =~ ME
e € Dl) of all c.r.a. spaces generated by l, will be called rough approxima-
tion system.

Let (R, I, ) be a rough approximation system, let e € Dl’ and let
E = l(e).
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DerintTion 11. Let r € R. The number 1E(r) will be called the degree of |
dependence of r on e (shortly: dependence e — r), and it will be denoted by
7le > r).

In other words, (e — r) is the relative measure of e(r) with respect
to r, and it can be interpreted as the measure of the ‘lower l(e)-exactness’
of the rough element r.

In particular, when u is strictly isotonic, then r fully depends on e iff
r is l(e)-exact: L

e —or)=1 iff relle).

ProroSITION 10. Let e, f € E and r, s € R. Then

(i) 7(e — ras)-u(ras) s min{y(e — r)-u(r), y(e — s)-u(s)) ,
and
(ii) 7leaf = r) 2 max{y(e > r), ¥y(f > r)} .

Proof. (i). e(ras) = e(r)ae(s) by Proposition 8(3). Therefore p(e(ras)) =
= min{u(e(r)), ul(e(s))} by isotonicity of u. Now it is sufficient to observe
that p(e(y)) = y(e — y)-u(y) for any y € R, by definition.

(ii). If u(r) = O, then both members of (ii) are equal to O by definition
of 7. Assume that u(r) # 0. The inequality '

u((ear)(r)) = ple(r) v £(r)) 2 max{u(e(r)), p(r(r)))
holds by, consecutively, Proposition 10(6) and isotonicity of . Dividing it

by the non-negative number u(r) we obtain (ii). =

REmArRk 7. The Proposition 10 is a generalization of results of Novotny and

Pawlak, [21], concerning dependence of families of sets. =

9. Normal families, Let U be a nonempty universe. We shall say that a fa-
mily L = (Lt: teT} of nonempty subsets of U is a normal family iff Ltc LS
implies that Lts Ls’ for all t, s € T. The class of all normal families of
subsets of U will be denoted by L(U), or L. The class of all finite normal
families will be denoted by F(U) (or F), and C(U) (or C) will stand for the
class of all partitions (=classifications) of U. Observe that

L) = F(U) iff U is a finite set.
The symbol 4 will stand for the one-element normal family {U}; 1 belongs to
C(U), an therefore to F(U) and L(U). The empty family is a normal family; it
will be denoted by O: 0 = @ € F(U). We shall also assume, for the sake of

convenience, that 0 € C(U).
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Observe that if S is arbitrary family of subsets of U, then the family
M(S) of all its maximal elements is a normal one.

Let U be a universe, L = L(U), and let L, L’e L.
DeFmaTion 12. We shall say that L is finer than L’ (shortly: L € L’) iff
for any L € L there exists an L’e L’ such that L € L’.

ProPosITION 11. The system £(U) = (L(U), <) is a bounded partial order.

Proof. It is obvious that < is reflexive and transitive. To prove anti-
symmetry, assume that L €< L’ L for some L, L’e€ L. It follows that for any
set L € L there exist L’e L’ and L"€ L such that L € L’S L", which implies
that, consecutively, L = L" (by normality of L), L’= L and L € L’. The same
assumption implies that L’S L. Therefore L = L’, what means that € is a anti-
symmetric relation. To close the proof, it is sufficient to observe that
OKL <1 foranyLel. =

Consequently, also ¥ = ¥(U) = (F(U), <) and € = B(U) = (C(U), <) are par-
tial orders.

The following properties are immediate consequence of the definition of
the relation finer:

if LelLand L € L then {L} < L;

if LelLand L’ S L, thenL’elLand L’ < L;

if L, L’ € U, then {L}, {L"} € L, and: {L} < {L’} iff L s L.

It is well known, [6], that the set of all equivalence relations on U is a
partial order (with respect to inclusion in U®) which is isomorphic with B(U)
- the empty relation corresponds by definition to the ‘’empty partition’ O.
Hence, we can interpret C(U) as the partially ordered set of all equiva-
lence relations on U, when convenient. It is also known that B(U) is a com-
plete lattice. The following observations will be useful in the analysis of
the algebraic structure of £(U) and F(U).

Lemma 1. If L, L’e L and there exist L € L, L’e L’ such that L ® L’, then
it is not true that L < L’. '
Proof. It is a simple consequence of the fact that L is a normal family. m

Lemva 2. If F, F'e F are finite normal families, then there exist in L
supL(F‘, F’}) € F and tnf._(F‘, F’} €F.

Proof. 1). Let S=F v F’, and let U = M(S) be the set of all maximal
(with respect to €) elements of S; U is a finite normal family. The fact that
S is finite implies that for any S € S there exists an M € U such that S s M

19

i e et et e



7

FY

(observe that this may not be true in the case of infinite S). Hence, U is an
upper bound of both F and F’, and it belongs to F.

Let V be an upper bound of (F, F’}. For any S € S there exists an V e V
such that S € V. In particular, the same holds for any S € U, since U £ S.
Therefore U € V. It follows that U is the lL.u.b. of {F, F’).

2). Let P = (FnF’: FeF, F'eF’, FnF’+ @), and take I = M(P). I is a finite
normal family, and I € P. It follows that for any I € I there exist F € F and
F’ e F’ such that I S Fand IS F’, that is, I F and 1 < F: I is a lower
bound of (F, F’}.

Consider, now, an arbitrary normal family J which is a lower bound of
{F, F’}. For any J € J there exist F € F and F’e¢ F’ such that J € F and
J € F’. Consequently, J € Fn F’, and J € I for some I € I, by the definition
of the family 1. Therefore I is the g.l.b. of {F, F’}. =

Observe that if L, L’e C(U), then also tnf{L, L’} is a partition. It is
not so in the case of the lowest upper bound: if card(U) 2 3 then there exist
L, L’ such that sup{L, L’} ¢ C(U). To see that, it is sufficient to take
L = {{a, b}, {c}} and L’ = {{a}, (b, c}}, where a, b, ¢ are three different
elements of U. In such a case sup{L, L’} = {{a, b}, {b, c}} ¢ C(V).

Lemma 3. If U is an infinite universe, then there exist in L(U) families L
and L’ such that there is no inf{L, L’} in L(U).

Proof. Let A = (an: neN), B= (bm: m € N} be two disjoint subsets of U:
a # bm for all n, m € N (N is the set of all positive integers). Let A

n
=(an:n5k) and B

=
K = (bm: m z k) for all k € N. Consider L’ = (A), ﬁnd
L= (Lk: k € N}, where Lk = Ak v Bk . It is easy to see that L is a normal
family, that all (Ak) are lower bounds of L, and that none of them is the
greatest lower bound of L, since (Ak) < (Ak +l) for all k.

Assume now that M is a lower bound of {L, L’). It follows that for any
M € M there exists a k such that

MsAnlL = (al. &, ..., ak) = A8 AL

which implies, by Lemma 1, that (Ak +1)‘ is a lower bound of {L, L’} which is
not finer than M. Consequently, no lower bound of {L, L’} is the greatest

lower bound of the pair. =

Lemma 4. If U is an infinite universe, then there exists a set of finite
normal families with no supremum in F(U).

Proof. Let A, B, An, Bm and Lk be defined as in the proof of Lemma 3. The
set § = ((Lk): k € N} is a set of finite normal families.

Let Lk be defined as follows:
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(*) L, =4, Ly ., L, BU A, k€N

Each l"k is a finite family, and it is normal, since Ani A for all n, and
Bma Bk for m < k. Moreover, l"k b “‘l) for all k, 1 € N, since Lls B,v A for

Kk
! & k. Notice that L, < L, for all k € N, since LkS Bku A. Thus all L

upper bounds of 2, a:c; lnone‘t of them is the lowest upper bound.
Suppose, now, that K = (Kl, K., ....KI) is a finite normal family which is
an upper bound of £. For any k € N there exists an i(k) € {1, ..., I} such
that Lk [« Kt(k)‘ Consequently, there exists ‘o such that l‘k < Kto for infi-
nitely many k. Therefore
(**) Ktoa U(Lk: i(k) = to) = Bkou a,
where kos min{k: Lk < Klo)' since (An) is an increasing, and (Bn) a decreas-
ing sequence of sets.
Consider K’ = Lko’ The conditions K » (Lk) and (**) imply that K’ < K. It
follows that if there exists a supremum of the set £ in F, then it must be of

kare

the form (®*), which is a contradiction: sup'_.ﬁ does not exist. =
REMARK 8. Observe that supn_ﬁ = (Lm: m € N}. It is easy to prove that, in
general, if L = (Lt: t € T} is a normal family, then L = supl_((l.t): teT)hm

Now we are able to formulate the following

ProposiTIoN 13. The partial orders £(U) = (L(V), <€), FW) = (F(U), €) and
EB(U) = (C(W), <) have the following properties: _

a). 2(U) is a lattice iff the universe U is a finite set; if it is a lat-
tice, then a complete one.

b). F(U) is a lattice for any U, and it is a complete lattice iff U is
finite,

c). B(U) is a complete lattice for any U; it is a meet-subsemilattice of
?(U),’but not a sublattice if card(U) = 3.

Proof. We have already observed that £(U) = $(U) iff U is a finite uni-
verse. It follows that a) and the first part of b) are implied by Lemmas 2
and 3.; the second part of b) is a consequence of Lemma 4 and of a); the
first part of c) is a well-known theorem (see, for example, [6]), and the

second part of c) is a consequence of the observation preceding Lemma 3. =

10. Pawlak approximation systems. The aim of this section is to show that
the basic facts of the Pawlak’s theory of information systems and rough sets
are derivable from the general construction presented here, and some new re-
sults can be added (cf. Appendix).

Let U be a finite universe.
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The set C = C(U) of all partitions of U (the empty partition included) is
a complete meet-semilattice with respect to the finer relation. Therefore all
the concepts introduced in the Section 1 (equivalence, independence, super-
fluousness, reducts, etc) are applicable to the subsets of € and, in particu-
lar, the conclusions of Propositions 1 and 2 are valid. (Compare, for exam-
ple, the results of [25], [22]); see also sections A2 and A3 of the Appendix).

Let C € C(U) be arbitrary partition of U:
Ce {Ct: teT).

Denote by B(C) the algebra of subsets of U generated by the partition C:

X € BC) iff (3 X=|ic,:teTHorX=0);

T’ST
the elements of B(C) are called C-definable sets. B(C) is a subalgebra of
PWU), and (P(U), B(C), €) is a complete rough algebra of sets, in which all
elements of P(U) are recognizable. Therefore it is an approximation space,
and the operations of lower and upper approximation are a closure and dual
closure, respectively (see Sections 2, 3 and 4). A subset of U is B(C)-exact
iff it is C-definable. The system (P(U), B(C), €) is a complete rough lattice
for any C, and it follows that the conclusions of both Proposition 6 and
Proposition 7 are valid.! (Compare the results of [16], [23], [26]; also Al
and A4).

Furthermore, since U is a finite universe, cardinality is a measure on
P(U) and, consequently, it is an approximating measure in the approximation
space (P(U), B(C), £). It follows (compare Example 5 of Section 7) that the
degree of roughness of any subset of U can be measured, and, since cardi-
nality is a strictly isotonic on finite sets, a set is C-definable iff its
roughness is equal to 0. Observe, too, that the degree of dependence of a set
X € U on a partition C € C(U) can be defined (cf. Definition 11).

Let, now, l(C) be the set of all normal families of C-definable sets, and
let 1(0) = L(V).

The mapping C — I(C) is defined on C(U) £ L(U), and it is easy to see
that the pair

(£w),
is an approximation system (Definition 8, Section 6), since

- the condition (i) of Definitlon 8 is implied by Proposition 13,c): Dl =
= C(U), and the latter is a meet-subsemilattice of L(U);

- the pair (I(C), €) is a complete sublattice of £(U), which implies that

! Notice that In the Example 3 we have not assumed that U is finite.

22




N

~N
\

[
vl

the condition (ii) is satisfied: (L(U), I(C), ) is a complete rough lattice
for any C;

- (iii) is satisfied by definition of I(C), since C is a normal family of
C-definable sets: C € 1(C);

- (iv) is a simple consequence of the fact that a partition C’ is finer
than C iff it is a sub-partition of C, which implies that B(C’) 2 B(C) and,
consequently, 1(C’) 2 L(C).

Therefore, the assertions (1) -~ (7) of the Proposition 8 are wvalid for
approximation by partitions; (1), (2) and (4) are obvious in this model. As
far as the author knows, (3), (5), (6) and (7) are stated for the first time
here (the first part of (3) and (6) are implicit in [21])

Cardinality can be extended in a natural way to a function # defined on
LWU): if Lel(U)and L = (Lt: t € T), then

#(L) = }Ztcard(Lt) .

Notice that '#' is not an approximating measure on L(U), if only U has
more than two elements (if &, b, c € U then R = {{a, b}, {b, c}} is finer
than S = (a, b, ¢}, but #(R) = 4 > 3 = #(S)). The same function is strictly
isotonic with respect to the relation finer on the set D = D(U) of all dis-
Joint (and thus normal) families of subsets of U. Observe that D(U) 2 C(U)).

Let D(U) = (D, <), and, for any partition C, let d(C) denote the set of
all families of disjoint C-definable subsets of U.

The triple (D(U), d, #) will be called Pawlak approximation system.

It is easy to see that it is a rough approximation system. Consequently,
the concept of partial dependence can be introduced (cf. AS5). A disjoint fa-
mily L fully depends on a partition C iff all elements of L are Cefinable
sets, and the inequalities (i) and (ii) of Proposition 10 hold for approxi-
mations by partitions (they have been proved for this case in [23] and, in a
slightly more general formulation, in [2]1], Theorems 5.1 and 5.2).

It is worthwhile to observe that it can be demonstrated that the degree of
dependence in (D(U), d, #) satisfies the triangle inequality: |

(L - M) + (M — N) 2 y(L — N)

for arbitrary categorizations L, M, N and, consequently, the function
pL, M) = Ha(L — M) + 7(M — L))

is a distance function on C(U) (for details, see [21]).

REMARK 9. It is possible to define relative superfluousness, independence

and reducts in purely algebraic terms in such a way that they coincide in
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(D(U), d, #) with the respective Pawlak's concepts (cf.A6). The corresponding
results will be presented in the final version of this work. a

Concluding remarks. We have left many 'loose ends’ in this presentation.
This is due to various reasons. One of them was the intention of analyzing
the ’'most general’ situations, which led to constant change of assumptions
about structures under consideration. Another one is that there are specific
models that have influenced the approach adopted here, but are not explicitly
present in the text. For example, the notion of preclosure introduced in the
section 2 has not been used later on. Nevertheless, it plays an important
role in the rough concept model, cf. [12] and [15]. Still another is that
there are certain ideas that seem to be interesting, but have not been inves-
tigated yet: this is the case - and the only reason of existence in this
paper - of recognizable elements (section 3).

We have devoted much more attention to the lower approximations than to
the upper approximations. This is due to the fact that the former seem to
play more important role in various known models and applications, and that
the concept of dependence is based on them. Nevertheless, some more
exhaustive study of upper approximations 4 properties would be interesting, at
least from the algebraic point of view.

There is also another aspect of this problem. Pomykata has observed in his
paper [29] that the analogy between topological closure-interior operations
and lower-upper approximations, respectively, is in a sense characteristic
for Pawlak theory. He has demonstrated that in his general approximation
spaces (based on tolerances instead of equivalences, cf. Al) the upper and
lower approximations are not topologically dual: they are dual iff the under-
lying tolerance relation is an equivalence. It would be interesting to obtain
some general characterization of those approximation spaces (in our sense) in
which this topological duality holds.

The Section 9 devoted to normal families seems to be excessive - its re-
sults practically have not been used in this text. Nevertheless, they consti-
tute a common framework for the ideas present in papers of Novotny & Pawlak
[21], Pomykata [29] and Nieminen [20], as well as for the original informa-
tion system theory.

Madrid-Getafe, July 11, 1991
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~ APPENDIX:
Rough sets and information systems
(basic concepts)

It is assumed that all the sets considered here are finite ones. The ter-
minology we use here has been introduced in the author’s paper [9] and dif-
fers slightly from the ’orthodox’ one, see [24].

Al. Approximation space. Let U be a finite set of objects called universe.
If R is an equivalence relation in the universe U, then the pair (R, U) is
called approxtimation space.

Let R. be the set of all equivalence classes of R. A set X € U is R-defi-
nable iff it is empty, or it can be represented as a union of some elements
of R..

If X € U is not definable, then it is called rough set.

For any rough set X there exists a uniquely determined maximal R-definable
subset of X. It is called the lower approximation of X with respect to R, and
is denoted by R(X). |

Similarly, the minimal R-definable set containing X is called its upper
approximation with respect to R, and is denoted by R(X).

The set Bd (X) = R(X) = R(X) is called the boundary region of X.

Observe that a set X is R-definable iff X = R(X) and/or X = R(X). It fol-
lows that X is R-definable iff

| #X = #R(X),
where #X denotes the cardinality of X. If #X < #R(X), then X is a rough set.

The number
#R(X)
LX) =
R X |
can be interpreted as a measure of internal roughness of X (the external

roughness can be defined in a similar way). Notice that O s ¢ R(X ) s i. and
L R(X ) =1 iff X is a definable set. Accuracy measure of the set X is defined

as
#R(X)
(X) = ————;
#R(X)

uR(X) € [0, 1] for any X € U, and uR(X) = ] iff X is exact.
A2. Attributes and information systems. If U is a universe, Va is a non-

KR

void set of values and a is a function from U onto Va , then & is called an
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attribute on U. If V‘S Re then a is a numerical attribute. Numerical attrib-
utes are also called scales or variables, especially in social science.

If A is a nonvoid set of attributes on U, then the pair (U, A) is called
information system.

Let a2 be an attribute on U. With each value v of a we can associate
the set a '(v) of all elements x of U such that a(x) = v:

alv) = {x € U: alx) = v).
This set is called the {ndiscernibility class (or atom) corresponding to the
value v of the attribute a. Indiscernibility classes corresponding to differ-
ent values of a are disjoint subsets of U, and each element of U belongs to
exactly one indiscernibility class. Hence, the family of all indiscernibility
classes is a partition (or a categorization) of the universe U. This family
will be denoted by a'.

Two attributes a,b are said to be equivalent iff a‘ = b.. Any attribute is
equivalent to a numerical attribute whose values are positive integers (we
recall that by definition an attribute is a finitealued function).

More generally, if A is a family of attributes, then two elements x,y of U
are said to be indiscernible with respect to A, if for every a € A holds:

alx) = a(y). .
Any maximal set of indiscernible elements is called indiscernibllity class,
or atom, of A. (On the interpretative level, an indiscernibility class is a
set of all elements that have the same description by the scales belonging to
A). As above, the set of all indiscernibility classes corresponding to A is a
partition of the universe U; it will be denoted by A..

Let A and B be two families of attributes on U. It is said that A and B
are equivalent iff the corresponding indiscernibility partitions are are
equal: 4 ~B iff A =5B.

A3. Independence and reducts. Let A be a set of attributes on the universe
U. An attribute a € A is said to be superfluous in A iff A ~ (A-{a}). If
there are no superfluous attributes in A, then A is independent.

A set of attributes B is a reduct of A iff BS A, B ~ A and B is indepen-
dent. It can be demonstrated that any nonempty set of attributes has at least
one reduct.

Intersection of all reducts is called the core of 4, and the elements of
the core are indispensable attributes.

If (U, A) is an information system, then all the concepts introduced above

are referred to the system, rather than to the set A.
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A4. Approximation in information systems. Let (U, A) be an information
system. The Indiscernibility relation ~ A corresponding to the set A is an
equivalence relation and, consequently, the pair (U,~,) is an approximation
space..

Therefore ~ A—approxlmatlons of any X € U can be defined. They are referred
to as A-approximations and are denoted by A(X) and A(X). Now all the concepts
relative to approximation space can be introduced here and, in particular,

A-definability, A-roughness, and A-accuracy are well defined notions.

AS. Dependence of attribute sets. Let A and B be two sets of attributes on
the same universe U. If all elements of B. (that is, all indiscernibility
classes of B) are A-definable sets, then the set B is said to be (totally)
dependent on A. This fact is symbolically expressed as 4 — B.

Observe that in this case 5 T 5" #A(B) = #U , or, equivalently,

€

(T %48 )@ =1,
B eB

If A and B are one-element sets {a} and {b}, respectively, and {a} — (b},
then it is said that the attribute b depends on the attribute a, and expres-
sed as a — b. '

The intuitive justification of this notion of dependence is based on the
following fact. If B is dependent on A4, and x is arbitrary element of U, then
the knowledge of values of attributes belonging to A on x is sufficient for
finding this indiscernibility class of B' to which x belongs. In other words,
the description of x by attributes belonging to B is uniquely determined by
its description by attributes belonging to A.

This notion of dependence can be generalized in the following way.
Let, as before, A and B be two sets of attributes. Let
L]
Bs= (xl.xz.xa. ,Xn}.
Obviously, U X = U, and }:t#x . = #U. The number

n
T #4(X))
i=]

#U

is a generalization of the measure of internal roughness. It indicates ’how

7(4—B) =

much’ of the partition B' can be defined, or explained, in terms of attrib-

utes belonging to 4.
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The index y(A—B) is called the degree of dependency of B on A. Observe
that y(A—B) = 1 iff B is totally dependent on A. If y(4—B) < 1, then it is
said that B partially depends on A.

A6. Decision systems and relative reduction. In certain applications the
following scheme proved to be useful. .

Let (U, A) be an information system and assume that A = C v D, with CnD=0.
The triple (U, C, D) is called decision system. Elements of C are called con-
ditions, and elements of D are decisions.

Now, from the applicative point of view, one can be interested in reduc-
tion of the system (U, C) (elimination of superfluous conditions), and in
analysis of dependence of decisions on conditions, and that can be done by
the means described above in the sections A3, A4 and AS.

Moreover, this scheme leads to the concepts of relative equivalence and
reduction:

- two sets of conditions B’,B" £ C are said to be D-equivalent iff

7(B’— D) = y(B"— D);

- a set B S C is a D-reduct of C iff it is a minimal subset of C which is

D-equivalent to C.
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