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Abstract

This paper has three main components. First, it outlines a model of non-
linear error correction (NEC) in which the linear error correction term a'X
(the vector time series X, is cointegrated, a is the cointegrating vector) is
replaced by the nonlinear term g(a'X,), where g(.) is a nonlinear function.
Second, several types of asymmetries are discussed. The NEC model is shown to
have an underlying structural model in the form of an adjustment cost model
with asymmetric adjustment costs. The implications for the NEC model of
trending targets are explained. Third, it is shown that nonlinear error
correction is present in a trivariate series of UK employment, wage, and
capital stock.
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1. 0 ION

Nonlinear error correction basically refers to nonlinear adjustment to
longrun equilibrium economic relationships. 1In this paper we show that the
concept of nonlinear error correction (NEC) models (Escribano (1987),
Granger and Lee (1990)) has its structural counterpart in the form of
optimizing a decision process under uncertainty over an infinite horizon
where the decision variable is quasi-fixed and bears asymmetric costs of
adjustment (Pfann and Palm (1988), Pfann and Verspagen (1989)). The
concept of asymmetry implies that the costs of adjusting to a higher target
level are not necessarily marginally equivalent to the costs of adjusting
to a lower target level.

This paper has three main components. First, it outlines a model of non-
linear error correction (NEC), in which the linear error correction term
a'X, (the vector time series X, is cointegrated, o is the cointegrating
vector) is replaced by the nonlinear term g(a'X,), where g(.) is a nonline-
ar function. Second, several types of asymmetries are discussed. The
implications for the NEC model of trending targets are explained. Third,
it is shown that nonlinear error correction is present in a trivariate
series of UK employment, wage, and capital stock.

The paper is organized as follows. In section 2 the nonlinear error
correction representation is derived from a general nonlinear autoregressi-
ve distributed lag model, and issues of integration and cointegration
(Engle and Granger (1987)) are passed in review. Section 3 presents the
linear partial adjustment model. In section 4 the characteristics of the
asymmetric adjustment model are linked with the concept of nonlinear error
correction., In section 5 the implications of variables having trends in
mean with respect to NEC models are discussed. Secgion 6 presents several
specifications of asymmetries in the NEC model, that can be found in the
literature. It is shown that these nonlinear error corrections are special
cases of the general formulation presented in the paper. An empirical ap-
plication is given in section 7 where the nonlinear relationship is
investigated between UK time series data on employment real wage costs and

the stock of capital goods. Finally, in section 8 conclusions are drawn.
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2. (0] N OR_C CTIO D COINTEGRATION

Let X, be an (Nxl)-vector of economic variables, and suppose that we have T
observations of each individual series of X,. Let E(X.) = u, be an (Nx1)-
vector whose element can be constant terms, deterministic trends etc., and
define ir. = X, - . If we decompose }-(t - (du.f’:)': where (-Qt is one dimensio-
nal and f’t is an ((N-1)x1)-vector, we can factorize the joint density of 5{:

into the conditional and the marginal, see for example Engle et al. (1983) ,4

D(Xe|Xe-1.Xe-2, - - - X, 8) = D(Qu|Pe,Xe-1,Xez, - - Ko, 01)D(Pe|Keoq,Xez, - - -, %o, 82)
(2.1

If the parameters of interest Y are a function of the parameters §,, ¥y =
£(6,), and if P, is weakly exogenous for the parameter of interest ¥, we

can make inference on ¥ based on the conditional density without any loss

of relevant information. In particular we will be interested in the
conditional expectation E(Quﬁ’mi«;-piu-z: e Xg,8q).

Let €, = Qp - E(lel_’b,)_{b_l,...,}_(o,ol) so that ¢, is a martingale difference
sequence relative to the <vy-algebra generated by (f’:,}-(r.-nn-,io)- For

simplicity we will assume that ¢, has a constant variance equal to ag.
Suppose we can approximate the conditional expectation by a finite autore-

ressive distributed odel w o ar t , see Escribano (1987),
E(Qe|Pe,Xe-1,Reozs - - -1 %0,01) = -¢2(B)Qe-y - (B)Py - g(Quy - @Pyoy). (2.2)
Then we can write the equation for 6,_ as

$(B)Q, + 0(B)P, = -8(Qe-r - @Pyy) + €,

where ¢(B) is a finite lag polynomial in the lag operator B, with ¢(0) = 1,
#(B) is a (1x(N-1))-vector of finite polynomials in the lag operator B.
The lag operator B is such that Bk)-{t - )-(t-k and (0) is a (1x(N-1))-vector
whose elements are not all equal to 0 so that in euqation (2.1) there are
some contemporaneous weakly exogenous variables. The nonlinear function g

is such that |g(2)| < aZ where a < 1.
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If both ¢(B) and 6(B) have a unit root then Qt and ﬁt are weakly integrated

of order one, I(l). In this case we can obtain different, but observation-

ally equivalent, representations from (2.2). Taking Taylor series expansi-
ons of ¢(B) and 6(B) around the point B = 1 we get

¢(B) = ¢(1) + ¢"(B)(1-B) (2.3)
and
6(B) = 6(1) + 6"(B)(1-B) (2.4)

where ¢"(B) and #*(B) have all roots outside the unit circle. Substituting

(2.3) and (2.4) in equation (2.2) and rearranging terms we obtain
$(1)Q, + 6(1)P, = -¢"(B)(1-B)Q, - 6"(B)(1-B)P, - g(Qy-; - aPyy) + €.  (2.5)

Now decompose ¢(l1) = TI'ja; and 6(1) = Tia,, and divide (2.5) by the scalar

T'ia;, we normalize (2.5) as

Q = aPy -~ ¢71(1)¢"(B)(1-B)Q - ¢72(1)8"(B)(1-B)Py - ¢71(1)g(Qe-; - @Pyy)

+ ¢ (1) ey, (2.6)
which is a nonlinear version of Bewley's representation, (Bewley (1979)),
with a = -¢"1(1)o(L). Notice that Bewley’s linear representation is

obtained from (2.6) by setting g(Q.., - aP,-;) = 0. See Hylleberg and Mizon

(1989) for an alternative procedure to derive this representation.

If we add and subtract ¢(1)B and 6(1)B to (2.3) and (2.4) respectively, we
can rewrite ¢(B) and #(B) as follows

¢(B) = ¢(1)B + [¢"(B) + #(1)](1-B) =~ ¢(1)B + ¢"*(B)(1-B) (2.7)
and
g(B) = §(1)B = [6"(B) + 6(1)](1-B) = 6(1)B + #*"(B)(1-B), (2.8)

where ¢**(B) and 6""(B) have all roots outside the unit circle.
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Substituting (2.7) and (2.8) into (2.2) we obtain a nonlinear error
correction representation

7" (B)(1-B)Qy + 8(B)(L-B)Py = -¢(1)Qe-y - 8(1)Ppoy - g(Quoy - @Peoy) + €.
(2.9)

Decomposing the long-term components as ¢(l) = Iy, 0(1) = Ta,, and

dividing by the scalar a; we can normalize (2.9) getting a more explicit

representation
$a(BY(1-B)Qy + 8o(B)(1-B)Py = -T1(Quy - @Peo)) - gq(Q-y - 0Pey) + €4, (2.10)

where ¢,(B) + (L1/ay)¢**(B), 6,(B) = (1/a))8""(B), go(.) = (1/@1)g(.), and

€qe = (1/ay)ey. If go(.) = 0, we obtain the linear error correction model.

In general the function gol(é‘.,.1 - a?bi) incorporates all departures from
the linear and symmetric error correction term, I‘l((-Qt..1 - aﬁvq)- For models
(2.6) and (2.10) to be well specified, Qt - aft must be I(0) since Qt and éc
are both I(1l), with (1,-a)' being the cointegrating vector. Also it must
hold that a nonlinear function g,(I(0)) is still I(0). This last condition

is generally satisfied under a-mixing conditions, see Escribano (1987b).

The error correction and Bewley's representations are observationally
equivalent although in practice one can be preferred over the other.
Wickens and Breusch (1988) mentioned that Bewley's representation has the
advantage of giving the correct standard errors from the longrun coeffi-
cients at the costs of requiring instrumental variables estimation (IV),
since the error term ¢, is correlated with the regressor (1-B)Q,. On the
other hand, the error correction representation can be estimated by OLS,
and the standard errors of the longrun coefficients may be obtained after
some calculations (Dolado et al. (1990)) or by nonlinear least squares

(Stock (1987)).

3. THE LINEAR PARTIAL ADJUSTMENT MODEL

In the linear partial adjustment model a representative economic agent is

assumed to construct a contingency plan at time t for a purely nondetermi-
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nistic quasi-fixed decision variable Q !’ in order to minimize the expected
real present value of a quadratic loss-function over an infinite time

horizon. The optimization problem is as follows

MINIMIZE E[Z7-08'((Qess - Qivi)? + 7((1-B)Qeuus)?) 0], (3.1)
Q

where E is the mathematical expectations operator, O, is the conditioning
set of available information at time t, B is a real discount value lying
between zero and one, y is a constant positive parameter measuring the
adjustment costs of changing the level of Q over time. Q" is the target
level of Q, and is assumed to be linearly related to the firms purely

nondeterministic forcing variables P, and a stochastic zero mean shock u,
Q: = aPt - U.t (3.2)

where a' is a ((N-1)xl)-vector of constant parameters. If Q, = Qi, equati-
on (3.2) can be interpreted as the longrun equilibrium relation between Q
and P, also known as the cointegration relationship, with (1,-a) being the
cointegration vector.

The first order condition for (3.1) at time t is

Q + 7(1-B)Q - BYE[(1-B)Qun|0.] = Q¢ ‘ (3.3)
or
E{(1-B)Qus1 0] = B73(1-B)Qe + (B71)72(Q, - Q). (3.4)

The left-hand side of (3.4) cannot be observed as such, but the forward
looking closed form solution for the inhomogeneous second order linear

difference equation is well-known in literature, and can be written as the

partial adjustment representation (cf. Nickell (1985))

(L-2AB)Qy = (1-1)(1-BA)STa0(BA) E[Qbsi|0:] (3.5)

L In section 5 we generalize this epproach to the case of varisbles having trends in the means.
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where A is the root of the characteristic equation

A2 - (BTN + g =0, (3.6)
that lies within the unit circle, being

A= (L7 (B)TY) - M4BT (BY) D) 2-4p7T)E (3.7)

since both roots are real and lie on either side of the unit circle (cf.
Palm and Pfann (1991)). Without loss of generality we may assume that the
generating process of P, is an autoregressive process, where T(B) 1is the
corresponding autoregressive lag polynomial. Then we substitute (3.2) into

(3.5) and obtain (cf. Hansen and Sargent (1980))

(1-2B)Qy = a(1-2)(1-BA)(1-BAB™1)) }(T(BA)-BABTIT(B))Py + (1-A)(1-BA)u,  (3.8)
which may be simplified into the unique closed form solution of (3.1)

Qc = AQe-; + a(l-X)T*(B)P, + (1-2)(1-BA\)u, ' (3.9)

where T"(B) = (1-BX)(T(BX)(1-BAB7})) }(T(BA) - BABIT(B)).

T*(B)P, is known as the forward looking target of the linear partial
adjustment model. The zero mean process of stochastic shocks u; is
predominantly found to follow an autoregressive process in the empirical
literature on flexible adjustment mechanisms. Then the resulting autocor-
relation in the residual error of (3.9) is eliminated applying the Koyck

transformation procedure, transforming (3.9) into

(1-AB)¢(B)Qy = a(l-1)8(B)P, + n, (3.10)
where 7, is a white noise inmovation. If, in accordance with section 2, Q
as well as P, have unit roots the partial adjustment model (3.10) can be

written as a linear error correction model with g,(.) = O (see also Nickell
(1985))

8o (B)(1-B)Qy = -(1-3)(Qe-g - aPyy) + a(l-A)84(B)(1-B)P, + 1, (3.11)
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where ¢,(B) and 4,(B) have all roots outside the unit circle.
Define ¢,(B) = (1-)B)¢(B). Now we can write (3.10) as

¢X(B)Qt. - a(l-A)8(B)P, + n. (3.12)

Decomposing the polynomials ¢,(B) and 6(B) according to equations (2.3) and
(2.4) we get

$5,(1)Q, - a(l-2)8(1)P, = -¢3(B)(1-B)Q, + a(1l-1)8"(B)(1-B)P, + n,. (3.13)
Deviding equation (3.13) by ¢,(1l), we obtain Bewley's representation
Q. = a'P, - ¢3(1)"$3(B)(1-B)Qy + ¢31a(1-1)6"(B)(1-B)P, + ¢51(1)n, (3.14)

wvhere a* = ¢3}(1)a(l-1).

4. AS ETRIC ADJUSTMENT MODE D NONLIN OR_CORRECTION

In this section we implement the- asymmetric adjustment costs flexible
functional form proposed by Pfann and Verspagen (1989) into the structural
partial adjustment model. The economic agent chooses a contingency plan at
time t for a quasi-fixed decision variable Q in order to minimize the
expected real present value of a nonlinear loss-function over an infinite
time horizon. The optimization problem with asymmetric adjustment costs
(AAC) is as follows

Min E{ZTaoB'((Qi-Qt-;) + AAC((1-B)Quyy) |} (4.1)
Q .
with AAC((1-B)Q,) = 7((1-B)Q.)2 + 2(exp(6(1-B)Q,) - (1+86((1-B)Q,)). (4.2)

The constant parameter ¢ measures the difference in costs between an
increase in Q and a decrease in Q. If 6 is positive, costs of increasing Q
exceed costs of reducing Q, and vice versa. Under the restriction of 6
being equal to zero (4.1) is just the linear-quadratic optimization problem

discussed in the previous section.
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Hence, the symmetric linear partial adjustment model is nested in the
asymmetric model (4.1). We note that the asymmetric specification is
strictly convex under the standard assumption of v being positive. The ex-
ponential AAC also encompasses polynomial approximations of many nonlinear
functions. This is shown in the sequel of the paper.

The first order necessary conditions for (4.1) are as follows

BE(7(1-B)Quu1 + 6(exp(8(1-B)Qus1)-1) |0} = 7(1-B)Qy + (Q:-QF)
+ 6(exp(6(1-B)Q,)-1). (4.3)

According to our knowledge a closed form solution for equation (4.3) is not
(yet) known. One possible way to circumvent the absence of a reduced form
model is to estimate the Euler equations with Hansen's GMM-estimation
technique. This approach has been followed in Pfann and Palm (1988).
Hamilton's (1989) approach is to transform the data into discrete Markov
processes, arguing nonlinearities in the data are generated by stochastic
processes that are subject to discrete shifts in regime. We believe that
valuable information being present in the data will be lost by Hamilton's
transformation method. Novales (1990) proposed a solving technique for
nonlinear models positting stochastic processes for the decision variable
Q. in order to solve the model for the forcing wvariables. This method is
untractable with respect to our approach, since the parameters of asymmetry
have to be chosen a priori in Novales' method. Yet, a suitable approxima-
tion of the closed form solution may exist, and using additional informati-
on more efficient estimates of the structural parameters may be obtained.
Granger and Lee (1990) considered error correction models where the positi-
ve residual error of the longrun relationship, max(Q..; - aP,-;;0), and the
negative residual error of the longrun relationship, min(Q,.; - aP,.;;0),

have been introduced into the model as separate regressors.

The optimization model with asymmetries in adjustment costs (4.1) is the
structural counterpart of the asymmetric error correction model. To measure

the asymmetric error correction we introduce the following concepts.

Positive error correction movements are characterized by positive differen-
ces between two subsequent measurement points of the longrun equilibrium

error
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(Q-aby) iff (1-B)(Q.-aP,) > 0
(Qg-aPy)t = (4.4.1)

0 otherwise.

Negative error correction movements are characterized by negative differen-
ces between two subsequent measurement points of the longrun equilibrium

error

(Qg-aPy) iff (1-B)(Qi-aPy) < 0
(Qe-aPy)” = (4.4.2)

0 otherwise.

The nonlinear function g,(.) introduced in (2.10) is hence expressed as

follows (see figure A.1l) 2
T1(Qu-aPy) + g(Qu-aPy) = -(1-31)(Qu-aBy)” - (1-7)(Qu-aBy)", (4.5)

since (1-B)(Q.-aP,) = (Q.-aP.)* + (Q,-aP.)”, whereas A; and )\, correspond with

A in equation (3.11) such that }(A;+X;) = ).

The corresponding asymmetric error correction model can be obtained

substituting (4.5) for -(l-A)(Q-;-aP¢.;) in (3.11). This gives

$q(B)(1-B)Qy = -(1-21)(Qe-1-aP¢-y)” - (1-23) (Qe-y-aPy y)?
+ a(l-2)0,(b)(1-B)Py + n,. (4.6)

Equation (4.6) can be analyzed using a two step estimation technique, as
proposed by Engle and Granger (1987). First, one estimates the cointegra-
ting vector a by OLS, &. Second, equation (4.6) can be estimated with

(Qy-1-@&P,_y)” and (Q,-,-&P.-,)* as separate regressors identifying X, and A,.

Intuitively, one expects the adjustment speed parameters, XA; and A,, and
the parameter of asymmetric adjustment costs, 6 of equations (4.1) and
(4.2) to be related. Unfortunately, no closed form solution can be
obtained for the asymmetric first order conditions (4.3). To link the

notion of asymmetric speeds of adjustment (XA;,A;) with the notion of

2) More general nonlinear adjustments will be considered in section 6.
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asymmetry in adjustment costs (8), we proceed proposing a piecewise closed
form solution of (4.3) depending on the direction of the adjustment.

Linearizing (4.2) using a piecewise second order Taylor series expansion

gives

71((1-B)Q)? iff (1-8)Q, > 0
AAC((1-B)Qe) = 72((1-B)Q)? iff (1-8)Q. < O (4.7)

0 otherwise

where <y, and 7y, are constant positive cost parameters of respectively

rising and declining adjustment. Expression (4.7) implies that

71 > Y2, iff 6 >0
71 < 72, iff 6§ < 0, and (4.8)
Y1 = 72, iff 6 = 0.

Thus, in the quest for a closed form solution of the nonlinear second order
difference equation (4.3) the continuously differentiable asymmetric
specification (4.2) has been approximated by a piecewise linear quadratic
expansion. From the previous section the closed form solution for each
piecewise linear-quadratic approximation is known. The two linearized

necessary conditions are

E[(1-B)Qus1|0y] = B71(1-B)Qy + (Bv1) 1(Qe-Q1) iff (1-B)Q. > O (4.9a)
and
E[(1-B)Qus1[|0p] = B7U(1-B)Qy + (B72) 1(Q:-Q1), iff (1-B)Q, < O. (4.9b)

When Q,-Qf is negative, we expect Q. to rise in the next period.

Thus (1-B)Q. > O corresponds with (Q-aP.)*. Vice versa, when Q.-Q; is
positive, we expect Q, to fall in the next period. So (1-B)Q, < 0 corres-
ponds with (Q.,-aP.)". The closed form solution of (4.9) is therefore the
NEC model (4.6). The relationships between the adjustment speed parameters
(A1,X;) of (4.6) and the parameters of the piecewise linearly approximated

asymmetric adjustment costs model are as follows
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A = H(IHBTH(BY)Y) - M((+B7H(Byy) M2 - 4pTY)E (4.10a)
Ay = (1+74(B72)7Y) - M((L+87+(By2) )2 - 4pTL¥ (4.10b)

This completes the formal derivation of the relationship between asymmetric

error correction models and asymmetric adjustment models.

5. NONLIN ERROR CORRECTION MODELS D THE TMPLICATIONS OF VING
TRENDS IN THE MEAN

In the case of Q. and Py having trends in the means the NEC representation

specified in terms of P, and Q. according to equation (2.10) is as follows

$a(B)(1-B)Qy + 6,(B)(1-B)Py = ¢(B)(1-B)ug - 685(B)(1-B)up
+ I‘l(/.lqt_1 - aypt_l) - T1(Q¢-1-aPiy) - gm(-l.lqt_1 +oap, o+ Qe-1 - aPp-y) + €4,
(5.1)

However, equation (5.1) is usually written as

$o(B)(1-B)Qy + 0,(B)(1-B)Py, = Cy - I'(Quy - aPpy) - ga(Qe-1 - aPpy) + €4, .
(5.2)
For (5.2) to be a well specified model several conditions need to be
satisfied. Differencing once should be a good detrending procedure for the
means so that (l-B)yqt and (l-B)ypt are not trending. The trends in mean of
Q. and P, should be proportional (co-trending in mean), such that Hq,~OHp, is
no longer trending. Notice also that the asymmetric terms of g,(.) are
forced to satisfy also the requirements as well. The cointegrating vector
(1,-a) is also the vector that is making the trends in the mean to be co-
trending.
To obtain the structural counterpart of the asymmetric error correction
model with P, and Q, having trends in the means we have to redefine some of

the characterizations presented in section 4.

The error correction components now becomes

. (Qu-0Py) - (g -amp ) iff (1-B)((Qu-ug,)-a(Py-Hp)) > O
(Qg-aPy)™ =
’ ’ 0 otherwise (5.3.1)

and
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(Qe-aP) - (Mg -omp ) iff (1-B) ((Qu-Hgq,) -a(Py-up ) < O
Qe-aPy)” =
0 otherwise (5.3.2)

The piecewise second order Taylor series expansion of the asymmetric

adjustment costs function is then as follows
[ @;[(1-B) (Qu-Hg,) ]? 1ff (1-B)(Qu-Hgq) > O

AAC((1-B)Q) = az[ (1-B) (Qu-ug,) ] iff (1-B)(Qe-uq) <O

| O otherwise. (5.4)

After these redefinitions equations (4.5), (4.6) and (4.8) to (4.10)
applies.

To clarify the specification error when trends in the means are not
correctly accounted for, a simple example is given in figures 5A and 5B.
Here equations (4.4.1) and (4.4.2) are no longer true, because the area A',
that corresponds to (1-B)(Q.-aP,) = (1-B)u, is positive, and Q,-aP, = u, is
positive as well. However, in area A (1-B)(Q,-aP,) is negative, whereas Q-
aP, is positive. The same argument holds for the condition of equation
(4.4.2) which is related to the areas B' and B of figure 5A and the corres-
pohding area of figure 5B.

Moreover, asymmetries may occur between situations where the growth rate of
the observed decision variable (Q,) exceeds the growth rate of the target
Q¢ on the one hand, and situations where the growth rate of Q. is lower
than the growth rate of Qi on the other hand. This asymmetry may even be
observed during periods where the decision wvariable is above the target
(see figures 5A and 5B). Similarly, we can account for asymmetry in growth

rates between areas B and B'.

In order to implement the notion of trending asymmetry in an error correc-
tion framework, the adjustment towards the equilibrium should be a corres-
pondence, instead of a function (see figure A2). We are currently investi-
gating the implications of trending asymmetries in dynamic time series
models. This analysis, however, is considered to be beyond the scope of

this paper.
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6.  TYPES OF ASYMMETRIES

In this section we consider more general forms of the nonlinear function
go(.) that can be found in the still young literature on nonlinear error
corrections and asymmetric adjustment. All the dynmamic representations are
in deviations from the mean, Qt =-Q, - Hq, and ?t - P, - Hp, -

First, we consider a piecewise linear adjustment type of function (see
figure A.3)

Fl(é:'ai’:) + Sa(ér,'ai’r,) - I-‘1D1t.(6t,'ai’r,) - IJZDZc(EZt'ai’t) - FaDSt(Q:'ai’c).

(6.1)
[ 1 iff Q, - aP, < C”
P T | 0 otherwise
[ 1 iff C < Q, - aP, < C*
P L 0 otherwise
[ 1 iff Q, - aP, > C*
Poe | 0 iff Q, - aP, < C".

From figure 6C it is clear that the equilibrium is unique, although the
adjustment is slower in a small interval (C’,C*) around the equilibrium.
However, to impose uniqueness of the equilibrium may be too restriétivé in
general. If, in the interval (C°,C*) close to the equilibrium there is no
adjustment, (see figure A4), a continuum of eguilibria exists. Particular
cases of interest that are nested in this formulation are obtained if C™ =
0 and C* > 0, or if CC < 0 and C* = 0.

Next, we consider a second type of functions, namelX.the more general cubic

poynomials (see figure AS)
T1(Qe-aPy) + 8q(Qu-aPe) = u1(Qu-aPy) + uy(Qu-aPy)? + pye(Qu-aby)?, (6.2)

where u;, is time dependent in order to guarantee the asymptotic stability
conditions (see Escribano (1986), (1991b), and Hendry and Ericsson (1991)).
Equation (6.2) is only an approximation to more general adjustment mecha-
nisms, which can be obtained by nonparametric techniques (smoothing

splines). Figure A6 represents the adjustment mechanism observed for UK
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money demand during the period 1878-1970. Equation (6.2) has the nice
property that the adjustment is faster when the distance between the

decision variable and the target becomes larger.

7. AN EMPIRICAL APPLICATION

The asymmetric adjustment error correction approach may proof useful in
structurally analyzing any economic time series that is assumed to be
endogenously generated by the optimizing behavior of (representative)
agents. Examples are investment : Gould (1968), consumption : Hall (1978),
employment : Sargent (1978), and so forth. The empirical application
presented in this section will be limited to the theory and practice of

dynamic labor demand, and is founded on the research described in Pfann
(1990).

The following notations will be used. L, = the number of white collar
workers employed in the U.K. manufacturing sector at time t; W, = the real
U.K. manufacturing sector white collar wage costs at time t; K, = the U.K.
manufacturing sector capital stock at time t. The annual U.K. data run

from 1955 to 1986 (see appendix 1 for the sources and the definitions).

The characteristics of the series are as follows (see appendix 2)

1: L,, K, and W; have a unit root

2: L,, K, and W, have one cointegrating vector,

In this example the decision variable is white collar employment, and the
set of forcing variables consists of real white collar wage costs and
capital. Hence forth, in correspondence with the preceding section, the

following relation hold
Q = Ly, and Py = (K, ,W).
The equilibrium errors from the cointegration relationship are as follows

G, = L, + 5.35 + 0.28 0C74 + 1.89 W, - 2.59 K, (7.1)
(4.41) (8.20) (9.32)  (10.66)

R? = 0.83 o = 0.056 ADF = -4.56
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In all equations absolute t-values are given within parentheses. 0C74 is a
step-dummy for the oil crisis of fall 1973 being one from 1974 on. In
addition to the correctly specified test of the cointegrating vectors of
the system (see Phillips (1991)), as presented in appendix 2, we also
present the Augmented Dickey Fuller statistic (ADF) in (7.1).
Judging from table IIb of Phillips and Ouliaris (1990) the hypothesis of no
cointegration is rejected in equation (7.1). Leaving out 0C74 reduced the
Augmented Dickey Fuller statistic (ADF) to -1.49. Consequently, structural
breaks may blur cointegration relations if they are not adequately dealt
with (see also Palm and Pfann (1991), Perron (1989), Escribano (1991a)).
Figure 7.1 shows u, of equation (7.1), where the horizontal line plays the
role of the longrun equilibrium between L., K, and W,.

The estimated linear error correction model (3.12) is as follows

(1-B)L, = -0.006 - 0.007 (1-B)W,., + 2.28 (1-B)K,., - 0.24 0, ,
(4.16)  (0.32) (4.36) (1.90)

(7.2)
Sample = 1957-1986
R? = 0.46 o = 0.033 x%:(2) = 0.70 Xform(2) = 1.85 xZrcu(2) = 0.78

The reported statistics are the residual based Ljung-Box test for residual
autocorrelation (x%;), the residual based normality test (Xﬁmu)» and the
residual based ARCH test (x%zcg). All tests have two degrees of feedom.
None of the tests are significant. Thus the model would be an acceptable

econometric model. Next, we report the estimated asymmetric error correc-

tion model (4.5)

(1-B)L, = -0.06 - 0.05 (1-B)W,.; + 2.17 (1-B)Ky.; - 0.42 G}, - 0.07 6i.,

(3.37) (0.25) (4.13) (2.19) (0.41)
(7.3)
Sample = 1957-1986
R? = 0.49 g = 0.032 X%r(2) = 0.24 XfForu(2) = 1.95 X%rce(2) = 0.51

The estimated error correction parameters in (7.3) provide us with useful
additional information with respect to the asymmetry between underequili-
brium adjustment and overequilibrium adjustment towards the longrun
cointegration relation. The finding that 4;., and Gi., both have negative

signs is in line with the expected error corrections for procyclical
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variables. .However, the two models are not statistically distinct : the F-
statistic testing the statistical significance of the included asymmetry

(7.3) versus the linear symmetric model (7.2) yields F(1,25) = 1.58. The

adjustment speed towards a higher target level of white collar employment

(1-v; = 0.42) exceeds the adjustment speed towards a lower target level (1-
Y, = 0.07). The characteristic roots A, = 0.58 and A; = 0,93 lie within the
unit circle. Using (5.9a) and (5.9b) the piecewise linear asymmetric ad-
justment costs parameters yield y; = 3.07 and vy, = 114.04, assuming 7 =
0.95. Thus, we find that v, < v, implying 6 < 0 (see (4.6)), which is in
accordance with the finding of Pfann and Palm (1988) for U.K. manufacturing
white collar workers : white collar workers are more easily hired in times

of economic growth than fired in times of economic recession.

8. CONCIUSIONS

In this paper we showed that nonlinear error correction mechanisms that are
found to exist in time series data may be endogenously generated resulting
from the optimizing behavior of (representative) agents that face asymme-
tric costs of adjustment. The rationale for asymmetric costs is equivalent
to the notion of nonlinear error correction mechanisms: the adjustment path
to a higher target level should not necessarily be symmetric with the ad-
justment path to a lower target level. Several types of asymmetry are
discussed and we explained how trends should be included in the nonlinear
error correction model. In a numerical example we estimated the adjustment
speeds in different phases of the economic cycle for U.K. manufacturing
white collar workers, finding that white collar workers are more easily

hired in times of economic growth than fired in times of economic recessi-

ons.
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Figure A : Several Types of Asymmetries
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Figure 5.1
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SOURCES OF THE ANNUAL U.K. MANUFACTURING DATA.

The base year of all prices and indices is 1980.
Sample : 1955-1986.

The following main data sources were used :

BB
DEG
ETAS
HABLS

The variables are

Blue Book

Department of Employment Gazette

Economic Trend Annual Suplement

Historical Abstract of British Labour Statistic

Mendis L. and J. Muellbauer (1984), British Manufacturing
Productivity 1955-1983 : Measurement Problems, O0il

Shocks, and Thatcher Effects, CEPR Discussion Paper No.
34,

defined as follows

The natural log of the total numbers of employees in U.K.
manufacturing, have been obtained from ETAS.

The natural log of the real weakly earnings index have
been obtained by deflating gross weekly earnings of
manual and nonmanual workers (pre-1970 data : HABLS; from
1970 on data : New Earnings Survey in DEG) by Py.

The natural log of the gross capital stock at constant
prices (K) have been obtained from BB for data from 1963
and from MM for pre-1963 data.
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APPENDIX 2 : UNIT ROOTS AND COINTEGRATION.

UNIT ROOTS TESTS
Model : (1-B)V, = a'Xy + ayVeoq + a3(1-B)V .3 + €,
Ve € (L, K, W)
X, + (CONST, 0OC74)"
Hy : ay =0
Sample : 1957-1986

Ly K, We
Fuller's 7, -1.37 -2.53 -0.92
Adjusted R2 0.33 0.85 0.50
DW-statistic 2.01 1.42 1.96

*

0C74 is a step dummy equal to 1 1974 and zero elsewhere.

According to Fuller's ;, statistic (Fuller 91976), table 8.5.2) we do not
reject the hypothesis that the univariate time series have a unit root.
Also, if we take account of the fact that one dummy variable (0C74) is
included in the model and therefore use the distribution given by Perron

(1989), we reach the same conclusion.

JOHANSEN'S CO EGRATION TESTS
Exaplanatory Variable : L,

Forcing Variables : W, K¢
Sample : 1957-1986
Ho:r
CV=1 (r=-20) 33.46
CVe=2 (r=1) 4.01

CV : number of cointegration vectors.

The critical values for a three variate cointegration system are given in
table 1 of Johansen (1988) : 23.8 and 26.1 for 5 percent and 2.5 percent
significant levels respectively. We find that the hypothesis of no

cointegration is rejected in favor of one cointegration vector.
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