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e Abstract _ 

This papel' presents a new method to identify infiuential subsets in linear regression 
problems. The procedure uses the eigenstructure oí an infiuence matrix which is defined 
as the matrix oí uncentered covariance oí the effect on the whole data set oí deleting each 
observation, normalized to include the univariate Cook's statistics in the diagonal. It is 
shown that points in an infiuential subset will appear with large weight in at least one 
oí the eigenvector linked to the largest eigenvalues in this infiuence matrix. The method 
is illustrated with several well-known examples in the literature, and in all oí them it 
succeeds in identiíying the relevant infiuential subsets. 
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1. INTRODUCTION· 

Many procedures are available to identify a single outlier or an isolated infiuential 
point in linear regression. Beckman and Cook (1983) and Chatterjee and Hadi (1986) 
survey sorne oí these procedures. The detection oí infiuential subsets or multiple outliers 
is more difficu1t, because the masking and swamping problems. Masking occurs when one 
outlier is not detected because oí the presence oí others; swamping when a non-outlier is 
wrongly identified due to the effect oí sorne hidden outliers. 

The procedures íor dealing with multiple outliers or infiuential subset could be clas­
sified in íour groups. The first includes sequential methods which are designed to avoid 
the masking problem. Marasinghe (1985) and Kianiíard and Swallow (1989, 1990) have 
suggested a sequential testing strategy to identiíy a set oí k points, where the maximum 
number oí outliers in the sample, k, must be fixed in advance. The main weakness oí these 
procedures is to be very sensitive to the choice oí k, because the exact number oí outliers 
is almost never known. The second group oí methods are based on extensive checking oí 
a large number oí subsets, and includes the procedure proposed by a Cook and Weisberg 
(1982), among others. Although these methods are attractive, the computational burden 
involved made them not suited to analyze samples oí medium or large size. The third 
group oí methods are based on robust estimation. For instance, Rousseeuw and Leroy 
(1987) and Rousseeuw and Zomeren (1990) have suggested to overcome the masking prob­
lem by using robust estimates 'with high breakdown íor the regression parameters. These 
estimates are computed using a resampling scheme. Hawkins, Bradu and Kass (1984) have 
proposed a diagnostic procedure which is also based on a resampling scheme. These pro­
cedures have proved to be very effective in dealing with masking problems, however they 
require extensive computations which become prohivitive when the number oí carriers is 
large. Finally, the íourth group oí techniques try to identiíy infiuential subsets by looking 
at the mu1tivariate structure oí the data points. Gray and Ling (1984) proposed the use oí 
cluster analysis over a modified hat matrix to identiíy infiuential sets, and Hocking (1984) 
has suggested to compute the eigenstructure oí the matrices X'X and (Xy)'(Xy) where 
y is the vector oí responses and the matrix X contains the explanatory variables. 

In this paper we present a new method to identiíy infiuential subsets by looking at the 
eigenvalues oí an "infiuence matrix". This matrix is defined as the uncentered covariance 
oí a set oí vectors which represent the effect on the fit oí the deletion oí each data point. 
This matrix is normalized to have the univariate Cook's statistics in the diagonal. The 
method seems to work very well in all the data sets in which it has been tested. 

The paper is organized as íollows. Section 2 defines the infiuence matrix. Section 3 
gives an heuristic justification oí why the eigenvectors linked to non-null eigenvalues can 
be used to identiíy infiuential subsets. Section 4 applies the procedure to several examples. 

2.THE INFLUENCE MATRIX 

Consider a linear regression model between an independent variable Y and p carriers 
X1, ... ,Xp , and suppose that there are n data points (y¡,X¡¡, ....Xjp), 1:5 i:5 n. 

The following notation will be used in the rest oí the paper: y = (Yl' ... , Yn)', X¡ = 
(Xjl, ... ,X¡p)', X is the n x p matrix with rows x~, ...,x~, Then according to the standard 
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linear model ass\llIlptions, 
y = Xb + E, 

where b = (bl , ... , bp )' is the vector oí regression coefficients and the vector oí regression 
errors f = (El,' •• , En)', where the Ei 'S are independent random variables with distribution 
N(O, 0-2 ). 

The least squares estimate (L5E) oí b is given by 

b = (X'X)-l X'y, 

the vector oí fitted values y = (Yl' ... ,Yn)' by 

y = Xb = Hy, 

where H = X(X' X)-l X' is the hat matrix , and the vector oí residuals e = (el, ... , en)' 
by 

ei = y - Xb = (1 - H)y. 

Let b(i) be the L5E when the i-th data point is deleted, then the change in the L5E 
is given by (see Cook and Weisberg,1982, page no ) 

b _ b . _ ei(X'X)-lxi
(1) 

(1) - 1 - h.. ' 
11 

where hij is the ij-th element oíR. Consequently iíwe denote by Yj(i) the new fitted value 
íor observation j, we get 

e (2) 

Masking occurs when there are several infiuential data points which produce similar 
effect on the least squares fit. In this case, the deletion oí just one oí them does not produce 
much change on the fit, and this explains why the procedures based on single delation íail 
in detecting this type oí infiuential sets. 

Put Y(i) = (Yl(i), ... ,Yn(i))', then the vector ti = Y - Y(i) summarizes the effeet on the 
fit oí deleting the observation i-th. 

We will say that two observatíons i and j have similar effects on the least squares fit 
when ti R:: ..\tj íor sorne scalar .A > O and opposed effects when .A < O. Then, in order to 
detect possible sets oí infiuential observations having similar or opposed effect on the fit, 
it seems plausible to look at the uncentered covariance matrix oí the ti 's. Let us call T 
the n x n matrix 

e whose columns are the vectors ti; then, we define the n x n infiuence matrix M as 

M = _l_ T 'T,
ps2 

2 . where 8 = ¿:~=l el/(n - p). 
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Using (2), and the íact that H is idempotent it is immediate to show that ií we denote 
by mij the ij-th element oí M, then 

Since H is a semi positive definite matrix oí rank p, M has this property too, except 
when either sorne ei or sorne h ii vanishes. Observe that the diagonal elements oí M are 
the Cook's statistics. 

3. A PROCEDURE FOR DETECTING� INFLUENTIAL SETS 

Let 1 be an index set corresponding to a subset oí data points. Cook and Weisberg 
(1980) proposed to measure the joint infiuence of the data points with index in l by 

where b(1) is the LSE computed after deletion oí the data points with index in l. 
It may be shown that this statistics can be written as 

where the components oí el are the least squares residuals and Hl the submatrix oí H 
corresponding to the set l. 

Theoretical infiuence curves (see Rampel, 1974) corresponding to infinitesimal írac­
( tions oí outliers are linear. Since the empirical infiuence curve is given by the n(b(i) - b )'s 

and it converges to the theoretical one, it seem plausible to use the íollowing linear ap­
proximation when the size of l is small relative to n 

", .., (3)� (b - b(1)) ~ ¿(b - b(i))'
'-.. 

iEl 

Using (1) and (3) we get the íollowing approximation 

(4)� DI ~ C l = ¿¿mij.� 
¡El jEl� 

Thereíore as long as the approximation given by (4) holds, one way oí detecting 
infiuential sets is by searching large values oí Cl. This may be done íor example using 
integer programming algorithms, however this alternative is not íurther pursued here. 

In this paper we propose a procedure to detect sets l with large C1 based on the eigen­
values and eigenvectors oí M. The íollowing limit case will give an heuristic justification 
oí the proposed procedure. 
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Let r ij be the uncentered correlation coefficient between ti and t j, then 

rij = 1/2 1/2' 
mii m jj 

Suppose that there are k groups oí infiuential observations 11 , ••• , Ik, such that 
(i) If í, j E Ih, then Irij I = 1. This means that the effects on the least squares fit 

produced by the deletion oí two points in the same set h have correlation 1 or -1. 
(ii) If í E I j and 1E Ih with j =f h, then ril = O. This means that the effects produced 

on the least squares fit by observations í and j belonging to different sets are uncorrelated. 
(iii)If í does not belong to any Ih, then Tij = Oíor all j. This means that data points 

outside these groups have no infiuence on the fit. Then, according to (i) we can split each 
set Ih in Il and Il such that: 

(1) If í,j E IZ, then rij = 1 
(2) If í E Il and j E Il, then Tij = -1� 
Let VI = (Vll,,,,,V1n)',,,,,Vk = (Vk1, ..• ,Vkn)' be defined by� 

1/2
om·

JJ ií j E Il 

Vh = 1/2o 

J 
{� 

-mjj ií j E Il 
O ií j rt h. 

,. 
,-

Then it is easy to show that if (i)-(iii) hold, then 

k 

M = LV¡V~, 
i=l

( 

and since the v¡'s are orthogonal, this implies that the eigenvectors oí M are Vl,""Vk, 

and that the corresponding eigenvalues Al, ... , Ak are given by 

Ah = L mijo 

iEh 

It is clear that when the matrix M satisfies (i)-(iii), the only sets 1 with large el 
are IZ, 1 ::::; h ::::; k, q = 1,2, and these sets may be íound by looking at the eigenvectors 
associated to non-null eigenvalues oí M. 

For real data sets, (i)-(iii) do not hold exactly. However the masking effect is typically 
produced by the presence in the sample oí blocks oí infiuential observations producing sim­
ilar or opposed effects. These blocks are likely to produce a matrix M with a structure 
close to the one described on (i)-(iii). In íact, two infiuential observations í, j producing 
similar effects should have rij close to 1, and close to -1 when they have opposed effects. 
Infiuential observations with non correlated effects have Irijl close to O. The same will 
happen with non infiuential observations. In this case the eigenvectors will have approxi­
mately the structure described aboye, and the null components will be replaced by small 
values. 

(� 5 

( 



This suggests the ío11owing procedure to identiíy infiuential sets: 
(a)Find the eigenvectors corresponding to the p non-nu11 eigenvalues oí the infiuence 

matrix M. 
(b)Consider the eigenvectors corresponding to large eigenvalues, and define the sets

[1 and fj by those components with large positive and negative weights respectively. 
In Section 4 we apply this procedure to several examples where the methods based on 

individual deletion íaíl due to masking effects. In a11 the cases our procedure succeeds in 
detecting the infiuential sets. 

4. EXAMPLES 

Example 1. This first example is designed to show the interpretation oí the eigeri­
vectors oí the infiuential matrix in three simple masking schemes (see table 1 and figure 
1). In the three cases we have eight good points generated by y = 1 + x + u where u is 
a normal random variable with mean Oand standard deviation 0.1 and two high leverage 
points. In case (a) we have the standard masking scheme in which both outliers produce 
the same effect and one is masked by the other, in (b) the two outliers produce opposite 
effects, in (c) we have swamping, that is, the 9-th point appears as outlier because oí the 
effect oí the 10-th point. 

Table 2 presents the largest eigenvalue oí the infiuence matrix and the corresponding 
eigenvector in three cases. In case (a) the largest eigenvalue is roughly three times the next 
one and gives the largest weight to the two outliers. Also the two outliers have positive 
weight, whereas a11 the good points have a small and negative one. Thereíore, the analysis 
shows the presence oí two different sets oí points. In case (b) the two outliers are again 
clearly identified: they appear in the eigenvector corresponding to the largest eigenvalue 
with large values and opposite sign, whereas the rest oí the points are given zero weight. 
Fina11y, in case (c) the outlier is given a large and positive weight, whereas a11 the good 
points have negative weight, with the greatest value at the good high leverage point. In 

( summary, the components oí the eigenvector corresponding to the largest eigenvalue show 
in a11 cases the relevant structure oí the data seto 

(figure 1 about here) 

(table 1 and 2 about here) 

Example 2. As second example we consider the data oí international phone ca11s 
in Belgium used by Rousseeuw and Leroy (1987). (See figure 2). The largest eigenvalue 
of the infiuence matrix is 1.16, 16.5 times greater than the second one. Its eigenvector 
(see table 3) gives a very small weight to the first íourteen good observations, large and 
negative weight to the six outliers and large and positive to the last four good points. The 
second eigenvector gives a negative value to the first fourteen data points and a positive 
value to the resto 

(figure 2 about here) 
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(table 3 about here) 

In summary, the eigenvectors show that there are 6 outliers which behave very differ­
ently from a11 the other points. It is interesting to point out that a measure of univariate 
infiuence as Cook's D does not show any evidence of infiuential sets due to the masking 
effect: the largest values of this univariate statistics are rather sma11 (see table (3) and 
correspond to point 20th, (D = .27) which is an outlier, and point 24th, (D = .22), which 
is noto 

Table 4 includes the values oí the multivariate test statistic and the F-value for the 
standard outlier test based on the decrease in the residual sum of square when the subset 
is deleted (see Barnett and Lewis, 1978, p. 265). As it is we11 known, this F observed 
value must be compared with the distribution of the maximum F over a11 sets oí the same 
size, and this distribution is unknown (see Beckman and Cook (1983)). However, the large 
value of the F for the set {15, ... , 20} suggests that this set contains outliers. Note also 
that this set is very infiuentia1. These values are only identified as outliers according to the 
F test when the five points are deleted, due to the masking effect. On the other hand, both 
sets {15, ... ,20} and {21, ... ,24} are very infiuential, although figure 2 shows that the first 
includes outliers and the second good high leverage points. The swamping effect appears 
(table 4) in the value of the F statistics for set {21, ... , 24}, due to the presence of the outlier 
set {15, ... , 20}. ':Vhen this later set is removed, the set {21, ... ,24} is still infiuential, and, 
given the large value of the F statistics, observation 21 could be considered an outlier, 
whereas the other three points seem to be correcto 

(table 4 about here) 

Example 3. Data of the Hertzsprung-Russe11 diagram oí a star cluster, from Rousse­
euw and Lero)' (1987). The data are plotted in figure 3, where íour giant stars which 
correspond to points {11, 20, 30, 34} can be seen as outliers. Table 5 shows the components 
of the eigenvector corresponding to the largest eigenvalue. These components are also 
plotted in figure 4. It can be seen that points 11, 20, 30 and 34 have a common and large 
effect. It is also shown that points {7, 14, 17} seem to have sorne effect, specia11y 7 and 
14, but with opposite effect than the others (see figure 3). Table 6 shows the values oí the 
rnultiple Cook's D statistic and the F value for different cornbinations of points in these 
sets. Because oí the rnasking effect we need to delete the íour points {11, 20, 30, 34} in 
order to see its joint effect clearly. The set {7, 14, 17} is neither infiuential nor outlying. 

(figure 3 about here) 

(tables 5 and 6 about here) 

(figure 4 about here) 
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Example 4. We will use the well-known stack-Ioss data írom Daniel and 'Wood 
(1980). Aíter a detailed search they identified points (1, 3,4, 24) as outliers. Cook (1979) 
using a sequential search íound (1, 2, 4, 21) as infiuential or outliers points. Gray and Ling 
using their k-dustering algorithm ended up with (1, 2, 3, 4, 21). Finally Rousseeuw and 
Zomeren (1990) also identified these five points. 

Table 7 gives the two largest eigenvalues and the corresponding eigenvectors oí the 
infiuence matrix. The first eigenvector is clearly dominated by the 21-th observation which 
receives a weight 3.5 times the next largest one. The second eigenvector gives largest weight 
to {1,2,3,4}. Table 8 summarizes the results oí deleting different combinations oí these 
points. The most infiuential set is {1, 2,3, 4}, which can also be considered a set oí outliers, 
whereas point {21} could be outlier, a1though it is not very infiuentia1. 

(tables 7 and 8 about here) 

Example 5. We use here the artificial data generated by Hawkins, Bradu and Kass 
(1984). The model contains 75 data points in íour dimensions (one response and 3 ex­
planatory variables). The first 10 data points are high leverage outliers, and the next íour 
points are good observations with high leverage. The rest oí the observations are good 
points with low leverage. 

The eigem'alues oí M are >'1 = 2.36, >'2 = 1.63, >'3 = 0.11 and >'4 = 0.04. The 
coefficients oí the eigenvectors corresponding to >'1 and >'2 are shown in table 9 and figure 
5. 

The first eigenvector gives high positive weight to observations in the set {11, 13, 14}, 
specially to observation 14. All these points are good high leverage points. 

Two sets oí large coefficients may be distinguished in the second eigenvalue: the 
set{l, ... , 10, 14} with negative coefficients, and the set {11, 12, 13} with positive coefficients. 
Thus, the first set includes all the outliers and one good leverage point, and the second set 
three oí the good high leverage points. 

It may be observed in table 9 that the only large values oí the univariate Cook's D 
statistic corresponds to good leverage points, and thereíore they do not detect any outlier 
point. 

Table 10 surnmarizes the results oí deleting different combinations oí these sets. Both 
sets, 11 = {1, ... , lO} and 12 = {ll, 12, 13, 14} have very large DI. However, once the 
observations in 11 are deleted the F value íor testing the set h is not significant. Instead, 
once the observations in h are deleted, the set 11 is very infiuential, and the large F value 
suggest that their points are outliers. 

(tables 9 and 10 about here) 

(figure 5 about here) 
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case 1 2 3 4 5 6 7 8 9(a) lO(a) 9(b) lO(b) 9(c) 10(c)� 
x 1 2 3 4 5 6 7 8 12 12 12 12 12 12� 
Y 2.0 2.9 3.9 5.1 6.2 6.9 7.8 9.1 19 20 19 7 13 7� 

Table 1. Data for Example 1. 

..xl ..x1 /..x 2 1 2 3 4 5 6 7 8 9 10 
(a) 1.27 2.87 -.17 -.06 -.00 -.00 -.02 -.10 -.22 -.33 .42 .79 
(b) 3.78 3.783 .00 -.00 -.00 -.00 -.00 .00 -.00 -.00 -.71 .71 
(e) 3.25 32 -.0.5 -.02 -.00 -.00 -.01 -.02 -.04 -.10 -.50 .85 

Table 2. Largest Eigenvalue, Ratio to the Next one and Eigenvector for Example 1. 

1-14 15 16 17 18 19 20 21 22 23 24 
eigenvector -.002 < v < .07 -.13 -.15 -.20 -.26 -.35 -.48 .21 .34 .38 .43 

Cook D 0< d < .01 .02 .03 .05 .08 .14 .27 .05 .13 .17 .22 

Table 3. Elements oí First Eigenvector and Cook's Statistics for the International Phone 
Call Data. 

( 
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set� D F 
{15} 0.03 1.06 

{15,16} 0.12 1.13 
{15,16,17} 0.40 1.48 

{15,16,17,18} 1.03 2.20 
{15,16,17,18,19} 2.61 4.39 

{15,16,17,18,19,20}� 6.74 5.48 
{21,22,23,24} 6.93 6.50 

{21} 0.05 0.87 
{22,23,24} 3.32 4.74 

{211{15, ... ,20}} 1.43 130.14 
{22, 23, 241{15, ... , 20}} 5.39 2.72 

{21, 22, 23, 241{15, ... ,20}} 0.80 31.44 

Table 4. Values of Cook's D for Multíple Cases and F Value for the International Phone� 
Calls Data. The Notation {AlE} Means that Set B is Completly Deleted from the� 

Analysis of the Influence of Set A.� 

case 7 11 14 17 20 30 34 
Al == 1,05 .20 -.25 .28 .13 -.36 -.47 -.61 

D .04 .06 .09 .05 .14 .23 .41 

Table 5. Eígenvector Coefficients Greater that .10 and Values of the D Statistic for the 
Hertzsprung-Russell Data of a Star Cluster. 

set D F 
{11,20} 0.68 1.11 
{30,34} 2.22 3.95 

{11, 20,30, 34} 41.44 11.53 
{7,14} .29 2.80 

{7,14,17} .52 3.75 
{11,20,30,34;13,14,17} 33.71 7.21 

Table 6. Cook's D Statistic for Multiple Cases and F Value for Outliers for the 
Hertzsprung-Russell Data. 

( 
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Case Eigenvalue Coefficients D 
).1 = .88 ).2 = .39 

1 -.21 -.51 .15 
2 .12 .31 ­
3 -.25 -.42 .13 
4 .10 -.50 .13 
5 - - ­
6 - .18 ­
7 - .20 ­
8 - .12 ­
9 - .22 ­
10 - - ­
11 -.15 .10 ­
12 -.21 .18 ­
13 - - ­
14 - - ­
15 - - ­
16 - - ­
17 - - ­
18 - - ­
19 - - ­
20 - - ­
21 .88 -.12 .69 

Table 7. Two Largest Eigenvalues and its Eigenvectors and Univariate Cook's D for the 
Stack-Loss Data. Values with AbsoJute Value Smaller than .1 are Omitted. 

set D F 
{21} .69 11.09 
{1,3} 1.11 3,43 
{1,4} 0.52 3,60 
{3,4} .42 4.50 

{1, 3,4} 2.1 7.34 
{1,3,4,21} 1.49 25.24 
{1,2,3,4} 7.98 9.96 

{1,2,3,4,21} 3.13 24.38 

Table 8. Cook's D and F Values for the Stack-Loss Data. 
( 
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Case Eigenvalue Coefficients D 
>'1 = 2.36 >'2 = 1.63 

1 -.046 -.100 .040 
2 -.076 -.108 .053 
3 -.016 -.118 .046 
4 -.036 -.090 .031 
5 -.040 -.105 .039 
6 -.053 -.103 .052 
7 -.092 -.121 .079 
8 -.044 -.121 .052 
9 -.030 -.098 .034 
10 -.020 -.115 .047 
11 .15 .297 .035 
12 -.01 .520 .851 
13 .24 .149 .254 
14 .87 -.138 2.11 

rest ¡vil < .032 IVil < .022 Di <.10 

Table 9. Two Largest Eigenvalues and its Eigenvectors and Univariate Cook's D for the 
Hawkins, Bradu and Kass Data. 

set D F 
{11, 13, 14} 11.03 28.59 

{1 - lO} 33.74 109.69 
{1 - 10, 14} 33.18 98.79 
{11,12,13} 4.97 58.45 

{11, 12, 13, 14} 13.37 181.11 
{1 - 10,11,12,13} 37.42 82.79 

{1 - 10,11,12,13, 14} 60.18 76.61 
{11,12,13,141{1 - lO}} 24.33 0.63 
{1 - 101{11, 12,13,14}} 834.89 3.86 

Table 10. Cook's D and F Values for the Hawkins, Bradu and Kass Data. 
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Figure 4. Plot of the Components of First Eigenvector from Table 5. 
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Figure 5. Plot of the Components of First and Second Eigenvectors 
for the Influence Matrix of Hawkins, Bradu and Kass Data. 


