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Abstract . _ 

Missing values in time series can be treated as unknown parameters and estimated 
by maximum likelihood, or as random variables and predicted by the expectation of the 
unknown values given the data. The difference between these two procedures is illustrated 
by an example. It is argued that the second procedure is, in general, more relevant for 
estimating missing values in time series. 
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The use of the maximum likelihood method to estimate missing observations 01', in gen­

eral, unobserved values of random variables is a controversial topic because different authors 

use different likelihoods to obtain the estimators (see Bayarri, DeGroot and Kadane, 1986 

and the discussion of the papel', and Fuller, 1988). 

To illustrate the problem in time series models. suppose that the time series {Zt} follo\\'s 

the stationary first order autoregressive process 

191 < 1, 

where the at's are i.i.d. N(O. ( 2 ). For simplicity, let us assume that 4J and a 2 are knowll. 

Suppose that out ofn observations Zt, t = L ... ,n, the observation ZT is missing. 1 :S T ::; n. 

Then, denoting Zn as the n x 1 vector Zn = (ZI"'" zn)' and Z(T) as the (n - 1) x 1 vector 

obtained from Zn by dropping ZT. the joint density function of the available data Z(T) for 

given ZT is: 

e (1) 

where: 

and 

(3) 

In (1), ZT is now an unknown parameter of the model for Z(T)' The likelihood function 

of ZT can be written as 

where it is understood that in the exponent a term disappears if the range of summatioll is 

not positive. 

Hence, the maximum likelihood estimator of ZT takes the form: 

(5) 
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with {; = 1 if T = 1 and {; = -1 if T = n. It is easy to verify from (4) that the mean sCluare 

error (MSE) of T is: 

(6) 

Several authors have computed least squares or "maximum likelihood" estimators by 

maximizing the joint density function f(Zn) in (2) with respect to missing observations 

e for known data. (See, for instance, Brubacher and Tunniclife-Wilson, 1977). Then, in the 

present case, it is easy to verify that the estimator is given by 

T = 1 or n 
(7) 

l<T<ne 

However, this estimator Zt cannot be called a maximum likelihood estimator because the 

function f(Zn) for ZT considered as an unknown parameter is not a joint density function, 

and, therefore, f(Zn) for unobserved ZT and known Z(T) is not a likelihood fundion as it is 

usually defined in standard texts. 

To interpret the meaning 01' (7). [et us consider ZT as a random \'ariable I'ollowing the 

probabilistic structure in (2). Then, the distribution of ZT given the data Z(T) is: 

(8) 

where f(Z(T)) can be obtained by integrating out ZT from f(Zn)' As is ",ell known (see e.g. 

Peña (1987)) the distribution in (8) is normal with: 

T = 1 or n (9) 

1 < T < n. 

'vVe see that the conditional expectation, E(ZTIZ(T)), is equal to ZT in (7); this is because 

f(Zn) is proportional to f(ZTIZ(T)) and, for the present example, the mode and the mean 

of the distribution f(ZTIZ(T)) are identical. 1'vlore important, \Ve see that E(ZTIZ(T)), which 

is the minimum !vlSE estimator of ZT. can be very different from the maximum likelihood 

estimator ZT in (5). Indeed, the !vlSE of::T in (6) always exceeds, and can be very much larger 

than, Var(zTIZ(T)) in (9), which is, of course, also the :rv1SE of the estimator E(ZTIZ(T))' 

2 

---------_.~_._..._---_. 



The difference between the two estimators. ZT and ZT, is not surprising if we look at 

the problern fro\11 a Bayesian point of view. The estimator ZT is the mean (01' mode) of 

the posterior distribution f(ZTIZ(T)) in (8). v.·hich is proportional to the product of the 

likelihood function (zTIZ(T)) in (4) and the prior distribution f(ZT) in (:3). On the other 

hand, the estimator ZT can be regarded as the mean (01' mode) of a posterior distribution 

of ZT proportional to the product (zTIZ(T))pO(ZT), where PO(ZT) is a "Iocally uniform" 01' 

e noninformative prior distribution (Box and Tiao, 1973). Thus, in the stationary case, 14>1 < 1, 

the two means can be very different because very different prior distributions are employed. 

This also explains the fact that when <ti goes to 1 (the model approaches a non§tationary 

one) the difference between these two estimators goes to zero simply because in this case the 

e prior distri bution f( ZT) also becomes nearly locally uniformo 

It may be argued from a frequentist point 01' view that the optimal properties of Zr and ZT 

in (6) and (9) respectively are not really comparable, because they are obtained under very 

different assumptions. For the maximum likelihood estimator ZT the unkno\\'n observation 

ZT is regarded as a fixed pararneter, and the ~ISE(ZT) in (6) is obtained under (01' at least 

motivated by) such an assumption: while 1'01' the estimator ZT, the lvISE(zT) = Var(zTIZ(T)) 

in (9) is obtained when ZT is regarded as random follo",ing the structure in (2). Indeed, it 

e can be verified from (4) that, 1'01' fixed ZT, the ~lSE 01' ZT is: 

T = 1 01' 11 
(10) 

l<T<n 

e so that 1'01' sorne values 01' ZT, !\lSe(.:T) can be larger than MSE(ZT)' 

The point 01' the above discussion is to show that in estimating missing values in time 

series, the method 01' maximum likelihood can lead to results very different from those 

obtained by optimal prediction under stationary assumptions. Except 1'01' the initial value 

at t = 0, we do not think, however, that it is appropriate to treat missing observatiolls 

as fixed parameters. This seems almost a contradiction in terms. In time series analysis 

we believe it is natural in most applications to regard the missing observations as random 

variables following the same probabilistic structure as the remaining ones, and hence adopt 

e the conditional expectation 01' posterior mean as their optima! estimator. 
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