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Abstract

Missing values in time series can be treated as unknown parameters and estimated
by maximum likelihood, or as random variables and predicted by the expectation of the
unknown values given the data. The difference between these two procedures is illustrated
by an example. It is argued that the second procedure is, in general, more relevant for
estimating missing values in time series.
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The use of the maximum likelihood method to estimate missing observations or, in gen-
eral, unobserved values of random variables is a controversial topic because different authors
use different likelihoods to obtain the estimators (see Bayarri, DeGroot and Kadane, 1986

and the discussion of the paper, and Fuller, 1938).

To illustrate the problem in time series models, suppose that the time series {z,} follows

the stationary first order autoregressive process

2= ¢y + aqg, || < 1,

where the a,’s are i.i.d. N(0, ¢?). For simplicity, let us assume that ¢ and ¢? are known.
Suppose that out of n observations z;, t = 1....,n, the observation z7 is missing, 1 < T < n.
Then, denoting Z, as the n x 1 vector Z, = (z1,...,2,) and Z(7) as the (n — 1) x 1 vector
obtained from Z, by dropping zr. the joint density function of the available data Zry for

given zr is:

fZi|z1) = );—(i;)) (1)
where: .
£(2,) = (rot) B = esp(-gll1 = Pt + Lia = ez @
and
f(er) = (270%)H(1 = &) exp{ =55 (1 = 47)4). )

In (1), =7 is now an unknown parameter of the model for Z7). The likelihood function
of zr can be written as
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where it is understood that in the exponent a term disappears if the range of summation is
not positive.

Hence, the maximum likelihood estimator of zr takes the form:
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withd =11 T =1and é = -1if T =n. It is easy to verify from (4) that the mean square
error (MSE) of T is:
. o 07, T=1lorn ‘
MSE(s7) = (6)
(20)710?, 1< T <n.

Several authors have computed least squares or “maximum likelihood” estimators by
maximizing the joint density function f(Z,) in (2) with respect to missing observations
for known data. (See, for instance, Brubacher and Tunniclife-Wilson, 1977). Then, in the
present case, it is easy to verify that the estimator is given by

. OzT 4, T=1orn - )
T = {
(1+6*) T o(zrei+27-1), 1<T <n

However, this estimator Z, cannot be called a maximum likelihood estimator because the
function f(Z,) for zr considered as an unknown parameter is not a joint density function,
and, therefore, f(Z,) for unobserved zr and known Z7 is not a likelihood function as it is
usually defined in standard texts.

To interpret the meaning of (7). let us consider z7 as a random variable following the
probabilistic structure in (2). Then, the distribution of zr given the data Zr) is:
f(Z)
f(Z(ry)

where f(Z(r)) can be obtained by integrating out zr from f(Z,). As is well known (see e.g.

ferlZ ) = (8)

Penia (1987)) the distribution in (8} is normal with:

E(zr|Zi1y) = Zr
o, T=1lorn (9)

Var(leZ(T) = ‘
) (1+¢*)710?, 1<T <n.

We see that the conditional expectation, E(zr|Z(1)), is equal to Z7 in (7); this is because
f(Z,) is proportional to f(zr|Z(r)) and, for the present example, the mode and the mean
of the distribution f(zr|Z(r)) are identical. More important, we see that E(zr|Z(r)), which
is the minimum MSE estimator of z7. can be very different from the maximum likelihood
estimator 37 in (5). Indeed, the MSE of 7 in (6) always exceeds, and can be very much larger

than, Var(zr|Zr)) in (9), which is, of course, also the MSE of the estimator E(zr|Z(1)).
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The difference between the two estimators. Zr and Z7, is not surprising if we look at
the problem from a Bayesian point of view. The estimator Zr is the mean (or mode) of
the posterior distribution f(z7|Z(1)) in (8). which is proportional to the product of the
likelihood function (z7|Z(r)) in (4) and the prior distribution f(z7) in (3). On the other
hand, the estimator 21 can be regarded as the mean (or mode) of a posterior distribution
of zr proportional to the product {zr|Z(1))po(z1), where po(z7) is a “locally uniform™ or
noninformative prior distribution (Box and Tiao, 1973). Thus, in the stationary case, |¢| < 1,
the two means can be very different because very different prior distributions are emploved.
This also explains the fact that when ¢ goes to 1 (the model approaches a nonstationary
one) the difference between these two estimators goes to zero simply because in this case the

prior distribution f(z7) also becomes nearly locally uniform.

It may be argued from a frequentist point of view that the optimal properties of 37 and 37
in (6) and (9) respectively are not really comparable, because they are obtained under very
different assumptions. For the maximum likelihood estimator Zr the unknown observation
zr is regarded as a fixed parameter, and the MSE(Z7) in (6) is obtained under (or at least
motivated by) such an assumption: while for the estimator Zz, the MSE(2r) = Var(zr|Z(1))
in (9) is obtained when z7 is regarded as random following the structure in (2). Indeed, it
can be verified from (4) that, for fixed zr, the MSE of Zr is:

¢*c? + (1 — 9%)%:%, T=1lorn

(14 ¢?)72{20%0% + (1 —¢?)%22}, 1< T <n

so that for some values of z7, MSE™(27) can be larger than MSE(27).

The point of the above discussion is to show that in estimating missing values in time
series, the method of maximum likelihood can lead to results very different from those
obtained by optimal prediction under stationary assumptions. Except for the initial value
at t = 0, we do not think, however, that it is appropriate to treat missing observations
as fixed parameters. This seems almost a contradiction in terms. In time series analysis
we believe it is natural in most applications to regard the missing observations as random
variables following the same probabilistic structure as the remaining ones, and hence adopt

the conditional expectation or posterior mean as their optimal estimator.
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