
 
 
Working Paper 06-18  
Economics Series 06 
January 2006 
 
 

Departamento de Economía
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624 98 75

 

 

 

AUCTIONS WITH HETEROGENEOUS ENTRY COSTS 
 

Diego Moreno1 and John Wooders2 
 
 
 
Abstract 
We study the impact of public and secret reserve prices in auctions where buyers have 

independent private values and heterogeneous entry costs. We find that in a standard auction the 

optimal (i.e., revenue maximizing) public reserve price is typically above the seller's value. 

Moreover, an appropriate entry fee together with a public reserve price equal to the seller's 

value generates greater revenue. Secret reserve prices, however, differ across auction formats. 

In a second-price sealed-bid auction the secret reserve price is above the optimal public reserve 

price; hence there is less entry, a smaller probability of sale, and both the seller revenue and the 

bidders' utility are less than with an optimal public reserve price. In contrast, in a first-price 

sealed-bid auction the secret reserve is equal to the seller's value, and the bidders' expected 

utility (seller revenue) is greater (less) than with an optimal public reserve price. 
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1 Introduction

When the number of bidders is exogenously fixed and the bidders have independent

private values, then the optimal (i.e., revenue maximizing) reserve price is above

the seller’s value, is the same in every standard auction, and is independent of the

number of bidders. (See Riley and Samuelson (1981) and Myerson (1981) for this

classic result.) However, in many instances the number of bidders in an auction is

determined endogenously, and depends on both the auction format and the reserve

price. Indeed, McAfee and McMillan (1987) and Levin and Smith (1994) — henceforth

MM and LS, respectively — show that the endogenous entry of bidders has important

implications for the seller’s choice of a reserve price. Specifically, they show that when

all potential bidders have the same cost for entering the auction, then the optimal

reserve price is equal to the seller’s value, so long as the number of potential bidders

is sufficiently large.

A maintained assumption in MM and LS is that all potential bidders have the

same entry cost. In the present paper we study optimal reserve prices in a setting

with endogenous entry but where bidders have heterogenous entry costs. Our model

is identical to that of MM and LS, except that prior to deciding whether to enter the

auction the bidders privately observe their entry costs, which are drawn independently

from a common distribution. As in MM and LS, bidders then simultaneously chose

whether to enter the auction. Each bidder who enters the auction observes his value

for the item and then bids. In this setting we characterize optimal reserve prices both

when the reserve price is public (as in MM and LS), and when it is secret. Our results

show that heterogeneity in entry costs alters many of the conclusions obtained for

the homogenous entry cost case.

In order to understand the intuition for our results, it is useful to review the

intuition for homogeneous entry costs. When entry costs are homogeneous and the

public reserve price is the seller’s value, then the contribution to social surplus of

the entry of an additional bidder is exactly equal to the bidder’s expected utility of

entering.1 Thus, the interests of bidders and society are aligned, and the number

of entering bidders maximizes social surplus. Moreover, since bidders enter until

all bidder surplus is competed away, the seller captures the entire social surplus.

Therefore a reserve price equal to the seller’s value maximizes both seller revenue and

1A version of this result is established in Engelbrech-Wiggans (1993)’s Proposition 1, and is also
observed in both MM and LS.
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social surplus, independently of the distribution of values and the number of potential

bidders (so long as is sufficiently large).

We show that when entry costs are heterogeneous and the public reserve price is

the seller’s value the marginal (expected) utility to a bidder of a change of her entry

threshold equals the marginal (expected) social surplus; i.e., that the interests of

bidders and society are aligned. Therefore a standard auction with a public reserve

price equal to the seller’s value maximizes social surplus whether entry costs are

homogeneous or heterogeneous. Heterogeneity in entry costs, however, implies that

not all bidder surplus is competed away by entry. Hence, even though raising the

reserve price above the seller’s value reduces social surplus, it increases the seller’s

share of the surplus and may increase revenue.

Consequently, when entry costs are heterogeneous the optimal public reserve price

may be above the seller’s value. Indeed, this is the case when the bidders’ values are

uniformly distributed, regardless of the distribution of entry costs (so long as its c.d.f.

is differentiable). In addition, when the optimal reserve price is above the seller’s

value, then an even greater revenue can be obtained by employing an appropriately

chosen entry fee and setting a reserve price equal the seller’s value. (In contrast, it

is well-known that an entry fee is equivalent to a reserve price when the number of

bidders is fixed, and that the optimal entry fee is zero when bidders have homogenous

entry costs.) Further, simple examples show that the optimal reserve price (and the

optimal entry fee) does depend on the distribution of values and entry costs as well as

on the number of potential bidders. Nevertheless, the optimal reserve price is always

below the reserve price that is optimal when the number of bidders is exogenously

fixed. These results for public reserve prices hold for any standard auction.

When the reserve price is secret and entry is endogenous, then the equilibrium

reserve price depends on the auction format. We show that in a second-price sealed-

bid auction the equilibrium secret reserve price is the same as when the number

of bidders is exogenously fixed. Thus, in a second-price sealed-bid auction there is

more entry and a higher probability of sale when the reserve price is public (and

set optimally by the seller) than when it is secret. Interestingly, not only does an

optimal public reserve generate more revenue for the seller, but it is also preferred

by bidders. In a first-price sealed-bid auction the equilibrium secret reserve price is

equal to the seller’s value. Hence this auction maximizes social surplus, and is more

(less) favorable to bidders (seller) than a first-price sealed-bid auction with an optimal

public reserve price. Elyakime et al. (1994) also establish that the equilibrium secret
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reserve price is the seller’s value in a model with an exogenously fixed number of

bidders.

Our result for public and secret reserve prices are consistent with the empirical

results reported in Katkar and Lucking-Reiley (2000) — K&L-R henceforth. K&L-R

conducted a field experiment comparing secret and public reserves, in which they

auctioned pairs of identical Pokemon cards on eBay. For each pair of cards, one card

was auctioned using a secret reserve price, while the second card was auctioned with a

public reserve price; in each case the reserve price was equal to 30% of the card’s book

value. It seems unlikely that the 30% reserve price used by K&L-R was an equilibrium

reserve price. Nonetheless, our theoretical results are consistent with their empirical

findings, provided that the reserve price they used was lower than the equilibrium

secret reserve price. Our model predicts less entry when the reserve price is secret

than when it is public.2 Since the reserve price is the same in both cases, less entry

implies fewer serious bids (i.e., fewer bids above the reserve), a smaller probability of

sale, and less revenue to the seller, which is what K&L-R found. When the public and

secret reserve prices are the same but above the equilibrium secret reserve price, our

model predicts a revenue reversal — the public reserve price should yield less revenue

than the secret reserve price. This prediction of our model is presently untested.

Several papers have established that a secret reserve is advantageous to the seller

in some settings. Li and Tan (2000) show, in Elyakime et al. (1994)’s setting, that if

bidders are sufficiently risk-averse, then a secret reserve price may raise more revenue

than a public reserve price. Vincent (1995) has established that seller revenue may

also be greater with a secret reserve price than with a public reserve price in second-

price auctions with common values.

Other models of auctions with endogenous entry have been studied in the lit-

erature. Samuelson (1985) and Menezes and Monteiro (2001), for example, study

optimal public reserve prices in a model where all buyers have the same entry cost

and make their entry decisions knowing their values. We are no aware of other models

of auctions with endogenous entry and heterogenous entry costs.

The paper is organized as follows. In Section 2 we layout the basic setting. Sec-

tion 3 considers optimal public reserves, first reviewing the results for homogenous

entry costs and then providing our results for heterogenous entry costs. In Section

2When the reserve is secret entry decisions depend on the bidders’ expectation of the reserve
rather than the reserve actually chosen. If the equilibrium secret reserve was more than the 30%
public reserve, then there is less entry with the secret reserve.
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4 we define the appropriate notion of equilibrium when the reserve price is secret,

and then characterize the equilibrium secret reserve for first and second-price sealed-

bid auctions. Section 4 provides a numerical example. Proofs are relegated to an

Appendix.

2 Preliminaries

Consider a market for a single item for which there are N > 1 risk-neutral buyers

and a risk-neutral seller. In this market the object is allocated using an unspecified

standard auction with a reserve price. The seller’s value for the object is zero. Each

buyer must decide whether to enter the auction, and upon entering the auction how

much to bid. We refer to buyers who have entered the auction as bidders. Each

buyer i has a privately known entry cost Zi. Buyers’ entry costs Z1, . . . , ZN are

independently and identically distributed on [0, c̄], where 0 < c̄ ≤ ∞, according
to a c.d.f. H with H(0) = 0. If buyer i enters the auction, then she learns her

value Xi. Values X1, . . . ,XN are independently and identically distributed on [0, ω]

according to an increasing and differentiable c.d.f. F with a decreasing hazard rate.

We assume throughout that the number of bidders N is sufficiently large so that

c̄ > E(Y
(N)
1 )−E(Y (N−1)

1 ), where Y (n)
1 = max{X1, . . . , Xn} is the highest of n values.3

We study equilibrium in two alternative settings that differ only in whether the

seller’s reserve price is made “public” or kept “secret.” When the reserve price is

public, it is announced prior to buyers deciding whether to enter the auction. When

the reserve price is secret it is unknown to the buyers prior to entering the auction.

We focus on the case where the reserve price is observed when the auction is resolved,

which is the most common case in practice. Hence when the reserve price is public

both entry decisions and bids can be conditioned on the reserve price, whereas when

it is secret neither can be conditioned on the reserve price.

3 Public Reserve Prices

Assume that the seller publicly announces the reserve price r ∈ [0, ω] prior to the
buyers deciding whether to enter the auction. Thus, buyers make entry decisions

3This assumption rules out the uninteresting case where every bidder enters the auction regardless
of his cost (see Lemma 1). It says that if all N − 1 other bidders were to enter, then the expected
social contribution of the Nth bidder is less than c̄.
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knowing their entry cost z ∈ [0, c̄] and the reserve price. Upon entering the auction,
buyers observe their value, and perhaps the number of bidders, and then bid.

In order to focus on the analysis of the “entry game”, throughout this section we

assume that buyers’ bidding strategies conform to the assumptions required to apply

the Revenue Equivalence Principle; that is, we assume that following entry decisions,

for each reserve price the buyers’ bidding strategies form an increasing symmetric

equilibrium of the auction such that the expected payment of a buyer with value zero

is zero — see Myerson (1981), Riley and Samuelson (1981). It is well-known that

the Revenue Equivalence Principle applies even when there is uncertainty about the

number of bidders in the auction, provided that bidders have symmetric expectations.

(See Krishna (2002), Section 3.2.2, whose notation we follow closely.) Hence, if buyers

with identical entry costs make identical entry decisions, then expectations about the

number of bidder in the auction are symmetric and therefore the REP applies whether

or not buyers observe how many bidders are present in the auction.

If the auction used to allocate the object is a standard auction, then seller revenue

and the buyer’s expected utility following entry decisions can be calculated as if the

auction was a second-price sealed-bid auction. Thus, if the reserve price is r ∈ [0, ω]
and exactly n ∈ {1, . . . , N} buyers enter the auction, the seller’s expected revenue is

π(r, n) = n

·
r(1− F (r))F n−1(r) + (n− 1)

Z ω

r

y(1− F (y))F n−2(y)f(y)dy
¸
,

and the expected utility of a buyer (prior to entering the auction and learning her

value) is

u(r, n) =

Z ω

r

µZ y

r

F (x)n−1dx
¶
f(y)dy.

Also, the gross (expected) social surplus, i.e., the social surplus ignoring entry costs,

can be calculated as

s(r, n) =

Z ω

r

ydF n(y).

Note that

s(0, n) = E(Y
(n)
1 ).

It is easy to see that π(r, n) is increasing in n, u(r, n) is decreasing in both r and n,

and s(r, n) is decreasing in r and increasing in n. The convention s(0, 0) = 0 will be

useful in what follows.

In a standard auction with a zero reserve price the expected utility of each buyer

and the social surplus are related according to a useful formula stated in the following

lemma.
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Lemma 1. For n ∈ {1, . . . , N}: u(0, n) = s(0, n)− s(0, n− 1).

In words: in a standard auction with a zero reserve price and n bidders the

expected utility of each bidder is equal to the gross social contribution of the n-th

bidder. We provide a simple proof in the Appendix. As will be seen later, this fact

is key to understanding the intuition for our results. A version of this formula is

established in Proposition 1 of Engelbrecht-Wiggans (1993).

In our setting it will be useful to calculate the expected revenue of the seller and

the expected utility of a buyer when the number of bidders in the auction follows a

binomial distribution B(N, p), where p is the probability that a single buyer enters,

and pNn (p) is the probability that exactly n ∈ {0, 1, . . . , N} buyers enter. The expected
revenue of the seller is

Π(r, p) =
NX
n=1

pNn (p)π(r, n),

and the (gross) expected utility of an entering buyer (i.e., the expected utility of a

buyer before incurring her entry cost) is

U(r, p) =
N−1X
n=0

pN−1n (p)u(r, n + 1).

It is easy to see that U(r, p) is decreasing in p. If p00 > p0, then B(N, p00) first
order stochastically dominates B(N, p0), and therefore since u(r, n) is decreasing with
respect to n, we have U(r, p00) < U(r, p0).

3.1 Homogenous entry costs

We begin by discussing and deriving existing results and simple extensions for the

case of homogenous entry costs; that is, for the case where all buyers have the same

fixed entry cost c̄ (i.e., H(z) = 0 for z < c̄ and H(z) = 1 for z ≥ c̄), where c̄ < u(0, 1),

so that there is entry. For homogenous entry costs McAfee and McMillan (1987)

establish that in a pure-strategy equilibrium of a first-price sealed-bid auction with

a public reserve price (i) buyers capture none of the surplus, (ii) the optimal reserve

price (i.e., the reserve price that maximizes seller revenue) is zero, and (iii) when

the reserve price is zero a pure-strategy equilibrium maximizes social surplus (i.e.,

in equilibrium the optimal number of bidders enters the auction). Levin and Smith

(1994) show that results analogous to (i)-(iii) hold for symmetric mixed-strategy

equilibria of any standard auction. These results are easily derived in our setting,
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and extended to any standard auction in the case of McAfee and McMillan (1987)’s

results. This exercise will help provide intuition for our results for the more realistic

case where entry costs are heterogenous (i.e., H is not degenerate).

The maximum social surplus that can be achieved by any mechanism with a fixed

number n of buyers is

w(n) = E(Y
(n)
1 )− nc̄ = s(0, n)− nc̄.

A standard auction with a zero reserve price attains this maximum. Since u(0, n) =

s(0, n)− s(0, n− 1) by Lemma 1, then the social contribution of the n-th buyer is
w(n)− w(n− 1) = s(0, n)− s(0, n− 1)− c̄

= u(0, n)− c̄.

Since u(0, n) is decreasing in n this contribution is decreasing in n.

Consider the incentives of buyers when they sequentially decide whether to enter

a standard auction with a zero reserve price. The n-th buyer enters if her payoff to

entering is at least her cost, i.e., if

u(0, n)− c̄ ≥ 0. (1)

As shown above, the left hand side of this expression is just the social contribution of

the n-th buyer. Hence, when the reserve price is zero a buyer enters if and only if her

entry raises social surplus. Therefore in a pure-strategy entry equilibrium the number

of entering buyers n∗ maximizes the social surplus; i.e., w(n∗) = maxn∈{0,1,...,N}w(n).
Since u(0, N) < c̄ by assumption, then n∗ < N. If we ignore that n∗ must be an
integer, then n∗ satisfies (1) with equality, and buyers capture none of the surplus.
This argument establishes that a standard auction with a zero reserve price max-

imizes social surplus, and moreover that the seller captures the entire social surplus.

A positive reserve price reduces social surplus, and because the seller revenue is at

most the social surplus, also reduces the seller revenue. Hence the optimal public

reserve price is zero.

The key insight above was that the private and social benefit of the entry of

a buyer coincide in a standard auction with a zero reserve price. The same logic

applies to symmetric entry equilibrium in mixed-strategies. If all buyers enter with

probability p, then the number of bidders follows the binomial distribution B(N, p)

and the maximum social surplus that can be achieved by any mechanism is

W (p) =
NX
n=1

pNn (p)s(0, n)−Npc̄.
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A standard auction with a zero reserve price attains this maximum. Since u(0, n) =

s(0, n)− s(0, n− 1), then we have

W 0(p) = N

Ã
NX
n=1

pN−1n−1 (p)s(0, n)−
N−1X
n=1

pN−1n (p)s(0, n)− c̄

!

= N

Ã
N−1X
n=0

pN−1n (p)u(0, n + 1)− c̄

!
= N(U(0, p)− c̄),

i.e., the marginal social contribution of an increase in the probability of entry is

proportional to the payoff of an entering bidder. Since U is decreasing in p, then

W 00(p) < 0, i.e., W is a concave function. In an (symmetric mixed-strategy) entry

equilibrium buyers are indifferent between entering and not;4 i.e., buyers enter with

a probability p∗ satisfying
U(0, p∗)− c̄ = 0.

Hence W 0(p∗) = 0, and therefore W (p∗) = maxp∈[0,1]W (p); i.e., a symmetric mixed-
strategy entry equilibrium maximizes the social surplus. Since the seller captures all

the social surplus, the optimal reserve price is zero.

Note that W (p∗) is a “constrained” maximum surplus; i.e., it is the maximum

surplus when all buyers enter with the same probability. A greater surplus can be

realized if one can choose different probabilities of entry for different buyers. Indeed,

w(n∗) is the “unconstrained” maximum surplus, as shown above. It is easy to see

that w(n∗) > W (p∗).
Proposition 0 summarizes these results.

Proposition 0. Assume that entry costs are homogenous. In a standard auction
with a public reserve price equal to zero if buyers follow a (symmetric mixed-strategy)

pure-strategy entry equilibrium, the (constrained) maximum social surplus is realized

and is captured by the seller. Hence the optimal (i.e., revenue maximizing) reserve

price is zero (the seller’s value).

Since the seller captures the entire social surplus with a zero reserve price, there

would be no advantage to the seller to setting an entry fee if it were feasible.

4It is easy to see that a symmetric mixed-strategy equilibrium p∗ exists, is unique, and satisfies
p∗ > 0.
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3.2 Heterogenous entry costs

In this section we study the case where buyers have heterogenous entry costs (i.e., H

is not a degenerate probability distribution), and for simplicity we assume henceforth

that H is absolutely continuous and increasing. Under this assumption the entry

strategy of a buyer can be described by a number t ∈ [0, c̄], indicating the threshold
(the maximum entry cost) of a buyer entering the auction; that is, the buyer enters

if her entry cost is less than t, and does not enter if it is greater than t — whether

the buyer enters when her entry cost is exactly t is inconsequential.5 If all buyers

employ the same threshold t, then the number of bidders in the auction is distributed

according to a binomial distribution B(N, p) where p = H(t).

Consider any standard auction with a public reserve price r ∈ [0, ω]. A symmetric
(Bayes perfect) entry equilibrium is a threshold t ∈ [0, c̄] such that for all z ∈ [0, c̄]:
U(r,H(t)) > z implies t > z, and U(r,H(t)) < z implies t < z; i.e., in a symmetric

entry equilibrium t a buyer enters if her expected utility to entering is above her entry

cost, and does not enter otherwise.

For r ∈ [0, ω], let t∗(r) = t where t ∈ [0, c̄] is the unique solution to the equation

t = U(r,H(t)). (2)

We show in the Appendix (Lemma 3) that the mapping t∗(·) is a continuous and
decreasing function on [0, c̄].

Proposition 1 establishes that a standard auction with a public reserve price has

a unique symmetric entry equilibrium, and that in this equilibrium buyers capture a

positive share of the surplus.

Proposition 1. Assume that entry costs are heterogeneous. Then any standard auc-
tion with a public reserve price r ∈ [0, ω) has a unique symmetric entry equilibrium,
t = t∗(r) ∈ (0, c̄). In this equilibrium, seller revenue is less than the social surplus
(that is, buyers capture a positive share of the social surplus).

It is easy to see that buyers capture part of the social surplus. Simply note that

the equilibrium expected utility of an entering buyer is U(r,H(t∗(r))) = t∗(r) > 0,

5In general entry decisions are described by a mapping e : [0, c̄] → [0, 1] which, for each entry
cost z ∈ [0, c̄], indicates the probability e(z) with which the buyer enters the auction. When H

is continuous and increasing, however, it is without loss of generality to restrict attention to entry
strategies described by some threshold t ∈ [0, c̄].
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whereas her expected cost is less than t∗(r). Hence buyer surplus is

N

Z t∗(r)

0

(t∗(r)− z)dH(z) > 0.

The proof of the remainder of Proposition 1 is given in the Appendix.

If each buyer enters when her entry cost is less than t ∈ [0, c̄], then the maximum
social surplus that can be achieved by any mechanism is

W (t) =

NX
n=1

pNn (H(t))s(0, n)−N

Z t

0

zdH(z).

The following lemma characterizes the (unique) threshold that maximizes social sur-

plus when H is differentiable.

Lemma 2. If H is differentiable then W (t∗(0)) = maxt∈[0,c̄]W (t), i.e., a standard
auction with a public reserve price equal to zero maximizes social surplus.

Since Lemma 2 restricts attention to symmetric entry decisions, W (t∗(0)) is a
“constrained” maximum surplus.

It is well known that when the number of bidders is exogenously given, then the

optimal public reserve price r∗ is positive, and is the solution to the equation

r =
1− F (r)

f(r)
, (3)

independently of the number of bidders present in the auction — see Riley and Samuel-

son (1981) and Myerson (1981).

The (equilibrium) seller revenue in a standard auction with a public reserve

price r ∈ [0, ω] is Π(r,H(t∗(r))). Hence an optimal public reserve price rp satisfies

rp ∈ argmaxrΠ(r,H(t∗(r))). Proposition 2 establishes that the optimal reserve price
is below r∗ (strictly below r∗ if H is differentiable) since the seller has an incentive

to induce additional entry through a lower reserve price. Unlike in the homogeneous

entry costs case, where the optimal reserve price is zero, when entry costs are hetero-

geneous, the optimal public reserve price may be strictly positive since increasing the

reserve price may generate a distribution of the social surplus more favorable to the

seller. This is the case if, e.g., H is differentiable and bidders’ values are uniformly

distributed.

Proposition 2. Assume that entry costs are heterogeneous. Then in a standard
auction the optimal public reserve price rp satisfies 0 ≤ rp ≤ r∗. Further, if H is
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differentiable, then rp < r∗, and if in addition values follow a uniform distribution,

then 0 < rp.

Hence the conclusions obtained when entry costs are homogenous, namely that

(i) the seller captures the entire social surplus, (ii) the optimal public reserve price

is zero, and (iii) the social surplus is maximized, are not robust to the introduction

of heterogeneity in entry costs. With heterogenous entry costs, (I) buyers capture a

positive share of the social surplus (hence seller revenue is strictly less than the social

surplus), (II) the optimal reserve price may be positive (e.g., if H is differentiable and

values follow a uniform distribution), and (III) social surplus may not be maximized

(both because there may be less than the socially optimal amount of entry — see

Lemma 2 — and because the auction outcome may be ex-post inefficient).

Entry fees

Assume that the seller can set both an entry fee (or a subsidy) as well as a public

reserve price.6 It is easy to see that an analog of Proposition 1 holds for a standard

auction with an entry fee and a public reserve price (see the proof of Proposition 3 in

the Appendix). In particular, a unique symmetric equilibrium exists, and the seller

revenue is less than the social surplus.

Proposition 3 below establishes that an entry fee enables the seller to obtain more

revenue than he can obtain with a reserve price alone. In fact, when the seller can

set both an entry fee and a public reserve price, then the optimal reserve price is zero

(the seller’s value). Thus, when bidders have heterogenous entry costs, an entry fee

is a more effective instrument to increase seller revenue than a public reserve price.

In contrast, it is well-known that when the number of bidders is exogenous, reserve

prices are equivalent to entry fees. And, as established earlier, when the number of

bidders is endogenous but entry costs are homogeneous, the optimal entry fee and

public reserve prices are both zero.

Proposition 3. Assume entry costs are heterogeneous. The seller revenue in a

standard auction with a positive public reserve price is less than in a standard auction

with an appropriate entry fee and a public reserve price equal zero. Hence if the

optimal public reserve price is positive when no entry fee is feasible, then the seller

revenue is greater with an optimal entry fee than with an optimal public reserve price

and no entry fee.
6Of course, often it is not possible for the seller to charge an entry fee. For example, none of the

Internet auction websites allow the seller to charge an entry fee.
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The intuition for this result is simple: if the reserve price is positive then the

seller can reduce the reserve price to zero and at the same time raise the entry fee

so that the expected utility to a buyer to entering the auction is unchanged. This

entry fee (and no reserve price) induces the same entry by bidders without incurring

the ex-post inefficiencies of a positive reserve price. Seller revenue rises since social

surplus rises, while buyer surplus is unchanged.

As established in Proposition 3, the optimal entry fee will be positive if the seller

would choose a positive public reserve price when no entry fee is possible; this will be

the case if, for example, H is differentiable and values are uniformly distributed. It is

easy to see that a standard auction with a positive optimal entry fee induces less entry

than would socially optimal, although the outcome is ex-post efficient (because the

reserve price is zero). And that a result analogous to Lemma 2 holds for a standard

auction with an entry fee and a public reserve price; namely, that the social surplus

is maximized when both the entry fee and the reserve price are set up equal to zero.

4 Secret Reserve Prices

Assume now that the reserve price is not observed prior to entry decisions. Various

assumptions can be made about the information revealed to players in the course of

the game. For example, if the seller chooses the reserve price following the buyers’

entry decisions, then the seller might observe the number of bidders prior to choosing

the reserve price. One could then further distinguish cases depending on whether or

not the reserve price, and/or the number of bidders, is observed by buyers prior to

bidding. We focus on what appears to be the most common situation in practice in

auctions with a secret reserve price: we assume that the seller chooses the reserve

price without knowing the number of bidders, and buyers observe neither the reserve

price nor the number of bidders when either entering or bidding. Thus, in the current

setting the seller and buyers interact simultaneously, whereas when the reserve price

is public the seller has a first-mover advantage.

Formally, a strategy for the seller is a reserve price r ∈ [0, ω]. A strategy for

a buyer is pair (t, β) where t ∈ [0, c̄] is a threshold specifying, as in section 3, the
maximum entry cost for which a buyer enters the auction, and β is a bidding strategy

mapping values into bids. Denote by ΠA(r,H(t), β) and UA(r,H(t), β), where A = I

for a first-price auction and A = II for a second-price auction, the seller’s revenue

and the expected utility of an entering buyer, respectively when the secret reserve
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price is r, the buyers employ the threshold t, and the bidders bid according to β.

A symmetric (Bayes Nash) equilibrium of auction A with a secret reserve price is

a triple (rs, t, β) such that:

(S1) rs ∈ argmaxr ΠA(r,H(t), β);

(S2) for z ∈ [0, c]: UA(rs, H(t), β) > z implies t > z and UA(rs, H(t), β) < z

implies t < z;

(S3) β is a symmetric equilibrium of auction A with reserve price rs.

According to (S1), the reserve price maximizes the seller revenue given the buyers’

entry threshold and bidding strategy. Conditions (S2) and (S3) require that the entry

decision and bidding strategy of each buyer be optimal given the secret reserve price

and entry decisions and bidding strategies of the other buyers.

Second-Price Auctions

Proposition 4 establishes the basic properties of the symmetric equilibria of second-

price sealed-bid auctions with a secret reserve price. Denote by β∗ the function given
by β∗(x) = x for all x ∈ [0, ω]. We refer to β∗ as value bidding. In a second-price
auction with a secret reserve price, value bidding is a weakly dominant strategy for

buyers.7 Recall that r∗, the solution to equation (3), is the optimal reserve price
when the number of bidders is exogenously given, and that t∗ is the function defined
by equation (2).

Proposition 4. The unique symmetric equilibrium in undominated strategies of a

second-price sealed-bid auction with a secret reserve price is (r∗, t∗(r∗), β∗). In this
equilibrium both seller revenue and buyer surplus are less (strictly less if H is differ-

entiable) than in a standard auction with an optimal public reserve price.

According to Proposition 4, in a second-price sealed-bid auction the equilibrium

secret reserve price when there is endogenous entry is the same as the seller’s optimal

reserve price when the number of bidders is exogenously fixed. This result is a con-

sequence of the fact the reserve price influences neither entry decisions nor bidding

strategies. Hence in setting the reserve price the seller regards entry as exogenous,

and therefore the revenue maximizing reserve price is r∗ independently of the prob-
ability distribution over the number of entrants. Propositions 2 and 4 imply that

7It’s well known that value bidding is a weakly dominant strategy in an auction with a public
reserve price. It’s easy to show that value bidding continues to be weakly dominant in an auction
with a secret reserve price, i.e., every strategy (t, β) is weakly dominated by (t, β∗).
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the equilibrium secret reserve price is greater than the optimal public reserve price.

Interestingly, seller revenue and buyer surplus are less when the reserve price is secret

than when it is public.

There are equilibria in which buyers follow dominated strategies and in which

the seller sets a reserve price above r∗. In particular, for any r > r∗, there is an
equilibrium in which the seller sets a reserve price of r and bidders bid their value if

their value is at least r and bid zero otherwise. Given this bidding strategy, lowering

the reserve price below r reduces seller revenue.8

First-Price Auctions

In a first-price auction a secret reserve price of zero is weakly dominant for the

seller.9 In a first-price auction with a zero reserve price, if bidders expect the number

of bidders to follow a binomial distribution B(N, p), then it is a symmetric equilibrium

to bid according to

βIp(x) =
N−1X
n=0

pN−1n (p)
F (x)nPN−1

k=0 pN−1k (p)F (x)k
E
¡
Y (n) | Y (n) < x

¢
,

(See Krishna (2002), Section 3.2.2.)

Proposition 5 establishes the basic properties of the symmetric equilibria in weakly

undominated strategies of a first-price sealed-bid auction with a secret reserve price.

Proposition 5: Every symmetric equilibrium in undominated strategies of a first-

price sealed-bid auction with a secret reserve price, (rIs , t
I
s, β

I
s), satisfies rIs = 0 and

tIs = t∗(0). Specifically, (0, t∗(0), βIt∗(0)) is an equilibrium of this kind. These equilibria
maximize constrained social surplus, whereas the seller revenue (buyer surplus) is less

(greater) than or equal to that at the symmetric equilibrium of a standard auction with

an optimal public reserve price. Further, if H is differentiable and values follow a

uniform distribution, then these inequalities are strict.

It is easy to see that there are symmetric equilibria in which the reserve price is

positive, as noted in the following remark. In these equilibria all bidders bid zero if

their value is below the reserve price. Hence there is no gains to the seller to reducing

the reserve price.

8We conjecture that reserves below r∗ cannot be sustained as equilibria of an auction with a
secret reserve.

9Reducing the reserve to zero from a positive amount has the effect of increasing seller revenue
when all the bids are below the reserve and one bid is positive, and has no effect otherwise.
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Discussion

In studying auctions with secret reserve prices we could not apply the Revenue

Equivalence Principle, as we usefully did when we studied auctions with public reserve

prices. To illustrate why, consider two auctions, a first price auction and a second-

price auction, in which the reserve price is public. By the REP the two auctions yield

the same revenue to the seller for every reserve price: When the reserve price is varied

publicly, entry and bidding strategies adjust in a way that equalizes revenue across

standard auctions. Suppose now that the seller secretly increases the reserve price

above the optimal public reserve, rp. Since the change is secret, buyer’s entry and

bidding decisions are unchanged. Seller revenue falls in the first-price auction since

revenue becomes zero when the highest bid is between the new reserve price and rp,

and remains the same otherwise. In contrast, seller revenue rises in the second-price

auction since revenue is increasing in the reserve price until the reserve price equals

r∗. (Thus, when the reserve price is varied secretly, since entry and bidding strategies
do not depend on the reserve price the revenue effects of varying the reserve price

depend on the auction format. Consequently, the equilibrium secret reserve price is

different in first-price and second-price auction.)

However, as noted earlier, various assumptions can be made about the information

revealed to bidders when the reserve price is secret. Suppose the reserve price is secret

when bidders make their entry decisions, but it is observed prior to bidding, and

therefore that bidders can condition their bidding strategy on the reserve price. We

can once again apply the REP to conclude that given entry decisions every standard

auction generates the same revenue to the seller. And since the number of bidders

is exogenous from the seller’s perspective, the seller’s optimal reserve price is r∗,
regardless of the auction format. Thus, whether the secret reserve price is observed

prior to bidding is irrelevant for a second-price sealed-bid auctions — in either case

the optimal reserve price is r∗. On the other hand, in a first-price sealed-bid auction
the equilibrium reserve price is r∗ if the reserve price is observed following entry but
prior to bidding, while by Proposition 5 it is zero if it is not observed.

5 An Illustrative Example

Assume that N = 2, and that values and entry costs are uniformly distributed on

[0, 1]. We calculate first the symmetric entry equilibrium of a standard auction with

a public reserve price r ∈ [0, ω]. For r ∈ [0, ω], simple computations yield u(r, 1) =

16



1
2
(1− r)2 and u(r, 2) = 1

6
(2r + 1) (1− r)2 . In a symmetric equilibrium a buyer makes

her entry decisions according to t∗(·) defined for r ∈ [0, ω] by the solution to Equation
(2), given by

z = (1− z)
1

2
(1− r)2 + z

1

6
(2r + 1) (1− r)2 .

Solving this equation we get

t∗(r) =
3

2

(1− r)2

3 + (1− r)3
,

for r ∈ [0, ω].
If buyers use the threshold t∗(r) to make entry decisions, then an optimal public

reserve price maximizes the seller’s revenue,

Π(r,H(t∗(r))) = 2t∗(r)(1− t∗(r))π(r, 1) + t∗(r)2π(r, 2),

where π(r, 1) = r (1− r) , and π(r, 2) = 1
3
(1− r) (4r2 + r + 1) . Direct calculation

yields that the seller’s optimal public reserve price is rp = 1
4
. Note that the optimal

public reserve price when the number of bidders is exogenously fixed is the solution

to Equation (3),

r = 1− r,

i.e., r∗ = 1
2
.

Now if entry fees are feasible, then the optimal public reserve price is zero, and

the buyers make entry decisions using t̃∗(·, 0) given for φ ∈ R+ by the solution to the
equation

z + φ = (1− z)
1

2
+ z

1

6
;

i.e., t̃∗(φ, 0) = 3
8
− 3

4
φ. Hence seller revenue is

Π̂(φ, 0, t̃∗(φ, 0)) = 2t̃∗(φ.0)(1− t̃∗(φ, 0))φ+ t̃∗(φ, 0)2
µ
2φ+

1

3

¶
.

The optimal entry fee is then φ∗ = 3
14
.

For the different auctions formats we have considered, Table 1 describes the op-

timal (or equilibrium) reserve price (r), the equilibrium threshold (t), the seller rev-

enue (Π) and the surplus captured by buyers (BS). (The calculations for first-price

and second-price sealed-bid auctions with a secret reserve price correspond to the

equilibria in undominated strategies.) Among these alternative auction formats, the
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first-price sealed-bid auction with a secret reserve price is the most favorable to buy-

ers (which also maximizes constrained social surplus), whereas the standard auction

with a optimal entry fee and a zero public reserve price generates the greatest revenue

to the seller. Note that, consistent with our findings, in a standard auction with a

public reserve price both the seller revenue and a buyers’ surplus are greater than in

a second-price sealed-bid auction with a secret reserve price.

Auction Format Reserve Price Entry Fee
Standard Public No

Standard Public Yes

Second-Price SB Secret No

First-Price SB Secret No

r t Π BS

.25 .2465 .0924 .0608

0 .2142 .1071 .0458

.50 .1200 .0588 .0144

0 .3750 .0468 .1406

Table I: Equilibrium Outcomes with Uniform Values and Entry Costs

In this example, the optimal public reserve price seems to be independent of the

number of potential bidders, whereas the optimal entry fee decreases with the number

of potential bidders. These features are peculiar to the example since, by modifying

the distribution of entry costs, it is easy to generate examples where the optimal

public reserve (and optimal entry fee) decreases, or increases, with the number of

potential bidders.

6 Appendix

Proof of Lemma 1: For n > 1, by interchanging the order of integration we obtain

u(0, n) =

Z ω

0

µZ y

0

F (x)n−1dx
¶
f(y)dy

=

Z ω

0

µZ ω

x

f(y)dy

¶
F (x)n−1dx

=

Z ω

0

(1− F (x))F (x)n−1dx.

Integrating by parts we getZ ω

0

F (x)ndx = xF n(x)|ω0 −
Z ω

0

nxF (x)n−1f(x)dx

= ω − E
³
Y
(n)
1

´
.

18



Hence

u(0, n) =

Z ω

0

F (x)n−1dx−
Z ω

0

F (x)ndx

=
³
ω −E

³
Y
(n−1)
1

´´
−
³
ω − E

³
Y
(n)
1

´´
= s(0, n)− s(0, n− 1).

For n = 1 we have

u(0, 1) =

Z ω

0

yf(y)dy = E(Y (1)) = s(0, 1) = s(0, 1)− s(0, 0). ¤

In order to prove Proposition 1 we begin by establishing some properties of the

mapping t∗.

Lemma 3: The mapping t∗ is a continuous and decreasing function on [0, ω], and
satisfies t∗(r) ∈ (0, c̄) for r ∈ [0, ω).

Proof: Let r ∈ [0, ω); we have

U(r,H(0)) =
N−1X
n=0

pN−1n (0)u(r, n + 1) = u(r, 1) > 0.

(Note that for p(0) = H(0) = 0, and therefore pN−10 (0) = 1, and pN−1n (0) = 0 for

n ∈ {1, ..., N − 1}.) And

U(r,H(c̄)) =
N−1X
n=0

pN−1n (1)u(r, n + 1) = u(r,N) ≤ u(0, N).

(Note that for p(c̄) = H(c̄) = 1, and therefore pN−1n (1) = 0 for n ∈ {0, 1, ..., N − 2}
and pN−1N−1(1) = 1.) Since

u(0, N) = E(Y (N))−E(Y (N−1))

by Lemma 1, and by assumption

E(Y (N))− E(Y (N−1)) < c̄

we have

U(r,H(c̄)) < c̄.
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Hence, since U(r,H(·)) is continuous (because H is absolutely continuous) the equa-

tion

t = U(r,H(t))

has a solution on [0, c̄]; and since U(r,H(·)) decreasing (because U(r, p) is decreasing
in p and H is increasing), there is a unique solution. Therefore the function t∗(·) is
well defined, and since U(r, t) is continuous (because each u(·, n) for n ∈ {1, ..., n}
is continuous), then t∗(·) is also continuous. We show that t∗(·) is decreasing. Let
r0, r00 ∈ [0, ω] be such that r00 > r0. Write t∗(r0) = t0, and t∗(r00) = t00. Suppose by way
of contradiction that t00 ≥ t0. Then since U(r,H(·)) is decreasing in both r and t we

have

t0 = U(r0, H(t0)) > U(r00, H(t00)) = t00,

which is a contradiction.

Let r ∈ [0, ω). We show that t∗(r) > 0. Suppose that t∗(r) = 0. Then

U(r,H(t∗(r))) = U(r,H(0)) = u(r, 1) > 0 = t∗(r) = U(r,H(t∗(r))),

which is a contradiction. We show that t∗(r) < c̄. Suppose that t∗(r) = c̄. Then

U(r,H(t∗(r))) = U(r, 1) = u(r,N) ≤ u(0, N) < c̄ = t∗(r) = U(r,H(t∗(r))),

which is a contradiction. ¤

Proof of Proposition 1: Consider a standard auction with a public reserve price
r ∈ [0, ω]. We show that t∗(r) is the unique symmetric equilibrium. Clearly t∗(r)
is a symmetric equilibrium. We show that no other symmetric equilibrium exists.

Suppose not; let t̄ 6= t∗(r) be a symmetric equilibrium. Assume that t̄ < t∗(r). Then
since U(r,H(·)) is decreasing we have

U(r,H(t̄)) > U(r,H(t∗(r))) = t∗(r) > t̄.

Then there is z ∈ (U(r, t̄), t̄); i.e., there is z ∈ [0, c̄] such that z > U(r,H(t̄)) and

z < t̄, contradicting that t̄ is an equilibrium. Analogously t̄ > t∗(r) also leads to a
contradiction. ¤

Proof of Lemma 2: Differentiating W (t) yields

W 0(t) =
NX
n=1

dpNn (H(t))

dt
s(0, n)−Nth(t).
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For n ≤ N − 1 we have
dpNn (H(t))

dt
= N(pN−1n−1 − pN−1n )h(t),

and
dpNN(H(t))

dt
= NpN−1N−1h(t).

(All binomial probabilities are calculated for p = H(t).) Substituting these expressions

and using Lemma 1, we have

W 0(t) = Nh(t)

Ã
pN−1N−1s(0, N) +

N−1X
n=1

(pN−1n−1 − pN−1n )s(0, n)− t

!

= Nh(t)

Ã
N−1X
n=0

pNn u(0, n + 1)− t

!
= Nh(t) (U(0, H(t))− t) .

Hence

W 0(t∗(0)) = 0.

Moreover, since h(t) > 0 and U(0, H(·)) is decreasing on [0, c̄], then W 0(t) > 0 for

t < t∗(0), and W 0(t) < 0 for t > t∗(0). Hence t = t∗(0) uniquely maximizes W (t)
on [0, c̄]. That a public reserve price equal to zero generates a constrained socially

optimal follows directly from Proposition 1. ¤

Proof of Proposition 2: Follows immediately from lemmas 2-4 below.

Lemma 4. For all r ∈ (r∗, ω]: Π(r∗, H(t∗(r∗))) > Π(r,H(t∗(r))).

Proof: For r ∈ (r∗, ω] we have

Π(r∗, H(t∗(r∗))) =
NX
n=1

pNn (H(t
∗(r∗)))π(r∗, n)

>
NX
n=1

pNn (H(t
∗(r)))π(r∗, n)

>
NX
n=1

pNn (H(t
∗(r)))π(r, n)

= Π(r,H(t∗(r))).
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The first inequality follows from the fact that t∗(·) is strictly decreasing by Lemma 1
and therefore the c.d.f. of the binomial B(N, p(H(t∗(r∗)))) first order stochastically
dominates the c.d.f. of the binomial B(N, p(H(t∗(r)))), and because π is strictly

increasing with respect to n. The second inequality follows from the fact that r∗

uniquely maximizes π(·, n) on [0, ω] for all n ∈ {1, ..., N} — see Riley and Samuelson
(1981) and Myerson (1981). ¤

Lemma 5. If H is differentiable then dΠ(r,t∗(r))
dr

¯̄̄
r=r∗

< 0.

Proof: Clearly if H is differentiable, then both t∗(·) and Π(r,H(t∗(r))) are differen-
tiable. We have

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=r∗

=
NX
n=1

µ
dpNn (H(t

∗(r)))
dr

¯̄̄̄
r=r∗

π(r∗, n) + pNn (H(t
∗(r∗)))

dπ(r, n)

dr

¯̄̄̄
r=r∗

¶
.

Since r∗ maximizes u(·, n) ∈ [0, ω] for all n ∈ {1, ...N} — see Riley and Samuelson
(1981) and Myerson (1981) — we have

dπ(r, n)

dr

¯̄̄̄
r=r∗

= 0

for all n ∈ {1, ...N}. Denote by p∗ = p(H(t∗(r∗))) = H(t∗(r∗)) the binomial probabil-
ity at t∗(r∗). Hence

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=r∗

=
NX
n=1

dpNn (H(t
∗(r)))

dr

¯̄̄̄
r=r∗

π(r∗, n)

=
NX
n=1

dpNn (p)

dp

¯̄̄̄
p=p∗

dp(H(t))

dt

¯̄̄̄
t=t∗(r∗)

dt∗(r)
dr

¯̄̄̄
r=r∗

π(r∗, n)

= h(t∗(r∗))
dt∗(r∗)
dr

Ã
NX
n=1

dpNn (p)

dp

¯̄̄̄
p=p∗

π(r∗, n)

!
.

In this expression, h(t∗(r∗)) > 0, and dt∗(r∗)
dr

< 0 by Lemma 1. The last term,

NX
n=1

dpNn (p)

dp

¯̄̄̄
p=p∗

π(r∗, n),

measures the effect of a marginal variation of the binomial probability around p∗

on the seller revenue. This term positive: an increase in the binomial probability

induces a new binomial distribution whose c.d.f. first order stochastically dominates
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the c.d.f. of B(N, p∗) which, because π is increasing with respect to n, increases the
seller revenue. Therefore

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=r∗

< 0. ¤

Lemma 6. If H is differentiable and values are distributed uniformly on [0, ω], then

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=0

> 0.

Proof: Normalize ω = 1. We have

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=0

=
∂Π(r,H(t∗(r)))

∂r

¯̄̄̄
r=0

+
dt∗(r)
dr

¯̄̄̄
r=0

∂Π(r,H(t∗(r)))
∂t

¯̄̄̄
r=0

=
NX
n=1

pNn (H(t
∗(0)))

∂π(0, n)

∂r

¯̄̄̄
r=0

+
dt∗(r)
dr

¯̄̄̄
r=0

NX
n=1

dpNn (H(t))

dt

¯̄̄̄
t=t∗(0)

π(0, n).

Since buyers values are distributed uniformly on [0, 1], direct calculation yields

π(0, n) =
n− 1
n+ 1

for n ∈ {1, ..., N}, and

∂π(r, n)

∂r

¯̄̄̄
r=0

=

(
1 if n = 1

0 if n > 1.

Hence

dΠ(r,H(t∗(r)))
dr

¯̄̄̄
r=0

= pN1 (H(t
∗(0))) +

dt∗(r)
dr

¯̄̄̄
r=0

NX
n=1

dpNn (H(t))

dt

¯̄̄̄
t=t∗(0)

π(0, n).

Now
dt∗(r)
dr

=
∂U(r,H(t))

∂r

1− ∂U(r,H(t))
∂t

,

where
∂U(r,H(t))

∂r
=

N−1X
n=0

pN−1n (H(t))
∂u(r, n+ 1)

∂r
,
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and
∂U(r,H(t))

∂t
=

N−1X
n=0

dpN−1n (H(t))

dt
u(r, n+ 1).

Since values are uniformly distributed on [0, 1], direct calculation yields

u(0, n) =
1

n (n+ 1)

for n ∈ {1, ..., N}, and

∂u(r, n)

∂r

¯̄̄̄
r=0

=

(
−1 if n = 1

0 if n > 1.

Thus
∂U(r,H(t))

∂r

¯̄̄̄
r=0

= pN−10 (H(t))
∂u(r, 1)

∂r
= − (1−H(t))N−1 .

Substituting and simplifying notation by writing p = H(t∗(0)) and dpN−1n

dt
= pN−1n (H(t))

dt
,

we get

Π(r,H(t∗(r)))
dr

¯̄̄̄
r=0

= Np (1− p)N−1

− (1− p)N−1
Ã
1−

N−1X
n=0

dpN−1n

dt
u(0, n + 1)

!−1 NX
n=1

dpNn
dt

π(0, n)

= (1− p)N−1
Ã
1−

N−1X
n=0

dpN−1n

dt
u(0, n+ 1)

!−1
∆N ,

where

∆N = Np−Np
N−1X
n=0

dpN−1n

dt
u(0, n+ 1)−

NX
n=1

dpNn
dt

π(0, n)

Note that dt∗(r)
dr

< 0 and ∂U(r,H(t))
∂r

< 0 imply 1− ∂U(r,H(t))
∂t

> 0. Hence

1− ∂U(r, t)

∂t

¯̄̄̄
r=0

= 1−
N−1X
n=0

dpN−1n (t)

dt
u(0, n + 1) > 0.

Since t∗(0) ∈ (0, c̄) by Lemma 3, and since H is increasing, we have p = H(t∗(0)) ∈
(0, 1). We prove that

Π(r,H(t∗(r)))
dr

¯̄̄̄
r=0

> 0
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by showing that

∆N = Np > 0.

We have
N−1X
n=0

dpN−1n

dt
u(0, n+ 1) =

NX
n=1

dpN−1n−1
dt

u(0, n),

and therefore

∆N = Np−Np
NX
n=1

dpN−1n−1
dt

u(0, n)−
NX
n=1

dpNn
dt

π(0, n).

Since
dpNn
dt

= h(t)
dpNn
dp

,

and u(0, n) = 1
n(n+1)

and π(0, n) = n−1
n+1

, we have

∆N = Np− h(t∗(0)) (QN +RN ) ,

where

QN = Np
NX
n=1

dpN−1n−1
dp

1

n (n+ 1)
,

and

RN =
NX
n=1

dpNn
dp

n− 1
n+ 1

.

Now

QN = Np
NX
n=1

1

(n+ 1)n

(N − 1)!
(n− 1)!(N − n)!

×[(n− 1)pn−2(1− p)N−n − (N − n)pn−1(1− p)N−n−1]

= N !p
NX
n=1

(n− 1)pn−2(1− p)N−n − (N − n)pn−1(1− p)N−n−1

(n+ 1)!(N − n)!
.

Similarly,

RN =
NX
n=1

n− 1
(n+ 1)

N !

n!(N − n)!
[npn−1(1− p)N−n − (N − n)pn(1− p)N−n−1]

= N !p
NX
n=1

(n− 1) [npn−2(1− p)N−n − (N − n)pn−1(1− p)N−n−1]
(n+ 1)!(N − n)!

.
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Hence

QN +RN = N !p
NX
n=1

(n+ 1)(n− 1)pn−2(1− p)N−n − n(N − n)pn−1(1− p)N−n−1

(n+ 1)!(N − n)!
.

We have

NX
n=1

(n+ 1)(n− 1)pn−2(1− p)N−n

(n+ 1)!(N − n)!
=

NX
n=2

(n+ 1)(n− 1)pn−2(1− p)N−n

(n+ 1)!(N − n)!

=
N−1X
n=1

npn−1(1− p)N−n−1

(n+ 1)!(N − n− 1)! ,

and

NX
n=1

n(N − n)pn−1(1− p)N−n−1

(n+ 1)!(N − n)!
=

N−1X
n=1

n(N − n)pn−1(1− p)N−n−1

(n+ 1)!(N − n)!

=
N−1X
n=1

npn−1(1− p)N−n−1

(n+ 1)!(N − n− 1)! .

Hence

QN +RN = 0,

and therefore

∆N = Np. ¤

Proof of Proposition 3: Consider a standard auction with an entry fee φ ∈ R and
a public reserve price r ∈ [0, ω]. An entry strategy for a buyer is also described by a
threshold t ∈ [0, c̄]. Given (φ, r) if all bidders follow the same entry strategy t ∈ [0, c̄],
then the gross expected utility of an entering buyer is

Ũ(φ, r,H(t)) = U(r,H(t))− φ,

and the revenue of the seller is

Π̃(φ, r,H(t)) = Π(r,H(t)) +NH(t)φ.

Note that since the gross surplus is distributed between the seller and buyers, we

have

Π̃(φ, r,H(t)) +NH(t)Ũ(φ, r,H(t)) ≡
NX
n=1

pNn (H(t))s(r, n).
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A symmetric (Bayes perfect) entry equilibrium is a threshold t ∈ [0, c̄] such that for
all z ∈ [0, c̄]: Ũ(φ, r,H(t)) > z implies t > z and Ũ(φ, r,H(t)) < z implies t < z. For

φ ∈ R and r ∈ [0, ω] write t̃∗(φ, r) = t, where t ∈ [0, c̄] is the solution to the equation

t = Ũ(φ, r,H(t)). (4)

The mapping t̃∗ can be shown to be a continuous function onR×[0, ω] using arguments
analogous to those used in the proof of Lemma 3 above. It is easy to see that an

analog of Proposition 1 holds; i.e., any standard auction with an entry fee φ and a

public reserve price r has a unique symmetric entry equilibrium t = t̃∗(φ, r) ∈ [0, c̄].
Let (φ, r) ∈ R × [0, ω] with r > 0. We establish Proposition 3 by showing that

there is φ̄ such that

Π̃(φ̄, 0, H(t̃(φ̄, 0))) > Π̃(φ, r,H(t̃(φ, r))).

Define φ̄ by the equation

t̃(φ, r) = Ũ(φ̄, 0, H(t̃(φ̄, 0))).

Thus

Ũ(φ, r,H(t̃(φ, r))) = t̃(φ, r) = Ũ(φ̄, 0, H(t̃(φ̄, 0))) = t̃(φ̄, 0).

Write H(t̃ (φ, r)) = H(t̃(φ̄, 0)) = p. Then, since r > 0 implies s(0, n) > s(r, n) for

each n we have

Π̃(φ̄, 0,H(t̃(φ̄, 0))) =

Ã
NX
n=1

pNn (p)s(0, n)

!
−NpŨ(φ, 0, H(t̃(φ̄, 0)))

=

Ã
NX
n=1

pNn (s(r, n)− s(r, n) + s(0, n))

!
−NpŨ(φ, r,H(t̃(φ, r)))

= Π̃(φ, r,H(t̃(φ, r))) +
NX
n=1

pNn (s(0, n)− s(r, n))

> Π̃(φ, r,H(t̃(φ, r))).¤

Proof of Proposition 4: Let (rII , tII , βII) be a symmetric equilibrium in undom-

inated strategies. Then βII = β∗. The expected utility of bidder that expects the
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reserve price to be rII and the other buyers to enter when their entry cost are less

than or equal to tII , and upon entry bid their value, is

U II(rII , tII , β∗) =
NX
n=1

pNn (t
II)u(rII , n) = U(rII , tII).

Hence equilibrium condition S2 implies

U(rII , tII) = tII ;

i.e., tII = t∗(rII). Hence for r ∈ [0, ω] seller revenue is

ΠII(r,H(tII), β∗) =
NX
n=1

pNn (H(t
II))π(r, n)

= Π(r,H(tII)).

Clearly r = ω is a dominated strategy for the seller. Hence rII < ω, and therefore

tII = t∗(rII) > 0 by Lemma 3. And since r∗ uniquely maximizes π(r, n) for every
n ∈ {1, ..., N} — see Riley and Samuelson (1981) and Myerson (1981) — tII > 0 implies
that r∗ uniquely maximizes ΠII(r,H(tII), β∗). Therefore equilibrium condition S1

implies rII = r∗.
Now let rp be an optimal public reserve price. Then

ΠII(r∗, H(t∗(r∗), β∗) = Π(r∗, H(t∗(r∗)) ≤ Π(rp, H(t
∗(rp));

i.e., seller revenue in a symmetric equilibrium in undominated strategies of a second-

price sealed-bid auction is less than or equal to his revenue in any standard auction

with an optimal public reserve price. Since rp ≤ r∗ by Proposition 2, buyer surplus is

N

Z t∗(r∗)

0

¡
U II(r∗, t∗(r∗), β∗)− z

¢
dH(z) = N

Z t∗(r∗)

0

(t∗(r∗)− z) dH(z)

≤ N

Z t∗(rp)

0

(t∗(rp)− z) dH(z);

i.e., buyer surplus in a symmetric equilibrium in undominated strategies of a second-

price sealed-bid auction is less than or equal to that in any standard auction with an

optimal public reserve price. Moreover, by Proposition 2 when H is differentiable,

then rp > r∗, and therefore both inequalities above are strict. ¤

Proof of Proposition 5: Clearly r = 0 is the unique (weakly) dominant strategy for
the seller. Hence if (rI , tI , βI) is a symmetric equilibrium in undominated strategies,
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we have rI = 0. Now given rI = 0, then βI is a symmetric increasing equilibrium of

the auction with a reserve price r = 0 when the number of bidders follows a binomial

distribution B(N, p(tI)). Thus, we can appeal to the R.E.P. to calculate the bidders

expected utility as

U I(rI , H(tI), βI) =
NX
n=1

pNn (H(t
I))u(rI , n) = U(rI , tI).

Condition S2 implies tI = t∗(rI) = t∗(0). Hence buyer surplus is

N

Z t∗(0)

0

¡
U I(rI , H(tI), βI)− z

¢
dH(z) = N

Z t∗(0)

0

(U(0, t∗(0))− z) dH(z)

= N

Z t∗(0)

0

(t∗(0)− z) dH(z)

≥ N

Z t∗(rp)

0

(t∗(rp))− z) dH(z)

= N

Z t∗(rp)

0

(U(rp, t
∗(rp))− z) dH(z).

The last term on the right hand side of the inequality is buyer surplus is a standard

auction with an optimal public reserve rp. Recall that rp ≥ 0 by Proposition 2. Seller
revenue is

ΠI(rI ,H(tI), βI) = Π(0, t∗(0)) ≤ Π(rp, t
∗(rp)).

Further, if H is differentiable and values follow a uniform distribution then rp > 0,

and therefore both the above inequalities are strict. The fact that the equilibrium

surplus is maximum follows from Lemma 2. Finally, it is clearly (0, t∗(0), βIt∗(0)) is a
symmetric equilibrium with entry. ¤
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