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Abstract 

 
We develop a simple estimator for production functions in the presence of endogenous 

productivity change that allows us to retrieve productivity and its relationship with R&D at the 
firm level. By endogenizing the productivity process we build on the recent literature on 
structural estimation of production functions. Our dynamic investment model can be viewed as a 
generalization of the knowledge capital model (Griliches 1979) that has remained a cornerstone 
of the productivity literature for more than 25 years. We relax the assumptions on the R&D 
process and examine the impact of the investment in knowledge on the productivity of firms.  

We illustrate our approach on an unbalanced panel of more than 1800 Spanish 
manufacturing firms in nine industries during the 1990s. Our findings indicate that the link 
between R&D and productivity is subject to a high degree of uncertainty, nonlinearity, and 
heterogeneity across firms. By accounting for uncertainty and nonlinearity, we extend the 
knowledge capital model. Moreover, capturing heterogeneity gives us the ability to assess the 
role of R&D in determining the differences in productivity across firms and the evolution of firm-
level productivity over time. 
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1 Introduction

Firms invest in R&D and related activities to develop and introduce process and product
innovations. By enhancing productivity these investments in knowledge create long-lived
assets for firms, similar to their investments in physical capital. Our goal in this paper is to
assess the role of R&D in determining the differences in productivity across firms and the
evolution of firm-level productivity over time. To achieve this goal, we have to estimate the
parameters of the production function and retrieve productivity at the level of the firm.

Perhaps the major obstacle in production function estimation is that the decisions that
a firm makes depend on its productivity. Because the productivity of the firm is un-
observed by the econometrician, this gives rise to an endogeneity problem (Marschak &
Andrews 1944). Intuitively, if a firm adjusts to a change in its productivity by expanding
or contracting its production depending on whether the change is favorable or not, then
unobserved productivity and input usage are correlated and biased estimates result.

Recent advances in the structural estimation of production functions, starting with
the dynamic investment model of Olley & Pakes (1996) (hereafter OP), tackle this issue.
The insight of OP is that if (observed) investment is a monotone function of (unobserved)
productivity, then this function can be inverted to back out productivity. Controlling for
productivity resolves the endogeneity problem as well as, eventually, the selection problem
that may arise if a firm’s decision to exit the industry depends on its productivity.1 In
addition to OP, this line of research includes contributions by Levinsohn & Petrin (2003)
(hereafter LP) and Ackerberg, Caves & Frazer (2005) (hereafter ACF) as well as a long list
of applications.

Common to the extant literature is the assumption that any changes in its productivity
are exogenous to the firm. But if productivity evolves independently of R&D, then a firm
has no incentive to invest in R&D in the first place. This makes the available estimators
ill-suited to study the link between R&D and productivity. Indeed, they have mostly
been applied to analyze changes in productivity in response to exogenous shocks such as
deregulation (e.g., OP) or trade liberalization (e.g., Pavcnik 2002, Topalova 2004).

In this paper, we develop a dynamic model that accounts for investment in knowledge,
thereby endogenizing productivity change, and derive a simple estimator for production
functions in this setting. We use our approach to study the relationship between R&D
and productivity in Spanish manufacturing firms during the 1990s. We particularly pay
attention to the uncertainties and nonlinearities in the R&D process and their implications
for heterogeneity across firms.

We start by modeling a firm that can invest in R&D in order to improve its productivity
over time in addition to carrying out a series of investments in physical capital. Both
investment decisions depend on the current productivity and capital stock of the firm. The

1See Griliches & Mairesse (1998) and Ackerberg, Benkard, Berry & Pakes (2005) for reviews of the
problems involved in the estimation of production functions.
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evolution of productivity is subject to random shocks. We interpret these innovations to
productivity as representing the resolution over time of all uncertainties. They capture the
factors that have a persistent influence on productivity such as absorption of techniques,
modification of processes, and gains and losses due to changes in labor composition and
management abilities. R&D governs the evolution of productivity up to an unpredictable
component. Hence, for firms that engage in R&D, the productivity innovations additionally
capture the uncertainties inherent in the R&D process such as chance in discovery and
success in implementation. Productivity thus follows a first-order Markov process that can
be shifted by R&D expenditures. Subsequently decisions on variable (or “static”) inputs
such as labor and materials are taken according to the current productivity and capital
stock of the firm.

Next we develop a simple estimator for production functions that can accommodate
the controlled Markov process that results from the impact of R&D on the evolution of
productivity. Endogenizing the productivity process by incorporating R&D expenditures
into the dynamic investment model of OP is difficult because it requires severely restricting
how R&D can impact productivity in order to guarantee that investment in physical capital
can be inverted to back out productivity (Buettner (2005), see Section 3 for details). Instead
of relying on the firm’s dynamic programming problem we use the fact that decisions on
variable inputs are based on current productivity, similar to LP and ACF. These inputs are
chosen with current productivity known and therefore contain information about it. The
resulting input demands are invertible functions of unobserved productivity (as first shown
by LP). This enables us to control for productivity and obtain consistent estimates of the
parameters of the production function. We build on the previous literature by recognizing
that, given a parametric specification of the production function, the functional form of
these inverse input demand functions is known. Because we fully exploit the structural
assumptions, we do not have to rely on nonparametric methods to estimate the inverse
input demand function. This renders identification and estimation more tractable. It also
yields efficiency gains.

Of course, it has long been recognized that the productivity process is endogenous.
Griliches (1979), in particular, proposed to augment the production function with the stock
of knowledge as proxied for by a firm’s past R&D expenditures. This knowledge capital
model has remained a cornerstone of the productivity literature for more than 25 years
and has been applied in hundreds of empirical studies on firm-level productivity and also
extended to macroeconomic growth models (see Griliches (1995) for a comprehensive sur-
vey).2 While useful as a practical tool, the knowledge capital model has a long list of

2See Hall & Mairesse (1995) for a classic application. The knowledge capital model has evolved in many
directions. Pakes & Schankerman (1984a) modeled the creation of knowledge by specifying a production
function in terms of R&D capital and R&D labor. Jaffe (1986) initiated ways of accounting for the ap-
propriability of the external flows of knowledge or spillovers. For recent examples see Griffith, Redding &
Van Reenen (2004) or Griffith, Harrison & Van Reenen (2006).
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known drawbacks as explained, for example, in Griliches (2000). The critical (but implicit)
assumptions of the basic model include the linear and certain accumulation of knowledge
from period to period in proportion to R&D expenditures as well as the linear and certain
depreciation.

The link between R&D and productivity, however, is much more complex. The outcome
of the R&D process is likely to be subject to a high degree of uncertainty. Discovery is, by
its very nature, uncertain. Once discovered an idea has to be developed and applied, and
there are the technical and commercial uncertainties linked to its practical implementation.
In addition, current and past investments in knowledge are likely to interact with each other
in many ways. For example, there is evidence of complementarities in the accumulation of
knowledge (Klette 1996). In general, there is little reason to believe that this and other
features such as economies of scale can be adequately captured by simple functional forms.

Our dynamic investment model can be viewed as a generalization of the knowledge cap-
ital model. In particular, we recognize the uncertainties in the R&D process in the form of
shocks to productivity. We model the interactions between current and past investments
in knowledge in a flexible fashion. Furthermore, we relax the assumption that the obsoles-
cence of previously acquired knowledge can be described by a constant rate of depreciation.
This allows us to more closely assess the impact of the investment in knowledge on the
productivity of firms.

We apply our estimator to an unbalanced panel of more than 1800 Spanish manufac-
turing firms in nine industries during the 1990s. The data refute the assumptions at the
heart of the knowledge capital model. To begin with, the R&D process must be treated
as inherently uncertain. We estimate that, depending on the industry, between 20% and
60% of the variance in actual productivity is explained by productivity innovations that
cannot be predicted when decisions on R&D expenditures are made. Our estimates further
imply that the return to R&D is often twice that of the return to investment in physical
capital. This suggests that the uncertainties inherent in the R&D process are economically
significant and matter for firms’ investment decisions.

The impact of current R&D on future productivity depends crucially on current pro-
ductivity, and there is evidence of complementarities as well as increasing returns to R&D.
Moreover, the data very clearly reject the functional form restrictions implied by the knowl-
edge capital model, thus casting doubt on the linearity assumption in the accumulation and
depreciation of knowledge.

Capturing the uncertainties in the R&D process also paves the way for heterogeneity
across firms. Whereas firms with the same time path of R&D expenditures have necessarily
the same productivity in the knowledge capital model, in our setting this is no longer the
case because we allow the shocks to productivity to accumulate over time. This gives us
the ability to assess the role of R&D in determining the differences in productivity across
firms and the evolution of firm-level productivity over time.
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Despite the uncertainties in the R&D process, the expected productivity of firms that
perform R&D is systematically more favorable in the sense that their distribution of ex-
pected productivity tends to stochastically dominate the distribution of firms that do not
perform R&D. Assuming that the productivity process is exogenous takes a sort of average
over firms with distinct innovative activities and hence blurs remarkable differences in the
impact of the investment in knowledge on the productivity of firms. In addition, we esti-
mate that the contribution of firms that perform R&D explains between 65% and 85% of
productivity growth in the industries with intermediate or high innovative activity. R&D
expenditures are thus a primary source of productivity growth.

Our analysis further implies that productivity is considerably more fluid than what
the knowledge capital literature suggests. Our model allows us to recover the entire dis-
tribution of the elasticity of output with respect to R&D expenditures—a measure of the
return to R&D—as well as that of the elasticity of output with respect to already attained
productivity—a measure of the degree of persistence in the productivity process. On aver-
age we obtain higher elasticities with respect to R&D expenditures than in the knowledge
capital model and lower elasticities with respect to already attained productivity. Hidden
behind these averages, however, is a substantial amount of heterogeneity across firms.

Overall, the link between R&D and productivity is subject to a high degree of un-
certainty, nonlinearity, and heterogeneity across firms. Abstracting from uncertainty and
nonlinearity, as is done in the knowledge capital model, or assuming an exogenous pro-
cess for productivity, as is done in the literature following OP, overlooks some of its most
interesting features.

R&D plays a key role in the debate about growth in Spain. A recent OECD study voiced
concern that boosting R&D and innovation is a challenge for Spain given its industrial
structure with few high-tech industries and mostly small and medium-sized firms (OECD
2007) and in 2005 the Spanish government launched the Ingenio 2010 initiative that is
targeted at funding large-sized, high-risk research projects. Our findings have implications
for industry dynamics and R&D policy that directly speak to these issues. While a fuller
exploration is left to future research, we note here some tentative conclusions. First, our
results imply that the scope for industrial change in Spain is limited. This is because firms
are repeatedly subjected to shocks that make it hard for them to “break away” from their
rivals and remain at or near the top of the productivity distribution. Second, because it
captures the heterogeneity across firms, our model can be used to determine the allocation
of subsidies, a major issue in R&D policy. Our results indicate a systematic relationship
between firm size and the return to R&D, thereby suggesting that, if the goal is to maximize
returns, then larger firms should be subsidized more extensively than smaller firms. At the
same time, our results attest to the high degree of uncertainty in the link between R&D
and productivity. But if uncertainty inhibits firms’ investments in R&D, then a case can
be made for R&D policy to be redirected from subsidizing the cost of R&D to providing

5



insurance against particularly unfavorable outcomes.

2 A model for investment in knowledge

A firm carries out two types of investments, one in physical capital and another in knowledge
through R&D expenditures. The investment decisions are made in a discrete time setting
with the goal of maximizing the expected net present value of future cash flows. The firm
has the Cobb-Douglas production function

yjt = β0 + βlljt + βkkjt + ωjt + ejt,

where yjt is the log of output of firm j in period t, ljt the log of labor, and kjt the log
of capital. We follow the convention that lower case letters denote logs and upper case
letters levels and focus on a value-added specification to simplify the exposition. Capital
is the only fixed (or “dynamic”) input among the conventional factors of production, and
accumulates according to Kjt = (1 − δ)Kjt−1 + Ijt−1. This law of motion implies that
investment Ijt−1 chosen in period t−1 becomes productive in period t. The productivity of
firm j in period t is ωjt. We follow OP and often refer to ωjt as “unobserved productivity”
since it is unobserved from the point of view of the econometrician (but known to the firm).
Productivity is presumably highly correlated over time and perhaps also across firms. In
contrast, ejt is a mean zero random shock that is uncorrelated over time and across firms.
The firm does not know the value of ejt at the time it makes its decisions for period t.

The assumption usually made about productivity (see OP, LP, and the subsequent liter-
ature) is that it follows an exogenous first-order Markov process with transition probabilities
P (ωjt|ωjt−1). This rules out that the firm spends on R&D and related activities. However,
investment in knowledge has always been thought of as aimed at modifying productivity for
given conventional factors of production (see, e.g., the tradition started by Griliches (1979)).
Our goal is thus to assess the role of R&D in determining the differences in productivity
across firms and the evolution of firm-level productivity over time.

We therefore consider productivity to be governed by a controlled first-order Markov
process with transition probabilities P (ωjt|ωjt−1, rjt−1), where rjt−1 is the log of R&D
expenditures. The Bellman equation for the firm’s dynamic programming problem is

V (kjt, ωjt) = max
ijt,rjt

π(kjt, ωjt)− ci(ijt)− cr(rjt) +
1

1 + ρ
E [V (kjt+1, ωjt+1)|kjt, ωjt, ijt, rjt] ,

where π(·) denotes per-period profits and ρ is the discount rate. In the simplest case the cost
functions ci(·) and cr(·) just transform logs into levels, but their exact forms are irrelevant
for our purposes.

The dynamic problem gives rise to two policy functions, i(kjt, ωjt) and r(kjt, ωjt) for the
investments in physical capital and knowledge, respectively. The main difference between
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the two types of investments is that they affect the evolution of different state variables,
i.e., either the capital stock kjt or the productivity ωjt of the firm.

When the decision about investment in knowledge is made in period t − 1, the firm
is only able to anticipate the expected effect of R&D on productivity in period t. The
Markovian assumption implies

ωjt = E [ωjt|ωjt−1, rjt−1] + ξjt = g(ωjt−1, rjt−1) + ξjt.

That is, actual productivity ωjt in period t can be decomposed into expected productivity
g(ωjt−1, rjt−1) and a random shock ξjt. Our key assumption is that the impact of R&D
on productivity can be expressed through the dependence of the conditional expectation
function g(·) on R&D expenditures. In contrast, ξjt does not depend on R&D expenditures:
by construction ξjt is mean independent (although not necessarily fully independent) of
rjt−1. This productivity innovation may be thought of as the realization of the uncertainties
that are naturally linked to productivity plus the uncertainties inherent in the R&D process
(e.g., chance in discovery, degree of applicability, success in implementation). It is important
to stress the timing of decisions in this context: When the decision about investment in
knowledge is made in period t − 1, the firm is only able to anticipate the expected effect
of R&D on productivity in period t as given by g(ωjt−1, rjt−1) while its actual effect also
depends on the realization of the productivity innovation ξjt that occurs after the investment
has been completely carried out. Of course, the conditional expectation function g(·) is
unobserved from the point of view of the econometrician (but known to the firm) and must
be estimated nonparametrically.

If we consider a ceteris paribus increase in R&D expenditures that changes ωjt to ω̃jt,
then ω̃jt−ωjt approximates the effect of this change in productivity on output in percentage
terms, i.e., (Ỹjt−Yjt)/Yjt = exp(ω̃jt−ωjt)− 1 ' ω̃jt−ωjt. That is, the change in ωjt shifts
the production function and hence measures the change in total factor productivity. Also
g(·) and ξjt can be interpreted in percentage terms and decompose the change in total factor
productivity.

Our setting encompasses as a particular case the knowledge capital model (see Griliches
(1979, 2000)). In this model, a conventional Cobb-Douglas production function is aug-
mented by including the log of knowledge capital cjt as an extra input yielding

yjt = β0 + βlljt + βkkjt + εcjt + ejt, (1)

where ε is the elasticity of output with respect to knowledge capital. Knowledge capital is
assumed to accumulate with R&D expenditures and to depreciate from period to period at
a rate δ. Hence, its law of motion can be written as

Cjt = (1− δ)Cjt−1 + Rjt−1 = Cjt−1

(
1− δ +

Rjt−1

Cjt−1

)
.
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Taking logs we have

cjt ' cjt−1 +
(

Rjt−1

Cjt−1
− δ

)
,

where Rjt−1

Cjt−1
is the rate of investment in knowledge. Letting ωjt = εcjt it is easy to see that

ωjt ' ωjt−1 + ε

(
exp(rjt−1)

exp(ωjt−1/ε)
− δ

)
(2)

and hence ωjt = g(ωjt−1, rjt−1). That is, the “classical” accumulation of knowledge capital
induces a particular expression for the conditional expectation function g(·) that depends
on both productivity and R&D expenditures in the previous period.

The knowledge capital model ignores that the accumulation of improvements to produc-
tivity is likely to be subjected to shocks. To capture this assume that the effect of the rate of
investment in knowledge has an unpredictable component ξjt. The law of motion becomes
Cjt = Cjt−1

(
1− δ + Rjt−1

Cjt−1
+ 1

εξjt

)
. This simple extension causes the law of motion of pro-

ductivity to be ωjt = g(ωjt−1, rjt−1) + ξjt, which turns out to be our controlled first-order
Markov process. Therefore, a useful way to think of our setting is as a generalization of the
knowledge capital model to the more realistic situation of uncertainty in the R&D process.3

In addition, our setting overcomes other problems of the knowledge capital model, in
particular the linear accumulation of knowledge from period to period in proportion to
R&D expenditures and the linear depreciation. The absence of functional form restrictions
on the combined impact of R&D and already attained productivity on future productivity
is an important step in the direction of relaxing all these assumptions. Of course, there is a
basic difference between the two models. In the case of the knowledge capital model, given
data on R&D and a guess for the initial condition, one must be able to construct the stock
of knowledge capital at all times and with it control for the impact of R&D on productivity.
In our setting, in contrast, the random nature of accumulation and the unspecified form of
the law of motion prevents the construction of the “stock of productivity,” which remains
unobserved. Consequently, no guess for the initial condition is required. Moreover, our
empirical strategy takes into account that the endogeneity problem in production function
estimation may not be completely resolved by adding the stock of knowledge capital to the
conventional factors of production.

3We note that there are ways of introducing uncertainty into the knowledge capital model, although there
are few such attempts in the literature. Borrowing from the dynamic investment model of Hall & Hayashi
(1989), let the law of motion for the log of knowledge capital be cjt = (1 − δ)cjt−1 + Rjt−1 + ξjt. Then
cjt = (1−δ)tc0+

∑t
τ=1(1−δ)t−τRjτ−1+

∑t
τ=1(1−δ)t−τξjτ can be split into a deterministic and a stochastic

part that is incorporated into the error term of the estimation equation. In this case, however, using R&D
expenditures as a proxy for the stock of knowledge gives rise to an endogeneity problem that invalidates the
traditional estimation strategies such as running OLS on first-differences of logs. A further problem is that
the ability to split the log of knowledge capital into a deterministic and a stochastic part relies heavily on
functional form. In particular, it is no longer possible if, as is customary in the literature, the law of motion
for the level of knowledge capital is assumed to be linear.
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3 Empirical strategy

Our model relaxes the assumption of an exogenous Markov process for productivity. As
emphasized in Ackerberg, Benkard, Berry & Pakes (2005), endogenizing this process is
problematic for the standard estimation procedures. First, it tends to invalidate the usual
instrumental variables approaches. Given an exogenous Markov process, input prices are
natural instruments for input quantities. This is, however, no longer the case if the tran-
sitions from current to future productivity are affected by the choice of an additional un-
observed “input” such as R&D because all quantities depend on all prices. Second, the
absence of data on R&D implies that a critical determinant of the probability distribution
of ωjt given ωjt−1 is missing. Recovering ωjt from kjt, ijt, and their lags, the key step in
OP, may thus be difficult.

Buettner (2005) extends the OP approach by studying a model similar to ours while
assuming transition probabilities for unobserved productivity of the form P (ωjt|ψt), where
ψt = ψ(ωjt−1, rjt−1) is an index that orders the probability distributions for ωjt. The restric-
tion to an index excludes the possibility that current productivity and R&D expenditures
affect future productivity in qualitatively different ways. Under certain assumptions it en-
sures that the policy function for investment in physical capital is still invertible and that
unobserved productivity can hence still be written as an unknown function of the capital
stock and the investment as ωjt = h(kjt, ijt). Buettner (2005) further notes, however, that
there are problems with identification even when data on R&D is available.

Our estimation procedure solves entirely the identification problem when there is data on
R&D by using a known function h(·) that is derived from the demand for variable inputs such
as labor and materials in order to recover unobserved productivity. These variable inputs
are chosen with current productivity known, and therefore contain information about it.
This allows us to back out productivity without making assumptions on the firm’s dynamic
investment problem. In particular, our approach does not rely on an index and frees up
the relationship between current productivity, R&D expenditures, and future productivity.
It can also solve potentially the identification problem when there is no data on R&D but
this point needs further research.4

While our approach pertains to production functions that are written in terms of either
gross output or value added, in what follows we focus on the value added case for the sake
of simplicity. The extension to the gross output case is straightforward.

Given the Cobb-Douglas production function yjt = β0 + βlljt + βkkjt + ωjt + ejt, the
assumption that the firm chooses labor based on the expectation E(ejt) = 0 gives the

4Muendler (2005) suggests to use investment in physical capital interacted with industry-specific com-
petition variables to proxy for endogenously evolving productivity. His rationale is that firms make R&D
decisions in light of their expectations about future market prospects. Hence, in the absence of data on
R&D, these competition variables should to some extent capture the drivers of R&D decisions.
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demand for labor as

ljt =
1

1− βl
(β0 + lnβl + βkkjt + ωjt − (wjt − pjt)) . (3)

Solving for ωjt we obtain the inverse labor demand function

h(ljt,kjt,wjt − pjt) = λ0 + (1− βl)ljt − βkkjt + (wjt − pjt),

where λ0 combines the constant terms −β0 and − lnβl and (wjt − pjt) is the relative wage
(homogeneity of degree zero in prices). From hereon we call h(·) the inverse labor demand
function and use hjt as shorthand for its value h(ljt,kjt,wjt − pjt).

Substituting the inverse labor demand function h(·) for ωjt in the production function
cancels out parameters of interest and leaves us with the marginal productivity condition
for profit maximization, i.e., lnβl + (yjt − ljt) = wjt − pjt + ejt. Using its value in period
t− 1 in the controlled Markov process, however, we have

yjt = β0 + βlljt + βkkjt + g(h(ljt−1, kjt−1, wjt−1 − pjt−1), rjt−1) + ξjt + ejt. (4)

Both kjt, whose value is determined in period t− 1 by it−1, and rjt−1 are uncorrelated with
ξjt by virtue of our timing assumptions. Only ljt is correlated with ξjt (since ξjt is part
of ωjt and ljt is a function of ωjt). Nonlinear functions of the other variables can be used
as instruments for ljt, as can be lagged values of ljt and the other variables. If firms can
be assumed to be perfectly competitive, then current wages and prices are exogenous and
constitute the most adequate instruments (since demand for labor is directly a function of
current wages and prices).

As noted by LP and ACF, backing out unobserved productivity from the demand for
either labor or materials is a convenient alternative to backing out unobserved productivity
from investment as in OP. In the tradition of OP, however, LP and ACF use nonparametric
methods to estimate the inverse input demand function. This forces them either to rely on a
two-stage procedure or to jointly estimate a system of equations as suggested by Wooldridge
(2004). The drawback of the two-stage approach is a loss of efficiency whereas the joint
estimation of a system of equations is numerically more demanding (see Ackerberg, Benkard,
Berry & Pakes (2005) for a discussion of the relative merits of the two approaches).

We differ from the previous literature in that we recognize that the parametric specifica-
tion of the production function implies a known form for the inverse labor demand function
h(·) that can be used to control for unobserved productivity. As a consequence, only the
conditional expectation function g(·) is unknown and must be estimated nonparametrically.
This yields efficiency gains (see Section 5.1 for details).

In addition, because we make full use of the structural assumptions, our approach is
immune to the collinearity problem that hinders identification in the OP/LP framework (as
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shown by ACF). We are also able to relax the assumption of perfect competition that LP
invoke in proving that labor demand is an invertible function of unobserved productivity.
We will come back to these points below.

Finally, unlike OP, LP, and ACF, we have but a single equation to estimate, thus easing
the computational burden. Apart from the presence of R&D expenditures, our estimation
equation (4) is similar in structure to the second equation of OP and LP when viewed
through the lens of Wooldridge’s (2004) GMM framework. In our setting the first equation
of OP and LP is the marginal productivity condition for profit maximization. Combining it
with our estimating equation (4) may help to estimate the labor coefficient, but this point
needs further research.

A drawback of our approach is that, in principle, it requires firm-level wage and price
data to estimate the model. The model remains identified, however, if the log of relative
wage is replaced by a set of dummies.5

Our model nests, as a particular case, the dynamic panel model proposed by Blundell
& Bond (2000). Suppose the Markov process is simply an autoregressive process that does
not depend on R&D expenditures so that we have g(ωjt−1) = ρωjt−1. Using the marginal
productivity condition for profit maximization to substitute ρyjt−1 for ρ(− ln βl + (wjt−1 −
pjt−1) + ljt−1), we are in the Blundell & Bond (2000) specification. Hence, the differences
between their and our approach lie in the generality of the assumption on the Markov
process and the strategy of estimation. In the tradition of OP and LP our method basically
proposes the replacement of unobservable autocorrelated productivity by an expression in
terms of observed variables and an unpredictable component, whereas their method models
the same term through the use of lags of the dependent variable (see ACF for a detailed
description of these two literatures).

Below we discuss how imperfect competition can be taken into account and the likelihood
of sample selection. Then we turn to identification, estimation, and testing.

Imperfect competition. Until now we have assumed a perfectly competitive environ-
ment. But when firms have some market power, say because products are differentiated,
then output demand enters the specification of the inverse input demand functions (see, e.g.,
Jaumandreu & Mairesse 2005). Consider firms facing a downward sloping demand function
that depends on the price of the output Pjt and the demand shifters Zjt. Profit maxi-
mization requires that firms set the price that equates marginal cost to marginal revenue
Pjt

(
1− 1

η(pjt,zjt)

)
, where η(·) is the absolute value of the elasticity of demand evaluated at

the equilibrium price and the particular value of the demand shifter and, for convenience, is
written as a function of pjt = ln Pjt and zjt = ln Zjt. With firms minimizing costs, marginal
cost and conditional labor demand can be determined from the cost function and combined

5This may be an appropriate solution in the absence of wage and price data if the industry can be
considered perfectly competitive.
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with marginal revenue to give the inverse labor demand function

hIC(ljt, kjt, wjt − pjt, pjt, zjt) = λ0 + (1− βl)ljt − βkkjt + (wjt − pjt)− ln
(

1− 1
η(pjt, zjt)

)
.

Thus, the estimation equation is

yjt = β0+βlljt+βkkjt+g
(
hIC(ljt−1, kjt−1, wjt−1 − pjt−1, pjt−1, zjt−1), rjt−1

)
+ξjt+ejt. (5)

As both pjt and zjt enter the equations lagged they are expected to be uncorrelated with
the productivity innovation ξjt.6

Sample selection. A potential problem in the estimation of production functions is sam-
ple selection. If a firm’s dynamic programming problem generates an optimal exit decision,
based on the comparison between the sell-off value of the firm and its expected profitability
in the future, then this decision is a function of current productivity. The simplest model,
based on an exogenous Markov process, predicts that if an adversely enough shock to pro-
ductivity is followed immediately by exit, then there will be a negative correlation between
the shocks and the capital stocks of the firms that remain in the industry. Hence, sample
selection will lead to biased estimates.

Accounting for R&D expenditures in the Markov process complicates matters. On the
one hand, a firm now has an instrument to try to rectify an adverse shock and the optimal
exit decision is likely to become more complicated. To begin with, there are many more
relevant decisions such as beginning, continuing, or stopping innovative activities whilst
remaining in the industry, and exiting in any of the different positions. On the other hand,
a firm now is more likely to remain in the industry despite an adverse shock. Innovative
activities often imply large sunk cost which will make the firm more reluctant to exit the
industry or at least to exit it immediately. This will tend to alleviate the selection problem.
Given that the institutional setting in Spain renders it further unlikely that a firm is able
to exit the industry immediately after receiving an adverse shock to productivity (see, e.g.,
Djankov, La Porta, Lopez-de Silanes & Shleifer 2002), we follow LP and ACF and do not
correct for sample selection. Although this could be done by modeling exit decisions along
the lines of OP, at this stage we simply explore whether there is a link between exit decision
and estimated productivity (see Section 5.1 for details).

3.1 Identification

Our estimation equation (4) is a semiparametric, so-called partially-linear, model with the
additional restriction that the inverse labor demand function h(·) is of known form. To see

6Note that this setting yields an estimate of the average elasticity of demand. The reason by which this is
possible is the same by which correcting the Solow residual for imperfect competition allows for estimating
margins and elasticities (see, e.g., Hall 1990).
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how this restriction aids identification, suppose to the contrary that h(·) were of unknown
form. In this case, the composition of h(·) and g(·) is another function of unknown form.
The fundamental condition for identification is that the variables in the parametric part
of the model are not perfectly predictable (in the least squares sense) by the variables in
the nonparametric part (Robinson 1988). In other words, there cannot be a functional
relationship between the variables in the parametric and nonparametric parts (see Newey,
Powell & Vella (1999) and also ACF for an application to the OP/LP framework). To see
that this condition is violated, recall that Kjt = (1− δ)Kjt−1 + exp(i(kjt−1, ωjt−1)) by the
law of motion and the policy function for investment in physical capital. But kjt−1 is one
of the arguments of h(·) and ωjt−1 is by construction a function of all arguments of h(·),
thereby making kjt perfectly predictable from the variables in the nonparametric part.

Of course, in our setting the inverse labor demand function h(·) is of known form. The
central question thus becomes whether kjt is perfectly predictable from the value of h(·)
(as opposed to its arguments) and rjt−1. Since hjt−1 is identical to ωjt−1, we have to ask
if kjt−1 and hence kjt (via i(kjt−1, ωjt−1)) can be inferred from rjt−1. This may indeed
be possible. Recall that rjt−1 = r(kjt−1, ωjt−1) by the policy function for investment in
knowledge. Hence, if its R&D expenditures happen to be increasing in the capital stock of
the firm, then r(·) can be inverted to back out kjt−1.

Fortunately, there is little reason to believe that this is the case. In fact, even under
the fairly stringent assumptions in Buettner (2005), it is not clear that r(·) is invertible.
Moreover, there is empirical evidence that invertibility may fail even for investment in
physical capital (Greenstreet 2005) and it seems clear that R&D expenditures are even
more fickle.

Even if r(·) happens to be an invertible function of kjt−1, anything that shifts the costs of
the investments in physical capital and knowledge over time guarantees identification. The
price of equipment goods is likely to vary, for example, and the marginal cost of investment
in knowledge depends greatly on the nature of the undertaken project. Using xjt to denote
these shifters, the policy functions become i(kjt, ωjt, xjt) and r(kjt, ωjt, xjt). Obviously, xjt

cannot be perfectly predicted from hjt−1 and rjt−1. This breaks the functional relationship
between Kjt = (1− δ)Kjt−1 + exp(i(kjt−1, ωjt−1, xjt)) and hjt−1 and rjt−1.7

In closing we note that the previous arguments carry over to the OP/LP framework
with an exogenous Markov process for productivity. As ACF argue, the estimators in LP
and OP suffer from a collinearity problem that hinders identification. Our approach differs
in that it exploits the known form of the inverse labor demand function. Consequently,
if the productivity process can indeed be taken as exogenous, then the model is identified
because kjt is not perfectly predictable from the value of h(·). Remarkably this is the case

7Depending on the construction of the capital stock in the data, we may also be able to account for
uncertainty in the impact of investment in physical capital. But once an error term is added to the law of
motion for physical capital, kjt can no longer be written as a function of hjt−1 and rjt−1, and identification
is restored.
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even in the absence of cost shifters for investment in physical capital and knowledge.

3.2 Estimation

The estimation problem can be cast in the nonlinear GMM framework

E
[
z′jt(ξjt + ejt)

]
= E

[
z′jtvjt(θ)

]
= 0,

where zjt is a vector of instruments and we write the error term vjt(·) as a function of the
parameters θ to be estimated. The objective function is

min
θ


 1

N

∑

j

z′jvj(θ)



′

AN


 1

N

∑

j

z′jvj(θ)


 ,

where z′j and vj(·) are L × Tj and Tj × 1 vectors, respectively, with L being the num-
ber of instruments, Tj being the number of observations of firm j, and N the number

of firms. We first use the weighting matrix AN =
(

1
N

∑
j z′jzj

)−1
to obtain a consistent

estimator of θ and then we compute the optimal estimator which uses weighting matrix

AN =
(

1
N

∑
j z′jvj(θ̂)vj(θ̂)

′
zj

)−1
.

Production function. Throughout we assume imperfect competition. Our preliminary
estimates indicate that in some industries it is useful to add a time trend or dummies to
the production function. One can say that there is an “observable” trend in the evolution
of productivity that is treated separately from ωjt but of course taken into account when
substituting hIC

jt for ωjt. In case of a time trend our goal is thus to estimate the gross-output
production function

yjt = β0 + βtt + βlljt + βkkjt + βmmjt + g(hIC
jt−1, rjt−1) + ξjt + ejt.

where

hIC
jt = λ0−βtt+(1−βl−βm)ljt−βkkjt+(1−βm)(wjt−pjt)+βm(pMjt−pjt)−ln

(
1− 1

η(pjt, zjt)

)

and (pMjt − pjt) is the relative price of materials, and analogously in case of dummies.

Series estimator. As suggested by Wooldridge (2004) when modeling an unknown func-
tion q(v, u) of two variables v and u we use a series estimator made of a “complete set” of
polynomials of degree Q (see Judd 1998), i.e., all polynomials of the form vjuk, where j and
k are nonnegative integers such that j+k ≤ Q. When the unknown function q(·) has a single
argument, we use a polynomial of degree Q to model it, i.e., q(v) = ρ0 + ρ1v + . . . + ρQvQ.
In the remainder of this paper we set Q = 3.

14



Taking into account that there are firms that do not perform R&D, the most general
formulation is

yjt = β0 + βtt + βlljt + βkkjt + βmmjt

+1(Rjt−1 = 0)g0(hIC
jt−1) + 1(Rjt−1 > 0)g1(hIC

jt−1, rjt−1) + ξjt + ejt. (6)

This allows for a different unknown function when the firm adopts the corner solution of
zero R&D expenditures and when it chooses positive R&D expenditures.

It is important to note that any constant that its arguments may have will be subsumed
in the constant of the unknown function. Our specification is therefore

g0(hIC
jt−1) = g00 + g01(hIC

jt−1 − λ0),

g1(hIC
jt−1, rjt−1) = g10 + g11(hIC

jt−1 − λ0, rjt−1),

where in g00 and g10 we collapse the constants of the unknown functions g0(·) and g1(·)
and the constant of hIC

jt−1. The constants g00, g10, and β0 cannot be estimated separately.
We thus estimate the constant for nonperformers g00 together with the constant of the
production function β0 and include a dummy for performers to measure the difference
between constants β0 + g10 − (β0 + g00) = g10 − g00.

To nonparametrically estimate the absolute value of the elasticity of demand in case
of imperfect competition, we impose the theoretical restriction that η(·) > 1 by using the
specification η(pjt−1, zjt−1) = 1 + exp(q(pjt−1, zjt−1)), where q(·) is modeled as described
above.

Instrumental variables. Our baseline specification with time trend has 27 parameters:
constant, time trend, three production function coefficients, thirteen coefficients in the series
approximation of g(·) and nine coefficients in the series approximation of η(·).

As discussed before, kjt is always a valid instrument because it is not correlated with
ξjt as the latter is unpredictable when it−1 is chosen.8 Labor and materials, however, are
contemporaneously correlated with the innovation to productivity. While the lags of both
these inputs are valid instruments, ljt−1 is already appearing in hIC

jt−1. We can still use
mjt−1. Constant and time trend are valid instruments. We therefore have four instruments
to estimate the constant and the coefficients for the time trend, capital, labor, and materials.
This leaves us short of at least one more instrument.

We use as additional instruments the complete set of polynomials of degree three in
the variables ljt−1, kjt−1, wjt−1 − pjt−1, and pMjt−1 − pjt−1 (34 instruments) as well as the
complete set of polynomials in the variables pjt−1 and zjt−1 (9 instruments). We further

8We follow Ackerberg, Benkard, Berry & Pakes (2005) and assume that the investment decided in period
t− 1 coincides with the investment observed in period t. Experimentation with the lagged value of this flow
gave very similar results.
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use the powers up to degree three in the variable rjt−1 (3 instruments) and the interactions
up to degree three of it with the above two complete sets of polynomials (12 + 6 = 18
instruments). We finally use a dummy for the firms that perform R&D. This gives a total
of 69 instruments.

When we have enough degrees of freedom we interact the complete set of polynomials
in the variables ljt−1, kjt−1, wjt−1 − pjt−1, and pMjt−1 − pjt−1 as well as the complete
set of polynomials in the variables pjt−1 and zjt−1 with dummies for nonperformers and
performers. This gives a total of 69 + 34 + 9 = 112 instruments.

Given these instruments, our estimator has exactly the form of the GMM version of Ai &
Chen’s (2003) sieve minimum distance estimator, a nonparametric least squares technique
(see Newey & Powell 2003). This means that, if the conditional expectation function g(·)
is specified in terms of variables which are correlated with the error term of the estimation
equation, we could still obtain a consistent estimator of the parameters by restricting the
instruments to the exogenous conditioning variables.

Productivity estimates. Once the model is estimated we can compute ωjt, hIC
jt , and

g(·) up to a constant. We can also obtain an estimate of ξjt up to a constant as the difference
between the estimates of ωjt and g(·). Recall that the productivity of firm j in period t

is given by βtt + ωjt = βtt + g(ωjt−1, rjt−1) + ξjt with ωjt = hIC
jt . Using the notational

convention that ω̂jt, ĥIC
jt , and ĝ(·) represent the estimates up to a constant, we have

ω̂jt = ĥIC
jt = −β̂tt+(1−β̂l−β̂m)ljt−β̂kkjt+(1−β̂m)(wjt−pjt)+β̂m(pMjt−pjt)−ln

(
1− 1

η̂(pjt, zjt)

)

and

ĝ(ĥjt−1, rjt−1) = 1(Rjt−1 = 0)ĝ01(ĥIC
jt−1)

+1(Rjt−1 > 0)[( ̂g10 − g00) + ĝ11(ĥIC
jt−1, rt−1)].

We can also estimate the random shocks ejt.

3.3 Testing

The value of the GMM objective function for the optimal estimator, multiplied by N , has a
limiting χ2 distribution with L−P degrees of freedom, where L is the number of instruments
and P the number of parameters to be estimated. We use it as a test for overidentifying
restrictions or validity of the moment conditions based on the instruments.

We test whether the model satisfies certain restrictions by computing the restricted esti-
mator using the weighting matrix for the optimal estimator and then comparing the values
of the properly scaled objective functions. The difference has a limiting χ2 distribution with
degrees of freedom equal to the number of restrictions.
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We also test whether the conditional expectation function is consistent with the knowl-
edge capital model. Recall from Section 2 that the knowledge capital model implies that
g1(hIC

jt−1, rjt−1) = g10 + g11(hIC
jt−1 − λ0, rjt−1) has a particular functional form:

ωjt = ωjt−1 + ε

(
exp(rjt−1)

exp(ωjt−1/ε)
− δ

)
= hIC

jt−1 + ε

(
exp(rjt−1)

exp(hIC
jt−1/ε)

− δ

)

= λ0 + (hIC
jt−1 − λ0) + ε exp(−λ0/ε)

exp(rjt−1)
exp((hIC

jt−1 − λ0)/ε)
− εδ

= (λ0 − εδ) + (hIC
jt−1 − λ0) + γ

exp(rjt−1)
exp((hIC

jt−1 − λ0)/ε)

= g10 + g11(hIC
jt−1 − λ0, rjt−1),

where γ and ε are parameters to be estimated. We apply the Rivers & Vuong (2002) test
for model selection among nonnested models. After multiplying the difference between the
GMM objective functions by

√
N , the test statistic has an asymptotic normal distribution

with variance

σ2 = 4
[
(
∑

j

z′jvj(θ̂))′AN (
∑

j

z′jvj(θ̂)vj(θ̂)′zj)AN (
∑

j

z′jvj(θ̂))

+(
∑

j

z
′
jvj(θ̂KCM ))′AN (

∑

j

z′jvj(θ̂KCM )vj(θ̂KCM )′zj)AN (
∑

j

z′jvj(θ̂KCM ))

−2(
∑

j

z′jvj(θ̂))′AN (
∑

j

z′jvj(θ̂)vj(θ̂KCM )′zj)AN (
∑

j

z′jvj(θ̂KCM ))
]
,

where θ̂ and θ̂KCM are the unrestricted and restricted parameter estimates, respectively,
the instruments in zj are kept the same, and AN is a common first-step weighting matrix.

4 Data

We use an unbalanced panel of Spanish manufacturing firms in nine industries during the
1990s. This broad coverage of industries is unusual, and it allows us to examine the link be-
tween R&D and productivity in a variety of settings that potentially differ in the importance
of R&D.

Our data come from the Encuesta Sobre Estrategias Empresariales (ESEE) survey, a
firm-level survey of Spanish manufacturing sponsored by the Ministry of Industry.9 The
unit surveyed is the firm, not the plant or the establishment. At the beginning of this
survey in 1990, 5% of firms with up to 200 workers were sampled randomly by industry
and size strata. All firms with more than 200 workers were asked to participate, and 70%
of all firms of this size chose to respond. Some firms vanish from the sample, due to both

9This data has been used elsewhere, e.g., in Gonzalez, Jaumandreu & Pazo (2005) to study the effect of
subsidies to R&D and in Delgado, Farinas & Ruano (2002) to study the productivity of exporting firms.
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exit and attrition. The two reasons can be distinguished, and attrition remained within
acceptable limits. In what follows we reserve the word exit to characterize shutdown by
death or abandonment of activity. To preserve representativeness, samples of newly created
firms were added to the initial sample every year.

We account for the survey design as follows. First, to compare the productivities of
firms that perform R&D to those of firms that do not perform R&D we conduct separate
tests on the subsamples of small and large firms. Second, to be able to interpret some of our
descriptive statistics as aggregates that are representative for an industry as a whole, we
replicate the subsample of small firms 70

5 = 14 times before merging it with the subsample
of large firms. Details on industry and variable definitions can be found in Appendix A.

Given that our estimation procedure requires a lag of one year, we restrict the sample
to firms with at least two years of data. The resulting sample covers a total of 1879 firms
(before replication). Columns (1) and (2) of Table 1 show the number of observations and
firms by industry. The samples are of moderate size. Firms tend to remain in the sample
for short periods, ranging from a minimum of two years to a maximum of 10 years between
1990 and 1999. The descriptive statistics in Table 1 are computed for the period from 1991
to 1999 and exclude the first observation for each firm.10 The small size of the samples is
compensated for by the quality of the data, which seems to keep noise coming from errors
in variables at relatively low levels.

Entry and exit reported in columns (3) and (4) of Table 1 refer to the incorporation of
newly created firms and to exit. Newly created firms are a large share of the total number
of firms, ranging from 15% to one third in the different industries. In each industry there
is a significant proportion of exiting firms (from 5% to above 10% in a few cases).

Columns (5)–(9) of Table 1 show that the 1990s were a period of rapid output growth,
coupled with stagnant or at best slightly increasing employment and intense investment
in physical capital. The growth of prices, averaged from the growth of prices as reported
individually by each firm, is moderate.

The R&D intensity of Spanish manufacturing firms is low by European standards, but
R&D became increasingly important during the 1990s (see, e.g., European Commission
2001).11 The manufacturing sector consists partly of transnational companies with produc-
tion facilities in Spain and huge R&D expenditures and partly of small and medium-sized
companies that invested heavily in R&D in a struggle to increase their competitiveness in
a growing and already very open economy.

Government funded R&D in the form of subsidies and other forms of support amounts
to 7.7% of firms’ total R&D expenditures in the EU-15, 9.3% in the US, and 0.9% in Japan
(European Commission 2004a). In Spain at most a small fraction of the firms that engaged

10Since R&D expenditures appear lagged in our estimation equation (4), we report them for the period
1990 to 1998.

11R&D intensities for manufacturing firms are 2.1% in France, 2.6% in Germany, and 2.2% in the UK as
compared to 0.6% in Spain (European Commission 2004b).
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in R&D received subsidies. The typical subsidy covers between 20% and 50% of R&D
expenditures and its magnitude is inversely related to the size of the firm. Subsidies are
used efficiently without crowding out private funds and even stimulate some projects. Their
effect is mostly limited to the amount that they add to the project (see Gonzalez et al. 2005).
This suggests that R&D expenditures irrespective of their origin are the relevant variable
for explaining productivity.12

Columns (10)–(13) of Table 1 reveal that the nine industries are rather different when
it comes to innovative activities of firms. This can be seen along three dimensions: the
share of firms that perform R&D (columns (11) and (12)), the degree of persistence in
performing R&D over time, and R&D intensity among performers defined as the ratio of
R&D expenditures to output (column (13)).

Three industries are highly active: Chemical products (3), agricultural and industrial
machinery (4), and transport equipment (6). The share of firms that perform R&D during
at least one year in the sample period is two thirds, with slightly more than 40% of stable
performers that engage in R&D in all years and slightly more than 20% of occasional
performers that engage in R&D in some (but not all) years. Dividing the share of stable
performers by the combined share of stable and occasional performers yields the conditional
share of stable performers and gives an indication of the persistence in performing R&D
over time. With about 65% the degree of persistence is is very high. Finally, the average
R&D intensity among performers ranges from 2.2% to 2.7%.

Four industries are in an intermediate position: Metals and metal products (1), non-
metallic minerals (2), food, drink and tobacco (7), and textile, leather and shoes (8). The
share of performers is lower than one half, but it is near one half in the first two industries.
With a conditional share of stable performers of about 40% the degree of persistence tends
to be lower. The average R&D intensity among performers is between 1.1% and 1.5% with
a much lower value of 0.7% in industry 7.

Two industries, timber and furniture (9) and paper and printing products (10), exhibit
low innovative activity. The first industry is weak in the share of performers (below 20%)
and degree of persistence. In the second industry the degree of persistence is somewhat
higher with a conditional share of stable performers of 46% but the share of performers
remains below 30%. The average R&D intensity is 1.4% in both industries.

This heterogeneity in the three dimensions of innovative activities makes it difficult to
fit a single model to explain the impact of R&D on productivity. In addition, the standard
deviation of R&D intensity is of substantial magnitude in the nine industries. This suggests
that that heterogeneity across firms within industries is important, partly because firms
engage in R&D to various degrees and partly because the level of aggregation used in
defining these industries encompasses many different specific innovative activities.

12While some R&D expenditures were tax deductible during the 1990s, the schedule was not overly
generous and most firms simply ignored it. A large reform that introduced some real stimulus took place
towards the end of our sample period in 1999.
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5 Estimation results

We first present our estimates of the production function and the Markov process that
governs the evolution of productivity and test the linearity and certainty assumptions of
the knowledge capital model. Next we turn to the link between R&D and productivity.
In order to assess the role of R&D in determining the differences in productivity across
firms and the evolution of firm-level productivity over time, we examine five aspects of this
link in more detail: productivity levels and growth, the return to R&D, the persistence in
productivity, and the rate of return.

5.1 Production function and Markov process

Table 2 summarizes different production function estimates.13 Columns (1)–(3) report the
coefficients estimated from OLS regressions of the log of output on the logs of inputs. The
coefficients are reasonable as usual when running OLS on logs (but not when running OLS
on first-differences of logs), and returns to scale are close to constant. The share of capital
in value added, as given by the capital coefficient scaled by the sum of the labor and capital
coefficients, is between 0.15 and 0.35 as expected.

Columns (4)–(9) of Table 2 report the coefficients estimated when we use the demand for
labor to back out unobserved productivity. Treating labor as a variable input is appropriate
because Spain greatly enhanced the possibilities for hiring and firing temporary workers
during the 1980s. By the beginning of the 1990s the share of temporary workers in the
manufacturing sector had stabilized in excess of a quarter, one of the highest shares in
Europe. Rapid expansion and contraction of the number of temporary workers became
common (Dolado, Garcia-Serrano & Jimeno 2002). In addition, we measure labor as hours
worked (see Appendix A for details). At this margin at least firms enjoy a high degree of
flexibility in determining the demand for labor.14

Specifying the law of motion of productivity to be an exogenous Markov process that
does not depend on R&D expenditures yields the coefficients reported in columns (4)–
(6). Compared to the OLS regressions, the changes go in the direction that is expected
from theory. The labor coefficients decrease considerably in 8 industries while the capital
coefficients increase somewhat in 6 industries. The materials coefficients show no particular

13The specification of the production function for industries 2, 3, 6, and 10 includes a time trend and
dummies for industries 1, 7, and 8. We use the larger set of instruments for industries 1, 3, 6, 7, and 8. The
demand shifter zjt is an index of market dynamism (see Appendix A for details).

14The results broadly agree when we use the demand for materials to back out unobserved productivity.
One notable difference is that the materials (labor) coefficient in the production function tends to be lower
when we use the demand for materials (labor). The most likely explanation is that the term in the used
input that appears directly in the production function and the terms that appear inside the conditional
expectation function are slightly collinear. This may make it harder to precisely estimate the coefficient
of the used input and suggests combining the inverse input demand functions to estimate the production
function parameters. How to do this in a manner that is consistent with the modeling framework is a topic
for future research.
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pattern. Changes are as expected not huge because we are comparing estimates in logs (as
opposed to first-differences of logs). All this matches the results in OP and LP.

Columns (7)–(9) show the coefficients obtained when specifying a controlled Markov
process. Again, compared to the OLS regressions, the changes go in the expected direction.
The labor coefficients decrease, the capital coefficients increase in 7 cases and are virtually
unchanged in 2 more cases. Changes from the exogenous to the controlled Markov process
exhibit a somewhat slight tendency to further decrease the labor coefficient and increase the
capital coefficient. This leaves open the question whether it is possible to obtain consistent
estimates of the parameters of the production function in the absence of data on R&D,
although it is clear that omitting R&D expenditures from the Markov process substantially
distorts the retrieved productivities (see Section 5.2 for details).

Imperfect competition. We test for perfect competition by removing the function in
the equilibrium price pjt−1 and the demand shifter zjt−1 from hIC

jt−1 in order to obtain hjt−1

inside the conditional expectation function g(·) in equation (5). Under the null hypothesis
of perfect competition pjt−1 and zjt−1 play no role.

The data very clearly reject the assumption of a perfectly competitive environment, see
columns (1) and (2) of Table 3. Our estimates of the average elasticity of demand are
around 2 (column (3)).

Specification tests. To check the validity of our estimates we have conducted a series of
tests as reported in columns (4)–(13) of Table 3. We first test for overidentifying restrictions
or validity of the moment conditions based on the instruments as described in Section 3.3.
The test statistic is too high for the usual significance levels in the sole case of industry
1. The other values indicate the validity of the moment conditions by a wide margin, see
columns (4) and (5).

Since the orthogonality of lagged labor and lagged materials plays a key role in the
estimation, it is important to verify this assumption particularly carefully. Olley & Pakes
(1996) and Levinsohn & Petrin (2003) do so by testing the absence of correlation between
the lagged inputs and the productivity innovation. In our case, the above test for overiden-
tifying restrictions is already informing us of the closeness to zero of the set of all moment
conditions. To more explicitly assess the validity of lagged labor and lagged materials as
instruments, we compute the difference in the value of the objective function when all mo-
ments are included to its value when the moments involving either lagged labor or lagged
materials are excluded. As columns (6)–(9) of Table 3 show, the validity of lagged labor
and lagged materials as instruments cannot be rejected.

We also test the subset of moments involving capital and lagged capital. As columns (10)
and (11) of Table 3 show, the exogeneity assumption on capital and lagged capital is rejected
at the usual significance levels for industries 1, 2, and 3. When viewed in conjunction with
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the other tests, however, we feel that there is little ground for concern regarding the validity
of the moment conditions in these industries.

Taken together, our overidentifying tests also support our choice of the functional form
for the production function: Had the assumed linearity in the log of inputs been violated,
then at least part of the nonlinearity would have been pushed into the productivity inno-
vation, thereby resulting in high values of the overidentifying test statistics.

Our final specification test validates more directly the structure of the model. Recall
that the production function parameters appear both in the production function and in
the inverse labor demand function. If the inverse labor demand function is misspecified
(e.g., because labor is not a variable input), then this causes βl and βk in the inverse labor
demand function to diverge from their counterparts in the production function. By testing
the null hypothesis that the structural parameters in the two parts of the model are equal,
we may thus rule out that our model is misspecified. Fortunately, as columns (12) and (13)
of Table 3 show the test suggests that we may rule out that our model is misspecified by a
wide margin, although this is somewhat less clearcut in industries 6 and 7.

Sample selection. To assess the potential for sample selection we have explored whether
there is a link between exit decisions and estimated productivity. After controlling for year
and industry effects it appears that the productivity of exitors is lower on average than that
of incumbents one year before exiting in case of small firms and two years before exiting in
case of large firms. Moreover, this drop in productivity is more pronounced for firms that
engage in R&D than for those that do not. We cannot reject the null hypothesis that exitors
are systematically less productive than incumbents in all cases but one, although this may
be due to the small number of exitors in our sample. Taken together, this suggests that
firms tend to exit the industry sometime after receiving an adverse shock to productivity,
thereby decreasing the scope for sample selection.

The productivity of entrants appears to be lower on average than that of incumbents,
similar to earlier results in Baily, Hulten & Campbell (1992) and Huergo & Jaumandreu
(2004). We reject the null hypothesis that entrants are systematically more productive
than incumbents in all cases but one. In addition, there is some evidence that entrants that
engage in R&D are quicker in catching up with incumbents than those that do not.

Nonlinearity. We next turn to the conditional expectation function g(·) that describes
the Markov process of unobserved productivity. We assess the role of R&D by comparing
the controlled with the exogenous Markov process. To this end, we test whether all terms
in rjt−1 can be excluded from the conditional expectation function g11(hIC

jt−1−λ0, rjt−1) for
performers plus the equality of the common part of the conditional expectation functions for
performers and nonperformers, i.e., g11(hIC

jt−1−λ0, rjt−1) = g01(hIC
jt−1−λ0) for all rjt−1. As

columns (1) and (2) of Table 4 shows, the result is overwhelming: In all cases the constraints
imposed by the model with the exogenous Markov process are clearly rejected.
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We use a standard growth decomposition to get a sense of the importance of R&D.
Roughly two thirds of the growth in output is explained by the growth in inputs, with
the glaring exception of industry 8 where output is growing while inputs are shrinking.
While there are considerable differences across industries, about one half of the year-to-year
variation in expected productivity is due the variation in R&D expenditures. While these
numbers already hint at the major role played by R&D, they have to be interpreted as lower
bounds because a part of the impact of current R&D expenditures persists and is carried
forward into future productivity. We will come back to the persistence in productivity in
Section 5.4.

Next we test whether the conditional expectation function g(·) is separable in current
productivity and R&D expenditures, i.e., whether g11(hIC

jt−1 − λ0, rjt−1) for firms that per-
form R&D can be broken up into two additively separable functions g11(hIC

jt−1 − λ0) and
g12(rjt−1). Columns (3) and (4) of Table 4 indicate that the R&D process can hardly be
considered separable. From the economic point of view this stresses that the impact of
current R&D on future productivity depends crucially on current productivity, and that
current and past investments in knowledge interact in a complex fashion.

We further illustrate the economic significance of these interactions in columns (5)–(8) of
Table 4. We list the percentage of observations where ∂2g(ωjt−1,rjt−1)

∂ωjt−1∂Rjt−1
= 1

Rjt−1

∂2g(ωjt−1,rjt−1)
∂ωjt−1∂rjt−1

is significantly positive (negative) so that current productivity and (the level of) R&D
expenditures are, at least locally, complements (substitutes) in the accumulation of pro-
ductivity. There is evidence of complementarities in industries 1, 3, 9, and 10 and to
some extent also in industries 4 and 6. We also list the percentage of observations where
∂2g(ωjt−1,rjt−1)

∂R2
jt−1

= 1
R2

jt−1

(
∂2g(ωjt−1,rjt−1)

∂r2
jt−1

− ∂g(ωjt−1,rjt−1)
∂rjt−1

)
is significantly positive (negative)

so that there are locally increasing (decreasing) returns to R&D. There is evidence of in-
creasing returns to R&D in industries 3, 6, 7, 8, 9 and 10. At the same time, however, a
substantial fraction of firms seems to operate under decreasing returns to R&D in industries
3, 4, 6, 7, and 9.

We finally test whether the conditional expectation function is consistent with the knowl-
edge capital model. The data very clearly reject the functional form restrictions implied by
the knowledge capital model, see columns (9) and (10) of Table 4.15 This suggests that the
linearity assumption in the accumulation and depreciation of knowledge that underlies the
knowledge capital model may have to be relaxed in order to fully assess the impact of the
investment in knowledge on the productivity of firms.

Uncertainty. We finally turn from the certainty to the linearity assumption in the knowl-
edge capital model. Column (11) of Table 4 tells us the ratio of the variance of the ran-
dom shock ejt to the variance of unobserved productivity ωjt. Despite differences among

15We continue to reject when we base the test on the exact form for the law of motion implied by the
knowledge capital model rather than the approximate form in equation (2).
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industries, the variances are quite similar in magnitude. This suggests that unobserved
productivity is at least as important in explaining the data as the host of other factors that
are embedded in the random shock.

Column (12) of Table 4 gives the ratio of the variance of the productivity innovation ξjt to
the variance of actual productivity ωjt. The ratio shows that the unpredictable component
accounts for a large part of attained productivity, between 20% and 60%, thereby casting
doubt on the certainty assumption of the knowledge capital model. Interestingly enough,
a high degree of uncertainty in the R&D process seems to be characteristic for both some
of the most and some of the least R&D intensive industries. We will come back to the
economic significance of the uncertainties inherent in the R&D process in Section 5.5.

5.2 Productivity levels

To describe differences in expected productivity between firms that perform R&D and firms
that do not perform R&D, we employ kernels to estimate the density and the distribution
functions associated with the subsamples of observations with R&D and without R&D. To
be able to interpret these and other descriptive measures in the remainder of the paper as
representative aggregates, we proceed as described in Section 4. Figure 1 shows the density
and distribution functions for performers (solid line) and nonperformers (dashed line) for
each industry. In most industries the distribution for performers is to the right of the
distribution for nonperformers. This strongly suggests stochastic dominance. In contrast,
the distribution functions cross in industries 2 and 4 as well as in industries 9 and 10 that
exhibit low innovative activity. This violation of stochastic dominance is mild in case of
industry 2 whereas in industry 4 attaining the highest productivity levels is clearly more
likely for the nonperformers than for the performers.

Before formally comparing the means and variances of the distributions and the distribu-
tions themselves, we illustrate the impact of omitting R&D expenditures from the Markov
process of unobserved productivity. We have added the so-obtained density and distribu-
tion functions to Figure 1 (dotted line). Comparing them to the density and distribution
functions for a controlled Markov process reveals that the exogenous process takes a sort of
average over firms with distinct innovative activities and hence blurs remarkable differences
in the impact of the investment in knowledge on the productivity of firms.

Mean and variance. Turning to the moments of the distributions, the difference in
means is computed as

ĝ0 − ĝ1 =
1

NT0

∑
j

∑
t
1(rjt−1 = 0)ĝ01(ĥIC

jt−1)

− 1
NT1

∑
j

∑
t
1(rjt−1 > 0)[( ̂g10 − g00) + ĝ11(ĥIC

jt−1, rt−1)],
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where NT0 and NT1 are the size of the subsamples of observations without and with R&D,
respectively. We compare the means using the test statistic

t =
ĝ0 − ĝ1√

V ar(g01)/(NT0 − 1) + V ar(g11)/(NT1 − 1)

which follows a t distribution with min(NT0, NT1)−1 degrees of freedom and the variances
using

F =
V ar(g01)
V ar(g11)

which follows an F distribution with NT0 − 1 and NT1 − 1 degrees of freedom.
Column (4) of Table 5 reports the difference in means ĝ1− ĝ0 (with the opposite sign of

the test statistic for the sake of intuition) and columns (5)–(8) report the standard deviations
and the test statistics along with their probability values separately for the subsamples of
small and large firms. The difference in means is positive for firms of all sizes in all industries
that exhibit medium or high innovative activity, with the striking exception of industry 4.
The differences are sizable, with many values between 3% and 5%. They are often larger for
the smaller firms. In the two industries that exhibit low innovative activity, however, the
difference in means is negative for small firms. Nevertheless, at the usual significance levels,
the formal statistical test rejects the hypothesis of a higher mean of expected productivity
among performers than among nonperformers only in case of large firms in industry 4.

The hypothesis of greater variability for performers than for nonperformers is rejected
in many cases, although there does not seem to be a recognizable pattern. As can be seen
in columns (9) and (10) of Table 5, it is rejected for both size groups in industries 6 and 7,
for small firms in industry 3, and for large firms in industries 1, 2, and 4.

Distribution. The above results suggest to compare the distributions themselves. We
use a Kolmogorov-Smirnov test to compare the empirical distributions of two independent
samples (see Barret & Donald (2003) and Delgado et al. (2002) for similar applications).
Since this test requires that the observations in each sample are independent, we consider
as the variable of interest the average of expected productivity for each firm, where for
occasional performers we average only over the years with R&D (and discard the years
without R&D). This avoids dependent observations and sets the sample sizes equal to the
number of nonperformers and performers, N0 and N1, respectively.

Let FN0(·) and GN1(·) be the empirical cumulative distribution functions of nonperform-
ers and performers, respectively. We apply the two-sided test of the hypothesis FN0(g) −
GN1(g) = 0 for all g, i.e., the distributions of expected productivity are equal, and the
one-sided test of the hypothesis FN0(g)−GN1(g) ≤ 0 for all g, i.e., the distribution GN1(·)
of expected productivity of performers stochastically dominates the distribution FN0(·) of
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expected productivity of nonperformers. The test statistics are

S1 =
√

N0N1

N0 + N1
max

g
{|FN0(g)−GN1(g)|} , S2 =

√
N0N1

N0 + N1
max

g
{FN0(g)−GN1(g)} ,

respectively, and the probability values can be computed using the limiting distributions
P (S1 > c) = −2

∑∞
k=1(−1)k exp(−2k2c2) and P (S2 > c) = exp(−2c2).

Because the test tends to be inconclusive when the number of firms is small, we limit it
to cases in which we have at least 20 performers and 20 nonperformers. This allows us to
carry out the tests for the small firms in 8 industries and for the large firms in industries 7
and 8. The results are reported in columns (11)–(14) of Table 5. Equality of distributions
is rejected in six out of ten cases. Stochastic dominance cannot be rejected anywhere.

To further illustrate the consequences of omitting R&D expenditures from the Markov
process of unobserved productivity, we have redone the above tests for the case of an
exogenous Markov process. The results are striking: We can no longer reject the equality of
the productivity distributions of performers and nonperformers in four out of the six cases
where we rejected the equality of the productivity distributions for a controlled Markov
process. The upper panels of Figure 2 show at the example of industry 6 that the density
and distribution functions for performers (solid line) and nonperformers (dashed line) are
virtually indistinguishable if an exogenous Markov process is assumed. As can be seen in
the lower panels of Figure 2, the same happens if we use an alternative estimator such
as OP that assumes that productivity is exogenous. This once more makes apparent that
omitting R&D expenditures substantially distorts the retrieved productivities.

In sum, comparing expected productivity across firms that perform R&D and firms that
do not perform R&D we find strong evidence of stochastic dominance in most industries.
It remains to be explained how the expected productivity for performers can possibly be
lower than for nonperformers in some industries. One explanation is heterogeneity across
firms within industries, i.e., stochastic dominance may hold if we were able to split these
industries into more homogeneous innovative activities.

5.3 Productivity growth

We explore productivity growth from the point of view of what a firm expects when it makes
its decisions in period t − 1. Because ωjt−1 is known to the firm at the time it decides on
rjt−1, we compute the expectation of productivity growth as

βt + E(ωjt − ωjt−1|ωjt−1, rjt−1,) = βt + g(ωjt−1, rjt−1)− ωjt−1. (7)

Using the fact that the innovation to productivity has mean zero, i.e., E(ξjt−1|ωjt−2, rjt−2) =
0, we estimate the average of the expectation of productivity growth as βt+ 1

N

∑
j

∑
t

1
Tj

[ĝ(ĥIC
jt−1, rjt−1)−

ĝ(ĥIC
jt−2, rjt−2)]. Columns (1)–(3) of Table 6 report the results for the entire sample and for
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the subsamples of observations with and without R&D. We also compute a weighted version
to be able to interpret the expectation of productivity growth as representative for an in-
dustry as a whole. The weights µjt = Yjt−2/

∑
j Yjt−2 are given by the share of output of a

firm two periods ago. Assuming that E(µjtξjt−1|ωjt−2, rjt−2) = 0, we estimate the average
as βt + 1

T

∑
t

∑
j µjt[ĝ(ĥIC

jt−1, rjt−1)− ĝ(ĥIC
jt−2, rjt−2)]. Columns (4)–(6) of Table 6 report the

results along with a decomposition into the contributions of observations with and without
R&D.

Productivity growth is higher for performers than for nonperformers in 6 industries,
sometimes considerably so. Taken together these industries account for over two thirds of
manufacturing output (see Appendix A for details). The industries in which the relationship
is reversed are again industries 4 and 10 and now also industry 8. The standard deviations
indicate that there are considerable differences in productivity growth within firms that
engage in R&D as well as within those that do not. Productivity growth is more variable
for performers than for nonperformers in five out of nine industries, including industries 8
and 10. This indicates that the productivity of at least some performers tends to grow much
faster than the productivity of nonperformers, even though on average performers exhibits
slower productivity growth than nonperformers in these industries.

A comparison of unweighted and weighted productivity growth shows that there is no
definite pattern in productivity growth by size group: The productivity of small firms
grows more rapidly in some industries and less in others. What is clear, however, is that
productivity growth is highest in some of the industries with high innovative activity (above
2% in industry 3, above 1.5% in industry 4, and above 3% in industry 6) followed by some
of the industries with intermediate innovative activity (above 1.5% in industry 1).

Columns (5) and (6) of Table 6 are particularly important. The contribution to produc-
tivity growth of firms that perform R&D is estimated to explain between 65% and 80% of
productivity growth in the industries with high innovative activity and between 70% and
85% in the industries with intermediate innovative activity (with the exception of industry
8). This is all the more remarkable since in these industries between 35% and 45% and be-
tween 10% and 20% of firms engage in R&D. While these firms manufacture between 70%
and 75% of output in the industries with high innovative activity and between 45% and 55%
in the industries with intermediate innovative activity, their contribution to productivity
growth exceeds their share of output by between 5% and 15%. That is, firms that engage
in R&D tend not only to be larger than those that do not but also to grow even larger over
time. R&D expenditures are thus indeed a primary source of productivity growth.

5.4 Return to R&D and persistence in productivity

How hard must a firm work to maintain and advance its productivity? Recall that a change
in the conditional expectation function g(·) can be interpreted as the expected percentage
change in total factor productivity. Hence, ∂g(ωjt−1,rjt−1)

∂rjt−1
is the elasticity of output with
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respect to R&D expenditures or a measure of the return to R&D. Similarly, ∂g(ωjt−1,rjt−1)
∂ωjt−1

is the elasticity of output with respect to already attained productivity. ∂g(ωjt−1,rjt−1)
∂ωjt−1

is
the degree of persistence in the productivity process or a measure of inertia. It tells us the
fraction of past productivity that is carried forward into current productivity. Note that the
elasticities of output with respect to R&D expenditures and already attained productivity
vary from firm to firm with already attained productivity and R&D expenditures. Our
model thus allows us to recover the distribution of these elasticities and to describe the
heterogeneity across firms.

Columns (1)–(4) of Table 7 present the quartiles of the distribution of the elasticity with
respect to R&D expenditures along with a weighted average computed as 1

T

∑
t

∑
j µjt

∂g(ωjt−1,rjt−1)
∂rjt−1

,
where the weights µjt = Yjt/

∑
j Yjt are given by the share of output of a firm. There is a

considerable amount of variation across industries and the firms within an industry. Exclud-
ing industry 2, the returns to R&D at the first, second, and third quartile range between
−0.024 and 0.019, −0.003 and 0.024, and 0.015 and 0.051, respectively. Their average is
close to 0.012, varying from 0.003 to 0.025 across industries.

Note that negative returns to R&D are legitimate and meaningful in our setting, al-
though some of them may be an artifact of the nonparametric estimation of g(·) at the
boundaries of the support. A negative return at the margin is consistent with an over-
all positive impact of R&D expenditures on output. A firm may invest in R&D to the
point of driving returns below zero for a number of reasons including indivisibilities and
strategic considerations such as a loss of an early-mover advantage. This type of effect is
excluded by the functional form restrictions of the knowledge capital model, in particular
the assumption that the stock of knowledge capital depreciates at a constant rate. More
generally, it is plausible that investments in knowledge take place in response to existing
knowledge becoming obsolete or vice versa that investments render existing knowledge ob-
solete. Our model captures this interplay between adding “new” knowledge and keeping
“old” knowledge.

The degree of persistence can be computed separately for performers using the condi-
tional expectation function g1(·) that depends both on already attained productivity and
R&D expenditures and for nonperformers using g0(·) that depends solely on already attained
productivity. Columns (5)–(10) of Table 7 summarize the distributions for performers and
nonperformers.

Again there is a considerable amount of variation across industries and the firms within
an industry. Nevertheless, nonperformers enjoy a systematically higher degree of persis-
tence than performers in industries 1, 2, 3, 4, and 7. An intuitive explanation for this
finding is that nonperformers learn from performers, but by the time this happens the
transferred knowledge is already entrenched in the industry and therefore more persistent.
Put differently, common practice may be “stickier” than best practice.

The degree of persistence for performers is negatively related to the degree of uncertainty
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in the productivity process as measured by the ratio of the variance of the productivity inno-
vation ξjt to the variance of actual productivity ωjt. That is, productivity is less persistent
in an industry where a large part of its variance is due to random shocks that represent the
uncertainties inherent in the R&D process. Figure 3 illustrates this relationship between
persistence and uncertainty at the level of the industry.

To facilitate the comparison with the existing literature, we have estimated the knowl-
edge capital model as given in equation (1). Proceeding along the lines of Hall & Mairesse
(1995), we construct Cjt, the stock of knowledge capital of firm j in period t, from R&D
expenditures using the perpetual inventory method. We assume that the rate of deprecia-
tion is 0.15 per period and estimate the initial capital from the date of birth of the firm by
extrapolating its average R&D expenditures during the time that it is observed.16

Column (11) of Table 7 presents the estimate of the elasticity of output with respect
to the stock of knowledge capital from the knowledge capital model. In addition to the
gross-output version in equation (1) we have also estimated a value-added version of the
knowledge capital model (column (13)). In contrast to our model, the knowledge capital
model yields one number—an average elasticity—per industry. The elasticity of output
with respect to the stock of knowledge capital tends to be small and rarely significant in
the gross-output version but becomes larger in the value-added version. The estimates turn
out to be on the low side for this type of exercise. One possible reason may be the non
self-selected character of the sample, but perhaps this is the magnitude of estimates that
one should expect given the low R&D intensity of Spanish manufacturing firms. Beneito
(2001) and Ornaghi (2006), for example, estimate aggregate elasticities ranging from 0.04
to 0.10.

To convert the elasticity with respect to the stock of knowledge capital into an elasticity
with respect to R&D expenditures that is comparable to our model, we multiply the former
by Rjt−1/Cjt. Columns (12) and (14) of Table 7 show a weighted average of the so-obtained
elasticities, where the weights µjt = Yjt/

∑
j Yjt are given by the share of output of a firm.

The elasticities with respect to R&D expenditures from our model are higher than the
highest elasticities from the knowledge capital model in five industries and lower but very
close in two more industries. In addition, the elasticities obtained with our model have a
non-normal, fairly spread out distribution. This sharply contrasts with the fact that the
dispersion of elasticities in the knowledge capital model is purely driven by the distribution
of the ratio Rjt−1/Cjt (since, recall, the knowledge capital model yields just an average of
the elasticity with respect to the stock of knowledge capital).

Turning to persistence in productivity, note that the degree of persistence is 1− 0.15 =
0.85 by assumption in the knowledge capital model. In contrast, the degree of persistence

16We specify a different constant for performers and nonperformers as well as a different time trend
(industries 2, 3, 6, and 10) or set of dummies (industries 1, 7, and 8). We drop the term εcjt from equation
(1) for nonperformers. To facilitate estimation we impose the widely accepted constraint of constant returns
to scale in the conventional inputs.

29



in our model is much lower (see also Pakes & Schankerman 1984b). Moreover, we find that
there are substantial differences between firms in the degree of persistence.

The degree of persistence is expected to be lower when process innovations are rapidly
spread or when product innovations are quickly imitated or superseded. (Since output is
measured in dollars, we are unable to distinguish between product and process innovations,
similar to the knowledge capital literature.) On the other hand, the demand advantage of
a product innovation may be offset by a productivity disadvantage if newer products are
costlier to produce, thereby lessening the impact of product innovations on persistence.17

The heterogeneity across firms and industries in the degree of persistence points to an inter-
esting avenue for future research that explores the link between the dynamics of productivity
and the nature of product market competition.

One could also argue that the lower degree of persistence is a result of the substantial
variability in the R&D expenditures that drive the evolution of productivity. The knowledge
capital model constructs the stock of knowledge capital that is much smoother and less
variable than R&D expenditures. Our view is that the variability in R&D expenditures
across firms and periods is likely to contain useful information on the impact of R&D on
productivity, but we acknowledge that some of the variability in the R&D expenditures is
an artifact of accounting conventions.

In sum, it appears that old knowledge is hard to keep but new knowledge is easy to add.
Productivity is therefore considerably more fluid than what the knowledge capital literature
suggests.

Productivity dynamics and industrial change. To explore the dynamics of produc-
tivity in more detail, we compute the year-to-year transitions in productivities as follows:
We first place firms into five bins according to their actual productivity or flag them as
entrants or exitors. We define the bins by the quintiles of the productivity distribution and
compute them separately for each year in the sample period. The transition matrix then
gives the shares of incumbents that move between the five productivity bins or exit the
industry. In addition we record the shares of entrants in the five productivity bins.

Table 8 summarizes the degree of persistence and mobility in the dynamics of pro-
ductivity. Columns (1) and (2) give the probability of remaining at the bottom and top,
respectively, of the productivity distribution along with the expected duration of a stay
there. Column (3) gives the probability that a randomly selected firm leaves its produc-
tivity bin in the next year. Columns (4)–(6) are analogous to columns (1)–(3) but use the
productivity estimates from the knowledge capital model. As can be seen, the knowledge
capital model implies a higher degree of persistence at both tails of the productivity distri-
bution (with the possible exception of industry 8). For example, while a firm can expect

17The ESEE survey asks firms whether they have introduced a new product or process over the course of
the survey year. This data suggests that, at the level of the industry, the degree of persistence is negatively
related to the prevalence of both product and process innovations.
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to remain at the top of its industry for 3 or 4 years, the knowledge capital model implies
expected durations of up to 16 years. The knowledge capital model similarly implies a lower
degree of mobility. Overall, productivity dynamics are decidedly more sluggish when viewed
through the lens of the knowledge capital model. This is because knowledge accumulates
from period to period with certainty in the knowledge capital model. In contrast to this
deterministic trajectory, in our model the evolution of productivity is stochastic. While
firms exert some degree of control over their productivity through their R&D expenditures,
they are repeatedly subjected to shocks that render their fortunes less predictable.

To relate productivity dynamics and industrial change, we predict—however crudely—
the evolution of an industry. From the transition matrix we compute the shares of firms in
the five productivity bins in the steady state of the industry. We tabulate this predicted
distribution of performers in columns (7)–(11) of Table 8 along with the actual distribution
in our sample in order to describe the initial conditions. We caution the reader that our
predictions are extrapolations from the sample period. This, in particular, presumes that
the pattern of entry and exit remains unchanged as does the composition of firms that invest
in physical capital and knowledge and the corresponding investment intensities. In what
follows we do not consider industries 9 and 10 because of the small number of observations
with R&D in these industries with low innovative activity.

Nonperformers are fairly evenly spread across the five productivity bins, both in the
sample period and in the long run. In contrast, as can be seen from columns (7)–(11) of
Table 8, performers tend to be less concentrated at the bottom and more concentrated at
the top of the productivity distribution in the sample period and are likely to remain so in
the future. This is in line with the fact that the expected productivity of firms that perform
R&D is systematically more favorable than that of firms that do not perform R&D in most
industries (see Section 5.2 for details). Comparing the predicted productivity distribution in
the steady state with the actual productivity distribution in the sample period suggests that
the scope for industrial change is limited in many industries. The exceptions are industries
2, 3, and 6 where in the future the share of performers at the top of the productivity
distribution increases. In these industries R&D expenditures drive productivity dynamics
that, in turn, drive industrial change. At the same time, in industries 7 and 8 the predicted
productivity distribution suggests a smaller role for performers in the future, consistent
with the fact that productivity growth is lower or almost equal for performers than for
nonperformers in these industries with intermediate innovative activity (see Section 5.3 for
details).

It is worth noting that, according to the productivity estimates from the knowledge
capital model, the outlook for industrial change is much more optimistic. The predicted
productivity distribution suggest a much larger role for performers in the future in industries
1, 2, 3, 4, and 6. Indeed, the share of performers at the top of the productivity distribution
is predicted to exceed 50% in all industries but 4 and 8, a prediction that we regard as
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somewhat implausible.

5.5 Rate of return

We finally compute an alternative—and perhaps more intuitive—measure of the return to
R&D. The growth in expected productivity in equation (7) can be decomposed as

βt +g(ωjt−1, rjt−1)−ωjt−1 = [βt + g(ωjt−1, rjt−1)− g(ωjt−1, r)]+[g(ωjt−1, r)− ωjt−1] , (8)

where r denotes a negligible amount of R&D expenditures.18 The first term in brackets
reflects the change in expected productivity that is attributable to R&D expenditures rjt−1,
the second the change that takes place in the absence of investment in knowledge. That is,
the second term in brackets is attributable to depreciation of already attained productivity
and, consequently, is expected to be negative. The net effect of R&D is thus the sum of its
gross effect (first term in brackets) and the impact of depreciation (second term).

Consider the change in expected productivity that is attributable to R&D expenditures.
Multiplying βt +g(ωjt−1, rjt−1)−g(ωjt−1, r) in equation (8) by a measure of expected value
added, say Vjt, gives the rent that the firm can expect from this investment at the time
it makes its decisions. Dividing it further by R&D expenditures Rjt−1 gives an estimate
of the gross rate of return, or dollars obtained by spending one dollar on R&D.19 Note
that we compute the gross rate of return on R&D using value added instead of gross
output both to make it comparable to the existing literature (e.g., Nadiri 1993, Griliches &
Regev 1995, Griliches 2000) and because value added is closer to profits than gross output.
We similarly compute the gross rate of return to R&D and the compensation for depreciation
from the growth decomposition in equation (8) by multiplying and dividing through by Vjt

and Rjt−1.
Columns (1)–(3) of Table 9 summarize the gross rate of return to R&D and its de-

composition into the net rate and the compensation for depreciation. We report weighted
averages where the weights µjt = Rjt−2/

∑
j Rjt−2 are given by the share of R&D expen-

ditures of a firm two periods ago. The gross rate of return to R&D far exceeds the net
rate, thus indicating that a large part of firms’ R&D expenditures is devoted to maintain-
ing already attained productivity rather than to advancing it. The net rates of return to
R&D are around 35% and differ across industries, ranging from very modest values near
10% to 50%. Interestingly enough, the net rate of return to R&D is higher in an industry

18Recall that we allow the conditional expectation function g(·) to be different when the firm adopts
the corner solution of zero R&D expenditures and when it chooses positive R&D expenditures. To avoid
this discontinuity, we take g(ωjt−1, r) to be a weighted average of g0(ωjt−1) and g1(ωjt−1, r), where r is a
percentile of the industry’s R&D expenditures.

19The average rate that we compute is close to the marginal rate of return to R&D. To see this, lin-

early approximate g(ωjt−1, ln R) ' g(ωjt−1, ln Rjt−1) +
∂g(ωjt−1,ln Rjt−1)

∂rjt−1

1
Rjt−1

(R − Rjt−1). If R → 0, then

g(ωjt−1, rjt−1) − g(ωjt−1, r) ≡ g(ωjt−1, ln Rjt−1) − g(ωjt−1, ln R) ' ∂g(ωjt−1,rjt−1)

∂rjt−1
. In practice, we use

firm-specific averages of value added and investment in knowledge.
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where a large part of the variance in productivity is due to random shocks, as can be seen
in Figure 4. This suggests that the net rate of return to R&D includes a compensation for
the uncertainties inherent in the R&D process.

As a point of comparison we report the net rate of return on investment in physical
capital in column (4) of Table 9. We first compute the gross rate of return as βkVjt/Kjt

and then subtract the rate of depreciation of physical capital from it to obtain the net rate
of return.20 Column (5) reports the ratio of the net rates of return to R&D and investment
in physical capital. Returns to R&D are clearly higher than returns to investment in
physical capital. The net rate of return to R&D is often twice that of the net rate of
return to investment in physical capital. This again suggests that investment in knowledge
is systematically more uncertain than investment in physical capital.

Recall that in our model the productivity innovation ξjt may be thought of as the real-
ization of the uncertainties that are naturally linked to productivity plus the uncertainties
inherent in the R&D process such as chance in discovery and success in implementation.
The question therefore is whether an investment in knowledge indeed injects further un-
certainties into the productivity process that would be absent if the firm did not engage
in R&D. As before we measure the degree of uncertainty by the ratio of the variance of
the productivity innovation ξjt to the variance of actual productivity ωjt. Regressing the
log of the ratio ξ2

jt/V ar(ωjt) on a constant, a dummy for large firms with more than 200
workers, a dummy for investment in knowledge, and a dummy for investment in physical
capital shows a positive impact of investment in knowledge on the degree of uncertainty in
all industries (see column (6) of Table 9).21 Moreover, our estimates suggest that engaging
in R&D roughly doubles the degree of uncertainty. In contrast, they show a negative impact
of investment in physical capital in industries 2, 8, and 10 and no impact in the remaining
industries (see column (7)). Investment in physical capital therefore reduces the degree
of uncertainty in the productivity process or leaves it unchanged, whereas investment in
knowledge enhances it substantially.

In sum, investment in knowledge is systematically more uncertain than investment in
physical capital. The net rate of return includes a compensation for the uncertainties
inherent in the R&D process. Moreover, the large gap between the net rates of return
to R&D and investment in physical capital suggests that the uncertainties inherent in the
R&D process are economically significant and matter for firms’ investment decisions.

To facilitate the comparison with the existing literature, we have used the value-added
version of the knowledge capital model to estimate the rate of return to R&D by regressing
the first-difference of the log of value added on the first-differences of the logs of conventional

20The rate of depreciation that is assumed in computing the stock of physical capital is around 0.1 but
differs across industries and groups of firms within industries. We report a weighted average where the
weights µjt = Ījt/

∑
j Ījt are given by the share of investment in physical capital of a firm. In practice, we

use firm-specific averages of value added, the stock of physical capital, and investment in physical capital.
21We estimate V ar(ωjt) separately for firms that do not engage in R&D, firms that engage in R&D and

have R&D expenditures below the median and those that have R&D expenditures above the median.
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inputs and the ratio Rjt−1/Vjt−1 of R&D expenditures to value added.22 The estimated
coefficient of this ratio can be interpreted as the gross rate of return to R&D.23 We obtain
the net rate of return to R&D by subtracting the rate of depreciation of knowledge capital.
As can be seen from column (8) of Table 9, while the net rates are imprecisely estimated
in the knowledge capital model, at around 75% they tend to be higher than the net rates
in our model. The question is then whether and why our rates of return to R&D should
be considered more reliable and whether this justifies the extra effort of pursuing the more
structural approach.

Our rates are computed from more reliable coefficient estimates than what the knowl-
edge capital model provides because our estimator takes into account the possibility of
endogeneity bias in assessing the role of R&D. Because our model is structural we are more
confident in the causality of the estimated relationship between expected productivity, cur-
rent productivity, and R&D expenditures. The drawback of our approach is that it depends
on the informational and timing assumptions that we make. These assumptions, however,
appear to be broadly accepted in the literature following OP.

More generally, the knowledge capital literature has had limited success in estimating
the rate of return to R&D. Griliches (2000) contends that “[e]arly studies of this topic were
happy to get the sign of the R&D variable ‘right’ and to show that it matters, that it is a
‘significant’ variable, contributing to productivity growth” (p. 51). Estimates of the rate
of return to R&D tended to be high, often implausibly high: “our current quantitative
understanding of this whole process remains seriously flawed ... [T]he size of the effects we
have estimated may be seriously off, perhaps by an order of magnitude” (Griliches 1995, p.
83). Our estimates, by contrast, are more modest.

R&D policy. While the knowledge capital model yields an industry-wide average rate of
return to R&D, our model allows us to recover the entire distribution of rates. The fact that
rates differs across firms makes our model potentially useful in determining the allocation of
subsidies, a major issue in R&D policy. To illustrate, we have run a reduced-form regression
of the net rate of return on the characteristics of the firm that are observable to a policy
maker, including polynomials in the size of the firm and its R&D expenditures, the nature of
innovation (process vs. product), the R&D employment of the firm, the proportion of R&D
subsidies that it receives, the age of the firm, and its investment in physical capital. This
regression indicates a systematic relationship with firm size but not with the other variables.
Given that firm size and the net rate of return are positively correlated (industries 2, 3,

22We specify a different time trend (industries 2, 3, 6, and 10) or set of dummies (industries 1, 7, and
8) for performers and nonperformers. To facilitate estimation we impose the widely accepted constraint of
constant returns to scale in the conventional inputs.

23Recall that ε is the elasticity of value added with respect to knowledge capital. Since ε∆cjt =
∂V
∂C

Cjt−1
Vjt−1

∆cjt ' ∂V
∂C

∆Cjt

Vjt−1
and Rjt−1 approximates ∆Cjt (by the law of motion for knowledge capital),

the estimated coefficient is ∂V
∂C

. Since spending one dollar on R&D adds one unit of knowledge capital ∂V
∂C

is, in turn, equal to ∂V
∂R

or the gross rate of return to R&D.
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6, 8, and 9), we tentatively conclude that, if the goal is to maximize returns, then larger
firms should be subsidized more extensively than smaller firms. A fuller exploration of the
implications of the heterogeneity across firms for R&D policy is left to future research.

6 Concluding remarks

In this paper we develop a simple estimator for production functions. The basic idea
is to exploit the fact that decisions on variable inputs such as labor and materials are
based on current productivity. This results in input demands that are invertible functions
and thus can be used to control for unobserved productivity in the estimation. Moreover,
the parametric specification of the production function implies a known form for these
functions. This renders identification and estimation more tractable. As a result, we are
able to accommodate a controlled Markov process, thereby capturing the impact of R&D
on the evolution of productivity.

We illustrate our approach to production function estimation on an unbalanced panel
of more than 1800 Spanish manufacturing firms in nine industries during the 1990s. We
obtain sensible parameters estimates. Our estimator thus appears to work well.

Overall, we show that the link between R&D and productivity is subject to a high degree
of uncertainty, nonlinearity, and heterogeneity. By accounting for uncertainty and nonlin-
earity, our approach extends the knowledge capital model. In fact, the knowledge capital
model is a special case of our model, albeit one that is rejected by the data. Our model is
richer, in particular with regard to the treatment of heterogeneity, thereby allowing us to
show that R&D is a major determinant of the differences in productivity across firms and
the evolution of firm-level productivity over time. Productivity appears to be considerably
more fluid than what the knowledge capital literature suggests, and we tentatively conclude
that the scope for industrial change is limited. Our approach also appears to provide us
with more plausible answers to questions regarding the rate of return to R&D. The net
rate of return includes a compensation for the uncertainties inherent in the R&D process.
Moreover, the large gap between the net rates of return to R&D and investment in physical
capital suggests that these uncertainties are economically significant and matter for firms’
investment decisions.

Our method can be applied to other contexts, for example, to model and test for two
types of technological progress in production functions: Hicks-neutral technological progress
that shifts the production function in its entirety and labor-saving technological progress
that shifts the ratio of labor to capital. Economists have been for a long time interested
in disentangling these effects. In ongoing work we have begun to explore how this can be
done by further exploiting the known form of the inverse input demand functions for labor
and materials to recover two unobservables, one for Hicks-neutral and one for labor-saving
technological progress.
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Appendix A

Our data come from the ESEE survey. We observe firms for a maximum of ten years
between 1990 and 1999. We restrict the sample to firms with at least two years of data on
all variables required for estimation. Because of data problems we exclude industry 5 (office
and data-processing machines and electrical goods). Our final sample covers 1879 firms in
9 industries. The number of firms with 2, 3,. . . , 10 years of data is 260, 377, 246, 192, 171,
135, 128, 155, and 215 respectively. Table A1 gives the industry definitions along with their
equivalent definitions in terms of the ESEE, National Accounts, and ISIC classifications
(columns (1)–(3)). We finally report the shares of the various industries in the total value
added of the manufacturing sector in 1995 (column (4)).

The ESEE survey provides information on the total R&D expenditures of firms. Total
R&D expenditures include the cost of intramural R&D activities, payments for outside R&D
contracts with laboratories and research centers, and payments for imported technology in
the form of patent licensing or technical assistance, with the various expenditures defined
according to the OECD Oslo and Frascati manuals. We consider a firm to be performing
R&D if it reports positive expenditures. While total R&D expenditures vary widely across
firms, it is quite likely even for small firms that they exceed nonnegligible values relative
to firm size. In addition, firms are asked to provide many details about the combination of
R&D activities, R&D employment, R&D subsidies, and the number of process and product
innovations as well as the patents that result from these activities. Taken together, this
supports the notion that the reported expenditures are truly R&D related.

In what follows we define the remaining variables.

• Investment. Value of current investments in equipment goods (excluding buildings,
land, and financial assets) deflated by the price index of investment. By measuring
investment in operative capital we avoid some of the more severe measurement issues
of the other assets.

• Capital. Capital at current replacement values K̃jt is computed recursively from
an initial estimate and the data on current investments in equipment goods Ĩjt. We
update the value of the past stock of capital by means of the price index of investment
pIt as K̃jt = (1− δ) pIt

pIt−1
K̃jt−1 + Ĩjt−1, where δ is an industry-specific estimate of the

rate of depreciation. Capital in real terms is obtained by deflating capital at current

replacement values by the price index of investment as Kjt = K̃jt

pIt
.

• Labor. Total hours worked computed as the number of workers times the average
hours per worker, where the latter is computed as normal hours plus average overtime
minus average working time lost at the workplace.

• Materials. Value of intermediate consumption (including raw materials, components,
energy, and services) deflated by a firm-specific price index of materials.

• Output. Value of produced goods and services computed as sales plus the variation of
inventories deflated by a firm-specific price index of output.

• Price of investment. Equipment goods component of the index of industry prices
computed and published by the Spanish Ministry of Industry.

• Wage. Hourly wage cost computed as total labor cost including social security pay-
ments divided by total hours worked.
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• Price of materials. Firm-specific for intermediate consumption. Firms are asked
about the price changes that occurred during the year for raw materials, components,
energy, and services. The price index is computed as a Paasche-type index of the
responses.

• Price of output. Firm-specific price index for output. Firms are asked about the price
changes they made during the year in up to 5 separate markets in which they operate.
The price index is computed as a Paasche-type index of the responses.

• Market dynamism. Firms are asked to assess the current and future situation (slump,
stability, or expansion) of up to 5 separate markets in which they operate. The market
dynamism index is computed as a weighted average of the responses.
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Figure 1: Productivity levels. Density (left panels) and distribution (right panels) of ex-
pected productivity.



Figure 1: (cont’d) Productivity levels. Density (left panels) and distribution (right panels)
of expected productivity.



Figure 1: (cont’d) Productivity levels. Density (left panels) and distribution (right panels)
of expected productivity.



Figure 2: Productivity levels. Density (left panels) and distribution (right panels) of ex-
pected productivity. Exogenous Markov process (upper panels) and OP estimator (lower
panels).



Figure 3: Persistence and uncertainty.

Figure 4: Return to R&D and uncertainty.


