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Abstract 
 

We find that in a market for a homogeneous good where firms are identical, compete in quantities and 

produce with constant returns, the percentage of wel-fare losses (PWL) is small with as few as five 

competitors for a class of demand functions which includes linear and isoelastic cases. However with 

fixed costs and asymmetric firms PWL can be large. We provide exact formulae of PWL and robust 

constructions of markets were PWL is close to one in these two cases. We show that the market 

structure that maximizes PWL is either monopoly or dominant firm, depending on demand. Finally we 

prove that PWL is minimized when all firms are identical, a clear indication that the assumption of 

identical firms biases the estimation of PWL downwards. 

 

 
 
*  This paper was presented in the universities of Murcia, Pablo de Olavide (Sevilla) and CarlosIII. 
I am grateful to the audiences there and to C. Beviá, N. Fabra, M. González-Maestre, C. Gozález-
Pimienta, J. Jaumandreu, J. López-Cuñat, C. Litan, F. Marcos, D. Moreno, C. Ponce and G. 
Zudenkova for helpful comments and to the Spanish Ministery of Education for financial support 
under grant BEC2002-02194. 
  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

In his classical contribution Cournot (1837, Chapter 8) established that when the num-

ber of �rms in a market tends to in�nity, oligopolistic equilibrium tends to perfect

competition. As a corollary, Welfare Losses (WL), measured as the di¤erence between

social welfare in the optimal and the equilibrium allocation, tend to zero. But, what

happens when the number of �rms is �nite? Is perfect competition a good approxima-

tion or, on the contrary are WL signi�cant? (see Hotelling (1938) and Yarrow (1985)

for an early treatment of this problem).

As a �rst cut to the problem, assume that all �rms are identical and costs and

demand are linear. It is easily calculated that the percentage of WL under Cournot

competition, denoted by PWL, is 1=(1 + n)2 where n is the number of �rms. Thus a

market composed by 7 identical �rms ("the seven sisters") produces a PWL of 1.56%,

not a big number.1 This poses a serious question: were WL systematically small there

would be little to be gained by considering oligopolistic behavior: A simple equilibrium

concept like perfect competition may be preferable. Moreover, the motivation for public

policies is weakened under small WL. Then, the dilemma is, either we �nd environments

in which oligopoly produces WL much greater than those found in the linear model or,

we abandon the oligopoly model as a leading model describing markets.

Let us �rst comment on papers that are relevant to our problem. McHardy (2000)

studies a model with quadratic demand and presents numerical calculations. He �nds

that WL can be up to 30% larger than those in the linear model, which is encouraging

but still does not solve the problem. Anderson and Renault (2003) calculate PWL under

the assumptions made above except that they assume an inverse demand function of

the form p = A� bx�, (x is aggregate output and p market price):2 They do not study
if PWL di¤ers substantially from those in the linear model. Johari and Tsitsiklis (2005)

show that if �rms are identical, average costs are not increasing and the inverse demand

1This formula shows that once linearity is assumed, as done implicitly by Harberger (1954), WL

seldom goes up to big numbers except if the number of �rms is very small. A list of other empirical

papers measuring WL in oligopoly can be found in Tullock (2003) p. 2.
2This form of demand generalizes both linear (� = 1) and isoelastic (with elasticity of demand 1=�)

forms and allows for computation of equilibria. See González-Maestre (2000) for an early application.

2



function is concave, PWL is bounded above by 1=(2n+ 1), which is still not very large

because a market with seven �rms achieves more than 93% of maximum welfare.

Our paper is a quest for markets where oligopoly produces large WL and, thus, it

is a relevant model of market competition. Speci�cally, the purpose of our paper is

twofold.

1: To provide workable formulae for PWL which depend, as far as possible, on

magnitudes that are observable.3 We regard these formulae as the main contribution of

the paper from the point of view of applied economics because they show which variables

to look at when dealing with WL in an actual market.

2: To use these formulae to construct markets where the Cournot equilibria yields

large PWL, sometimes close to one.4 These constructions are the main contribution of

the paper from the theoretical point of view because they show that oligopoly theory is

valid as a general description of markets with the perfectly competitive case as a limit.

In Section 2 we consider the baseline model, which is that of Anderson and Renault.

We might expect that for suitable values of �, WL were much higher than those in the

linear case. However, by using numerical methods we �nd that the maximum PWL

obtained in this case is not very di¤erent from the one obtained in the linear case.

Moreover, for some values of �, PWL is arbitrarily small. Thus, the consideration of a

more general class of demand functions does not bring signi�cant WL associated with

oligopoly, but on the contrary it adds to the suspicion that WL under oligopoly may be

small. We then turn our attention to �xed costs and heterogeneous �rms.5.

In Section 3 we consider free entry with a �xed (actually sunk) cost. We provide

formulae for the maximal and the minimal PWL where this magnitude depends on the

number of �rms and �. We show that when � and the �xed cost are not observable, for

any exogenously given observation on market price, output, average variable cost and

number of �rms, PWL can be chosen arbitrarily (Proposition 1). In particular when �

3The parameter �, which can be estimated but not observed, enters in the formula of PWL in

Anderson-Renault (2003), so it is unavoidable in the more general set ups considered in this paper.
4Johari and Tsitsiklis (2005) o¤er an example of a market where PWL is arbitrarily close to one but

in which the inverse demand function is not di¤erentiable.
5Other attempts to �nd higher WL focus on issues ouside market competition like �X-Ine¢ ciency�

(Leibenstein (1966) and Rent-Seeking (Tullock (1967).
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tends to in�nite, PWL can be chosen to be arbitrarily close to one. This result implies

that any given price-marginal costs margin, or elasticity of demand, is compatible with

any PWL. When the �xed cost can be observed, the observed variables must ful�ll a

condition which implies that entry is blockaded. We show that any observation ful�lling

this condition is compatible with many -but not all- PWL (Proposition 2). In this

section WL are due to the combination of the form of the demand function -we show

that PWL with linear demand is large but far from one- and there is overentry -because

the optimal number of �rms is one.

In Section 4 we consider heterogeneous �rms. We provide a formula for PWL where

this magnitude depends (positively) on the share of the largest �rm, (negatively) on

the Hirschman-Her�ndahl concentration index, denoted by H, and on �. We �nd that

there are market shares, number of �rms and � that yield PWL close to one whereas H

is close to zero (Proposition 3). In particular, the most e¢ cient �rm has a market share

of 1 � PWL; and there is an in�nite number of ine¢ cient �rms in the market, so all
�rms have a negligible market share. We check the robustness of this construction by

considering the e¤ects on PWL when one of the above magnitudes is held �xed. In all

cases, PWL is large -not necessarily close to one- and negatively correlated with H.6 All

these results points out that H is not a reliable measure of WL.7 More importantly, they

show that the concept of a "large economy" must be taken with care because seemingly

innocuous departs from the model where all �rms are small and identical may have

serious welfare consequences. Next, we prove that the market structure that maximizes

PWL is a dominant �rm when � > 0 and monopoly for � < 0 (Proposition 4). This

shows that monopoly, the target of attacks of our profession from Adam Smith on, is

not the worst outcome in terms of WL. Finally we prove that PWL is minimized when

�rms are identical (Proposition 5). This shows that proper care of the heterogeneity of

6 In the linear case, H is positively related to PWL but the values of H are not a reliable estimate

of PWL. Thus for n = 5, H = :2, which is a value considered high for some anti-trust authorities but

PWL = 2:7%, not a large number:
7That social welfare is increasing in the marginal cost of small �rms was �rst pointed out by Lahiri

and Ono (1988). For a criticism of the idea that concentration is generally bad for social welfare see

Daughety (1990) and Farrell and Shapiro (1990).
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�rms is essential to obtain estimates of PWL that are not biased towards small PWL.

Finally, in Section 5 we o¤er some thoughts about our results. Our main conclusion

is twofold. On the one hand, the search for WL in actual markets should focus on

economies of scale and asymmetric �rms, two facts that are seldom considered in the

applied literature. On the other hand the oligopoly model is still alive and well as a

leading model in the study of markets. Moreover, in some cases we turn the tables: the

classical vision of markets as places where (large) surplus is created may be too optimistic

and markets may create little or no surplus at all, at least in several relevant cases. Other

important points are the characterization of the best and the worst possible market

structures from the welfare point of view when �rms are di¤erent and the construction

of a "large" market where PWL is arbitrarily close to one.8 Moreover, our paper

suggests that, in general, large discrepancies of oligopolistic and perfectly competitive

outcomes may exist but should not be taken for granted.

It goes without saying that important causes of WL are not considered here, i.e.

product di¤erentiation, investment, R&D, location, etc. The analysis of the impact of

these variables on WL requires the consideration of games that are more complicated

than those considered here and, consequently, they are left for future research.

2. The Baseline Model

There is a representative consumer with a utility function U = Ax� bx�+1

�+1 � px where
x is aggregate output, p is the market price, b� > 0 and � > �1. The maximization of
utility generates an inverse demand function p = A� bx�. Notice that if � < 0, b < 0,
and A = 0 we have an isoelastic function p = �bx�. The linear case occurs if � = 1.

There are n identical �rms each producing a single output denoted by xi, i = 1; :::; n.

Thus x �
Pn
i=1 xi. Marginal cost is constant and denoted by c. Pro�ts for �rm i are

�i � (p � c)xi. De�ning a � A � c we have that �i � (a � bx�)xi. Assume ab > 0

and �A� < cn. These assumptions guarantee that output and price are positive in

equilibrium (see (2.1) below).

8Other points that have already been noticed in the literature are the importance of the functional

form of demand and the failure of H and price-marginal cost margins to capture WL.
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If �rms compete à la Cournot, the �rst order condition of pro�t maximization yields

a� bx� � b�x��1xi = 0. It is easy to check that the second order condition holds and
that equilibrium is symmetric. Thus Cournot equilibrium output and market price are

x� = (
an

b(n+ �)
)
1
� and p� =

A�+ cn

n+ �
: (2.1)

Social welfare, denoted by W , is the sum of industry pro�ts and the utility of the

representative consumer, i.e. W = ax � bx�+1

1+� : The optimal aggregate output is found

by maximizing W , namely

xo = (
a

b
)
1
� : (2.2)

Social welfare in equilibrium and in the optimal allocation, are, respectively

W � =
a
�+1
� n

1
��(n+ �+ 1)

b
1
� (n+ �)

1
� (n+ �)(�+ 1)

and W o =
a
�+1
� �

b
1
� (�+ 1)

: (2.3)

From (2.3), the percentage of WL denoted by PWL is

PWL � W o �W �

W o
= 1� n

1
� (n+ �+ 1)

(n+ �)
�+1
�

� L(�; n); (2.4)

see Anderson-Renault (2003) p. 262. The following properties of L(�; �) are easily proved:

i) limn!1 L(�; n) = 0:

ii) lim�!�1; L(�; n) = 0.

iii) lim�!1 L(�; n) = 0.

iv) L(�; �) decreases with n.
v) L(�; n) is quasiconcave in �.

i) is the usual property of large economies, as noticed in the Introduction. The

explanation of ii) is that when � ! �1, the market produces in the limit an in�nite
amount of surplus, so the loss caused by oligopoly tends to zero. iii) is caused by the fact

that when � ! 1, inverse demand is �at so �rms cannot in�uence price and optimal
and equilibrium output are identical. ii) and/or iii) imply that there are markets where,

for a given n, PWL is as small as we wish, something that is impossible in the case

of quadratic utility functions. iv) shows that, when there are no technological issues at

stake, the more competition, the better. Finally v) follows from the fact that Anderson
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and Renault (2003) proved that W o=W � is quasi-concave on �. So W �=W o is quasi-

convex and �W �=W o is quasi-concave, so it is 1�W �=W o.

We now study PWL as a function of �, see Figure 1. Notice that v) guarantees that

the local maximum found there is a global maximum.9

20151050
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0.15
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PWL

Alpha

PWL

FIGURE 1: PWL for n = 1 (black), 2 (red), 3 (light red), 4 (green) and 5 (brown).

Table 1 below shows the maximum PWL, denoted by PWL, and the corresponding

values in the linear model, denoted by PWLL, for selected values of n. Notice that iv)

above guarantees that for n larger than 10, PWL will be smaller than 2.2%.

n 1 2 3 4 5 6 7 8 9 10

PWL :27 :118 :076 :058 :044 :0357 :032 :027 :024 :022

PWLL :25 :11 :0625 :04 :027 :02 :0156 :012 :01 :008

TABLE 1

9Figure 1 suggests that the � that maximizes L(�; n) increases with n.
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Notice that the relative di¤erence between PWL and PWLL increases with n (from

8% for n = 1 to 175% for n = 10). However this e¤ect is not strong enough to obtain

signi�cant WL in the cases in which the linear model yields small WL. Given this and

that PWL can be much smaller than PWL, we conclude that the consideration of a

more general class of utility functions alone is not helpful to �nding signi�cant WL.

3. Fixed Costs and Free Entry

In this section we assume that in order to produce, �rms must incur in a �xed cost,

denoted by k, and that there is an in�nite number of potential �rms. The number

of active �rms in equilibrium is denoted by n. Given n, output is determined as in

the previous section. We assume that the decision of entry is prior to the decision on

output.10 Thus, equilibrium under free entry implies that if n �rms are in the market,

�rm n has non negative pro�ts but �rm (n+ 1) has non positive pro�ts, formally

�a
1+�
� n

1��
�

b
1
� (n+ �)

1+�
�

� k � �a
1+�
� (n+ 1)

1��
�

b
1
� (n+ �+ 1)

1+�
�

: (3.1)

Welfare in a Cournot equilibrium with free entry is

W � =
a
�+1
� n

1
��(n+ �+ 1)

b
1
� (n+ �)

1
� (n+ �)(�+ 1)

� nk; (3.2)

where n solves (3.1). In an optimal allocation, aggregate output equals the one in (2.2).

Thus, social welfare in the optimal allocation with one active �rm is

W o =
�a

�+1
�

b
1
� (�+ 1)

� k: (3.3)

Assuming �a
�+1
� > kb

1
� (�+ 1), i.e. that the �xed cost is small enough, one active �rm

is socially optimum because it yields more social welfare than no �rms and economies

10Thus the �xed cost is actually sunk. Lopez-Cuñat (1999) has shown that, under conditions that are

met here, the equlibrium considered in this paper is a subset of an equilibrium when both decisions are

simultaneous (like in Novshek [1980] and Ushio [1983]). Thus this cost can also be considered as �xed.
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of scale imply that is optimal to produce xo in one �rm. Thus PWL can be written as

PWL =

a
�+1
� �

b
1
� (�+1)

� a
�+1
� n

1
� �(n+�+1)

b
1
� (n+�)

1+�
� (�+1)

+ (n� 1)k

a
�+1
� �

b
1
� (�+1)

� k
: (3.4)

In order to have a formula, in which PWL depends on observable variables, we substitute

k for its upper and lower bounds in (3.1). It is clear that PWL is increasing on k. Thus,

the maximal PWL, denoted by MA(�; n), occurs for the maximum value of k, namely

MA(�; n) � (n+ �)
1+�
� � n 1

� (n+ �+ 1) + (n� 1)n 1��
� (�+ 1)

(n+ �)
1+�
� � n 1��

� (�+ 1)
: (3.5)

Minimal PWL, denoted by MI(�; n), occurs for the minimum value of k, namely

MI(�; n) �
(n+ �+ 1)

1+�
� � n

1
� (n+�+1)

1+2�
�

(n+�)
1+�
�

+ (n� 1)(n+ 1) 1��� (�+ 1)

(n+ �+ 1)
1+�
� � (n+ 1) 1��� (�+ 1)

: (3.6)

Figures 2 and 3 below picture MA(�; n) and MI(�; n) for selected values of n.

302520151050
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FIGURE 2: MA(�; 1) and MI(�; 1) (black) and MA(�; 10) and MI(�; 10) (red)
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FIGURE 3: MA(�; 2) and MI(�; 2) (black) and MA(�; 20) and MI(�; 20) (green).

We now state the properties of MA(�; �) and MI(�; �) that correspond to i)-iv) in the
previous section.

i�) limn!1MI(�; n) = limn!1MA(�; n) = 0:

ii�) lim�!�1MI(�; n) = lim�!�1MA(�; n) = 0:

iii�) lim�!1MI(�; n) = n�1
n , lim�!1MA(�; n) = 1:

iv�) Neither MI(�; �) nor MA(�; �) are monotonic on n:

i�) implies that limk!0 PWL = 0, since (3.1) implies that when k ! 0, n ! 1.
Variations of this result have been obtained by Dasgupta and Ushio (1981), Fraysse

and Moreaux (1981) and Guesnerie and Hart (1985). i�) and ii�) are identical to i)

and ii) in the previous section. However iii�) is very di¤erent from iii) because it says

that markets with very large �0s could be very ine¢ cient. For large values of �, the

contrast between monopoly and markets with a large number of �rms is striking: In the

former it is possible to construct examples where PWL is arbitrarily small and in the

latter such examples are not possible. This is due to the fact that when n is very large,

there are large WL due to the discrepancy between n and the optimal number of �rms,
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namely one. Finally iv�) is proved in Figures 2 and 3. The reason for this -apparently

paradoxical- result is that k changes in order to maintain the free entry condition (3.1).

We now show that, if k and � are unknown, PWL is arbitrary even if certain

variables -like price, output, marginal cost and number of �rms- can be observed and

we require that they correspond to the values in a Cournot Equilibrium with free entry

for some parameters de�ning demand and costs. To formalize this, we say that aMarket

is a list of real numbers (A; c; b; �; k) such that k > 0, (A � c)� > 0, � > �1, �b > 0,
�A� < cn and �(A� c)�+1� > kb

1
� (�+ 1). An Observation is a list (p; xi; c; n) where p

is market price, xi is output of �rm i, c (< p) is the marginal cost and n is the number

of active �rms. The last variable is a positive integer and the others are positive real

numbers. Under constant returns, the marginal cost equals the average variable cost so

it can be observed (wages, raw materials, etc.). Now we have the following:

Proposition 1. Given an observation (p; xi; c; n), and a number v such that v =MA(�̂; n);

�̂ 2 (�1; 0)[(0;1), there is a market (Â; c; b̂; �̂; k̂) such that (p; xi; n) is a Cournot equi-
librium with free entry for this market (i.e. they ful�ll (2.1) and (3.1)), and PWL = v.

Proof: For k equal to the maximum value in (3.1), PWL is given by (3.5). Let v

and �̂ be such that MA(�̂; n) = v. Now set

Â =
p(n+ �̂)� cn

�̂
; k̂ =

�̂(Â� c) 1+�̂�̂ n 1��̂�̂
b̂
1
�̂ (n+ �̂)

1+�̂
�̂

; b̂ =
(Â� c)n

n�̂x�̂i (n+ �̂)

This system can be solved easily because the �rst equation determines Â, the last equa-

tion determines b̂ and with these values of Â and b̂ the remaining equation determines

k̂. By construction Â�̂ = p(n + �̂) � cn, so (Â � c)�̂ = p(n + �̂) � c(n+ �̂) > 0:

Then, from the last equation �̂b̂ > 0 and the remaining equation implies k̂ > 0. Also

Â�̂ + cn = p(n + �̂) > 0. Finally we will show that �̂(Â � c)
�̂+1
�̂ > k̂b̂

1
�̂ (�̂ + 1). Given

the de�nitions of the parameters, this inequality reads (n + �̂)
1+�̂
�̂ � n 1��̂�̂ (�̂ + 1) > 0.

Call 	(�̂; n) the left hand side of the previous inequality and extend the function to

allow n to take real values. Notice that 	(�̂; 1) = (�̂ + 1)((�̂ + 1)
1
�̂ � 1) > 0: Also

limn!1	(�̂; n) =1. Then, if 	(�̂; n) � 0 there must be a value of n; say �n for which
@	(�̂;�n)
@n = 0 and 	(�̂; �n) � 0. The former is equivalent to (�n + �̂)

1
�̂ �n = �n

1��̂
�̂ (1 � �̂).
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If �̂ = 1 this is impossible. If �̂ 6= 1 plugging this equation in the de�nition of 	(�; �)
we obtain 	(�̂; �n) = (�n + �̂)

1
�̂

�̂
1��̂(��̂ + 1 � 2�n) 6= 0. Thus 	(�̂; �n) < 0 , �̂ 2 (0; 1).

However for �̂ 2 (0; 1), (�n+ �̂) 1+�̂�̂ � �n 1+�̂�̂ so 	(�̂; �n) � �n 1�̂ (�n� 1+�̂
�n ) � �n 1�̂ (�n� 2

�n) > 0.

Thus, 	(�̂; n) > 0.

Plugging the values of Â and b̂ into (2.1) we obtain

x� = (
(Â� c)n
b̂(n+ �̂)

)
1
�̂ = nxi and p� =

Â�̂+ cn

n+ �̂
= p:

From the �rst inequality in (3.1) (with equality) and the de�nition of k̂ it follows that

�̂(Â� c)
1+�̂
�̂ n

1��̂
�̂

b̂
1
�̂ (n+ �̂)

1+�̂
�̂

=
�̂(Â� c) 1+�̂�̂ n 1��̂�̂
b̂
1
�̂ (n+ �̂)

1+�̂
�̂

, n
1��̂
�̂

(n+ �̂)
1+�̂
�̂

=
n
1��̂
�̂

(n+ �̂)
1+�̂
�̂

;

which has n = n as a solution so the proof is complete.

There are two main implications of this result. On the one hand it points out the

necessity of a good estimate of � in order to judge the e¢ ciency of a market. Notice

that �rst order conditions of pro�t maximization imply that the elasticity of demand

equals n(p�c)
p so neither the elasticity of demand, nor price-marginal costs margins are

related to � and/or PWL. On the other hand, together with the second part of iii�),

it allows for markets yielding PWL arbitrarily close to one, the main theoretical goal

of this paper. The explanation of this, is that we have constructed a market in which,

in equilibrium, pro�ts are zero and, when � tends to in�nite, consumer surplus is also

zero since from (2.1) we have that

U =
�

(�+ 1)b
1
�

(
na

n+ �
)
1+�
� , so lim

�!1
�

(�+ 1)b
1
�

(
na

n+ �
)
1+�
� = 0:

The intuition of the latter equation is that large values of � make inverse demand �atter

and �atter so consumer surplus goes to zero when � goes to in�nite. The di¤erence with

iii) in the previous section -where lim�!1 L(�; n) = 0- arises from the fact that in the

latter industry pro�ts are not zero, but when � tends to in�nite they tend to a.

We now consider the case where �xed costs are observable. In this case an observa-

tion is a list (p; xi; c; n; k) such that k � xi (p� c) (i.e. pro�ts are non negative). Consider
the following condition that guarantees that no �rm will like to enter:
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De�nition 1. Observation (p; xi; c; n; k) and � ful�ll condition BE (Blockaded Entry) if

(
n+ �+ 1

n+ �
)
1+�
� (

n

n+ 1
)
1��
� >

xi(p� c)
k

:

The right hand side can be interpreted as the rate of (gross) pro�ts. BE just says

that the rate of pro�ts cannot be larger than a certain number which depends on �

and n. The condition is more illuminating in several special cases. For instance if

� ! 1 condition BE reads k(n + 1) > nxi (p� c). When � ! �1 condition BE reads
k (n+ 1)2 > n2xi (p� c). Finally when � = 1, BE reads, k (n+ 2)2 > (n+ 1)2xi (p� c).

Proposition 2. Given an observation (p; xi; c; n; k) and a number v such that v =

MI(�̂; n); �̂ 2 (�1; 0) [ (0;1), if BE holds, there is a market (Â; c; b̂; �̂; k̂) such that
(p; xi; n) is a Cournot equilibrium with free entry for this market (i.e. they ful�ll (2.1)

and (3.1)), and PWL � v.

Proof: (Virtually identical to the proof of Proposition 1) For k equal to the mini-

mum value in (3.1), PWL is given by (3.6). Choose �̂ such that v =MI(�̂; n). Set

Â =
p(n+ �̂)� cn

�̂
; b̂ =

(Â� c)n
n�̂x�̂i (n+ �̂)

This system can be solved, as we showed before. Plugging these values of Â and b̂ into

(2.1) we obtain the required values of x� and p�. Finally, the left hand side of the free

entry condition (3.1) holds by the de�nition of an observation. Notice that the right

hand side of (3.1) when we plug the values of Â and b̂ obtained above reads

k �
xi(p� c)(n+ �̂)

1+�̂
�̂ (n+1

n )
1��̂
�̂

(n+ �̂+ 1)
1+�̂
�̂

;

which under BE holds. When the above equation holds with equality, PWL =MI(�̂; n) =

v, so PWL � v:

Comparing these with the results obtained in the previous section we see that the

consideration of �xed costs allows the possibility of �nding large PWL. This is because

13



in this case, we add the misallocation due to the wrong number of �rms to the misallo-

cation due to the wrong output.11 The latter comes up to very large numbers because

in our model the optimal number of �rms is one.12 But preferences play a role too. In

the linear case, the corresponding expressions to (3.5) and (3.6) are (see Figure 4).

MA(1; n) =
2n� 1

n2 + 2n� 1 and MI(1; n) =
2n3 + 3n2 + 2n+ 2

(n+ 1)2 (n2 + 4n+ 2)
:
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FIGURE 4: MA(1; n) (black) and MI(1; n) (red)

Even though for large values of n PWL is substantial (i.e. for n = 15; the minimum

PWL is 10:14% which is just below the PWL in the case of no free entry with two

�rms), both MA(1; n) and MI(1; n) tend to zero as n ! 1, which was not the case
when � was allowed to vary. Moreover, in this case, values of PWL arbitrarily close to

11Very similar conclusions are drawn if the cost function is cxi+x2i d=2 with d < 0, i.e. under increasing

returns to scale ( 2c(d+b) > �da is required for costs to be positive in the optimum and in equilibrium).

In this case PWL can be very large too because there are too many �rms in equilibrium.
12Overentry may also occur even if the marginal cost is increasing, see von Weizsäcker (1980), Mankiw

and Whinston (1986) and Suzumura and Kiyono (1987).
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one cannot be obtained for a given n. The reason is that the utility of the representative

consumer when � = 1 is always positive.

4. Non Identical Firms

Suppose now that �rms have di¤erent productivities. Let ci be the marginal cost of �rm

i. Without loss of generality let c1 � ci for all i. Let ai � A� ci. We will assume that
for all i, (n+ �� 1)ai >

P
j 6=i aj , b

Pn
j=1 aj > 0 and �A� <

Pn
i=1 ci. This assumption

guarantees that, in equilibrium, all �rms produce a positive output and market price is

positive (see Equation (4.1) below). Cournot equilibrium is easily shown to be unique

and given by

x�i =
1

�
(

Pn
j=1 aj

b(n+ �)
)
1
� (
ai(n+ �)Pn

j=1 aj
� 1); x� = (

Pn
j=1 aj

b(n+ �)
)
1
� and p� =

A�+
Pn
i=1 ci

n+ �
:

(4.1)

Social welfare is now W = Ax� bx�+1

�+1 �
Pn
i=1 cixi =

Pn
i=1 aixi� bx�+1

�+1 : In the Cournot

equilibrium

W � =
1

�

nX
i=1

ai(

Pn
j=1 aj

b(n+ �)
)
1
� (
ai(n+ �)Pn

j=1 aj
� 1)� b

�+ 1
(

Pn
i=1 ai

b(n+ �)
)
�+1
� ; (4.2)

which when all ai�s are identical reduces to (2.3). In the optimal allocation only the

technology in the hands of Firm 1 is used and accordingly

xo = (
a1
b
)
�+1
� and W o =

�a
�+1
�
1

(�+ 1)b
1
�

: (4.3)

In order to have a workable expression for PWL that depends on observable variables

alone, let us de�ne si as the market share of �rm i. Clearly,
Pn
i=1 si = 1 and s1 � si,

i = 2; :::; n. Then, from (4.1),

si �
xi
x
=
ai(n+ �)�

Pn
j=1 aj

�
Pn
j=1 aj

) ai =
(�si + 1)

Pn
j=1 aj

n+ �
: (4.4)

For future reference, we will say that a list of market shares (s1; s2; :::; sn) is a Market

Structure. It is clear from (4.4) that any vector (a1; a2; :::; an) yields a unique market

15



structure compatible with Cournot equilibrium and that given a market structure we can

construct a vector (a1; a2; :::; an) (in fact an in�nite number of vectors) whose Cournot

equilibrium yields this market structure. Given this equivalence, we will focus in this

section on market structure that has the advantage of being observable.

Plugging the last part of (4.4) into (4.2) and after lengthy calculations we obtain

PWL as a function of � and the market structure, namely

PWL =
(1 + �s1)

�+1
� � (�+ 1)

Pn
i=1 s

2
i � 1

(1 + �s1)
�+1
�

� P (s1;
nX
i=1

s2i ; �): (4.5)

When all �rms are identical, (4.5) reduces to (2.4). It is noteworthy that PWL here

depends only on three variables:

- �.

- The market share of the largest �rm s1.

- The Hirschman-Her�ndahl index of concentration denoted by H �
Pn
i=1 s

2
i .
13

Equation (4.5) allows computation of PWL from s1 and H assuming that demand

is linear or isoelastic (where � is the inverse elasticity of demand). It also allows to plot

PWL as a function of � for actual market structures and see what this function looks

like. For instance, the numbers below represent shares of di¤erent �rms in the Spanish

gasoline market. Our data do not include operators with less than .013 of market share,

but the consideration of these operators would hardly make any di¤erence in H.

:41 :178 :074 :048 :034 :026 :023 :014

TABLE 2

This market has been voiced repeatedly as not very competitive. In this case, (4.5)

reads like follows:

PWL =
(1 + �:41)

�+1
� � (�+ 1):2093� 1

(1 + �:41)
�+1
�

:

13 In fact, s1 and H are not independent but we prefer to write (4.5) in this way to highlight the role

of H in the formula.
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Looking at Figure 5 it is clear that, except for very special values of �, PWL is large.

Indeed for values of � larger than �:6, PWL is larger than 10%. When demand is
concave (� � 1), PWL is always larger than 28%.
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FIGURE 5

Notice the following properties of P ( ) as de�ned by (4.5):14

i�) lim�!�1 P (s1;H; �) = 0.

ii�) lim�!1 P (s1;H; �) = 1
s1

�
s1 �

Pn
i=1 s

2
i

�
:

iii�) P (�;H; �) is increasing on s1.
iv�) P (s1; �; �) is decreasing on H.
v�) lim�!0 PWL(s1;H; �) = es1�1�H

es1 .

i�) is identical to i). When �rms are identical ii�) reduces to ii).15 Point iii�) agrees

with the received wisdom: the larger the dominant �rm, the closer to monopoly, and

hence the larger the PWL is. However, iv�) is counterintuitive because it says the larger

the concentration, the lower the WL. The reason is that when H increases, production

14As we mentioned before we take s1 and H as independent when in fact they are not.
15 If PWL is written as a function of a0is, i�) holds and ii�) reads lim�!1 PWL = 1�

Pn
i=1

a2i
a1

Pn
j=1 aj

.

17



is shifted to the less e¢ cient �rms which causes social welfare to fall. Finally v�) allows

us to extend P (s1;H; �) to � = 0 preserving continuity.
We now discuss why the approach followed in the previous section will not work here.

An Observation is a list (p; x1; :::; xn; c1; :::; cn) where p is market price and xi and ci(< p)

are the output and the marginal cost of �rm i and a Market is a list (A; c1; :::; cn; b; �)

such that (n + � � 1)ai >
P
j 6=i aj , � > �1, b

Pn
j=1 aj > 0 and �A� <

Pn
i=1 ci. It is

clear that not all observations are compatible with the model. In particular, the number

of variables in an observation is 2n+1 and the number of parameters de�ning a market

is n+ 3: With n > 2, the number of parameters will be, in general, unable to generate

the required observations. Also, �rst order conditions of pro�t maximization imply that

xi
xj
=
p� ci
p� cj

that may fail even for the case n = 2. Given this, we will study how PWL depends on

�; n and the market structure focussing our attention on limiting cases, i.e. when PWL

is maximal or minimal. Our �rst result is that when �, n and the market structure can

be chosen simultaneously, PWL can be arbitrarily close to one and at the same time

the concentration index H arbitrarily low.

Proposition 3. There exists (�; n; s1; :::; sn) for which PWL is arbitrarily close to one

and H is arbitrarily close to zero.

Proof: From iv�) the maximal PWL occurs when s2 = s3 =; :::;= sn. Denoting

these shares by y, we have that s1 + (n� 1)y = 1. Plugging this in (4.5) we have that

P (s1; n; �) �
(1 + �s1)

�+1
� � (�+ 1)(s21 +

(1�s1)2
n�1 )� 1

(1 + �s1)
�+1
�

: (4.6)

PWL is increasing on n so the maximum PWL obtains when n is arbitrarily large, i.e.

lim
n!1

P (s1; n; �) =
(1 + �s1)

�+1
� � (�+ 1)s21 � 1

(1 + �s1)
�+1
�

: (4.7)

We easily compute lim�!1 limn!1 P (s1; n; �) = limn!1 lim�!1 P (s1; n; �) = 1� s1:
Thus when � and n are very large and s1 very small, PWL is arbitrarily close to one
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(since limits are interchangeable our procedure is robust). The restriction s1 � si,

i = 2; :::; n when �rms 2; :::; n are identical, is equivalent to ns1 � 1: This inequality

holds when the order of magnitude at which n tends to 1 is larger than the order of

magnitude at which s1 tends to 0:

Finally, it can be easily shown that when �rms 2 to n are identical,

H =
ns21 + 1� 2s1

n� 1 =
s21 +

1
n � 2

s1
n

1� 1
n

;

which when n!1 and s1 ! 0 tend to zero.

We now perform a robustness test on the previous result by checking what would

happen to PWL and H if one of the variables in our construction is held �xed.

For given s1, PWL = 1 � s1 which for sensible values of s1 might be large. Also,
H = s21: Thus PWL = 1�

p
H so H and PWL are negatively related.

For given n, PWL can be written as in (4.6) above. Taking limits,

lim
�!1

(1 + �s1)
�+1
� � (�+ 1)(s21 +

(1�s1)2
n�1 )� 1

(1 + �s1)
�+1
�

=
s1n� s21n� 1 + s1

s1n� s1
:

This expression achieves a maximum at
p
n�1p
n+1

when s1 = 1p
n
: PWL is large -the mini-

mum value of PWL is 0:17- but not close to one: Also H = 2(
p
n�1)p

n(n�1) which is decreasing

in n, see Figure 6. So in this case H and PWL go in opposite directions when n varies.
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FIGURE 6: PWL (black) and H (red) for given values of n.

Finally, if � were given, for n =1,

PWL = 1� (�+ 1)s
2
1 + 1

(1 + �s1)
�+1
�

:

First order condition of PWL maximization implies s21(1��2)�2s1(1+�)+1+� = 0.
If � = 1, the maximum is achieved at s1 = 1

2 and PWL = 1
3 . If � 6= 1 we have

two solutions, s1 =
�1�

p
�

��1 . The root �1�
p
�

��1 can be discarded because if � > 1 it

is negative, if � < 1 it is larger than one and if � 2 (�1; 0) it is not de�ned. If

� 2 (0;1); �1+
p
�

��1 2 [0; 1] and since it can be easily shown that the maximum is

interior, s1 =
�1+

p
�

��1 maximizes PWL. The latter can be written as

PWL = 1�
1

(��1)2 (�+ 1) (
p
�� 1)2 + 1�

�
��1 (

p
�� 1) + 1

� 1
�
(�+1)

for � 2 (0;1);

which increases with �, see Figure 7.16 Again, PWL is large but not close to one. In

16Notice that lim�!1 PWL =
1
3
and lim�!1

�1�
p
�

��1 = 1
2
which equal the values obtained when � = 1.
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this case H = (�1+
p
�

��1 )2 so H and PWL go in opposite directions with respect to �:

For � 2 (0;�1) the maximum is obtained when s1 = 1, i.e. monopoly.
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FIGURE 7: PWL (black) and H (red) for given values of �

Summing up, in the three cases considered, PWL is easily made large, but not close

to one and H is far from being a reliable measure of PWL.

We now perform a more demanding exercise where PWL is studied by varying only

either the market structure or �.

We �rst concentrate on how market shares a¤ect PWL. A market structure such

that s1 > s2 =; :::;= sn > 0 will be called a Dominant Firm. A limit case of a dominant

�rm is Monopoly where only s1 is positive.

Proposition 4. For � > 0; PWL is maximized when the market structure is a domi-

nant �rm with s1 = n+3
2n+2 if � = 1 and s1 =

�n�1+
p
1+�n+�2n+�n2

�n�n if � 6= 1: For � < 0
the market structure that maximizes PWL is monopoly.

Proof: The maximum of PWL in (4.5) over
Pn
i=1 si = 1 exists (by Weierestrass�

theorem). As mentioned before, it occurs when s2 = s3 =; :::;= sn. So, let us consider
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PWL as given by (4.6). The extrema of this expression with respect to s1 can be

located, either when @P (s1;n;�)
@s1

= 0 or in the bounds of the interval in which s1 must lie,

namely sj � s1 � 1 for all j > 1. Since (n � 1)sj � s1 the previous inequality can be
written as 1

n � s1 � 1. Now, rewrite (4.6) as follows:

P (s1; n; �) = 1�
(�+ 1)(ns21 � 2s1 + 1) + n� 1

(n� 1)(1 + �s1)
�+1
�

:

@P (s1; n; �)

@s1
=

s21(n� n�2)� s1(2 + 2n+ 2�+ 2n�) + 2 + �(3 + n+ �) + n
(n� 1) (�s1 + 1)

1
�
+2

(4.8)

@P (s1; n; �)

@s1
= 0, s21(n� n�2) = 2s1(1 + n+ �+ n�)� 2� �(3 + n+ �)� n(4.9)

We have three possible cases: If � = 1, the solution to (4.9) is s�1 =
n+3
2n+2 2 [

1
n ; n]: Then,

the maximum must be located either at s1 = 1
n , at s1 = 1 or at s1 =

n+3
2n+2 . We easily

compute,

P (1; n; 1) =
1

4
, P (

1

n
; n; 1) =

1

(n+ 1)2
, P (

n+ 3

2n+ 2
; n; 1) =

n+ 1

3n+ 5
:

From these expressions we obtain the desired result.

If � > 1 from the �rst order condition we obtain two solutions,

s�1 =
�n� 1�

p
1 + �n+ �2n+ �n2

�n� n : (4.10)

Clearly only the solution with a plus sign in front of the square root is feasible. We will

show that for this solution, s�1 2 [ 1n ; 1]: If
1
n > s

�
1 we would have �

2(n� 1)+n2(�� 1)�
�n + 1 < 0 which is impossible because the left hand side achieves a minimum when

n = 2 and � = 1. Similarly, if s�1 > 1, �n� �� n+ 1 < 0, which again is impossible.17

Finally, notice that since there is only one value of s1 for which
@P (s1;n;�)

@s1
= 0 the

shape of P (�; n; �) is determined by the sign of @P (s1;n;�)@s1
at s1 = 1

n and s1 = 1. From

(4.8),

sign
@P ( 1n ; n; �)

@s1
= sign(n+ �+ n�� 1

n
+ �2 � 2

n
�� 1

n
�2) (4.11)

17Notice that when �! 1 both the numerator and the denominator in the de�nition of s�1 go to zero.
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which is positive because the expression on the right hand side is increasing in � and

for � = �1 equals to zero. Also from (4.8) we obtain that

sign
@P (1; n; �)

@s1
= sign(�� n�+ �2 � n�2) = sign(�(1 + �)(1� n)) (4.12)

which is negative so the interior solution is indeed a maximum.

Finally let us consider the case � < 1. Suppose that the negative root in (4.10) is

less than one. Then

�n� 1�
p
1 + �n+ �2n+ �n2

�n� n < 1 , �
p
1 + �n+ �2n+ �n2 > �n+ 1;

which is impossible. So there is, at most, one interior solution. Suppose �rst that � > 0.

From (4.11-12) we get that sign
@P ( 1

n
;n;�)

@s1
is positive and sign@P (1;n;�)@s1

is negative which

implies that maximum PWL is achieved at the interior solution. If � = 0 the positive

root in (4.10) equals one. Finally, if � < 0, from (4.11-12), we have that sign
@P ( 1

n
;n;�)

@s1

and sign@P (1;n;�)@s1
are both positive which given that there is, at most one value of s1 for

which sign@P (�;n;�)@s1
switches from positive to negative means that P (�; n; �) is increasing,

so it achieves the maximum when s1 = 1.

Proposition 4 says that the most deleterious market structure is not always monopoly,

the target of the wrath of economists since Adam Smith. In many cases a dominant

�rm structure is worse because �rms other than 1 do not add much competition to the

market and they are technologically ine¢ cient. We notice that under maximal PWL,

H =
ns21 + 1� 2s1

n� 1 and PWL =
(1 + �s1)

�+1
� � (�+ 1)(ns21 +

(1�s1)2
n�1 )� 1

(1 + �s1)
�+1
�

;

so H decreases with n but PWL increases with n. And H increases with s1 but PWL

not necessarily so. Thus, again, the concentration index H is a poor measure of WL.

The maximum PWL for given n and � is obtained by plugging the value of s1 that

maximizes PWL as found in Proposition 4 and denoted by s(�; n), into P (s1; n; �).18

18Properties of s(�; n) when � > 0 are: �) limn!1 s(�; n) =
1p
�+1

. �) lim�!1 s(�; n) =
1p
n
: )

@s(�;n)
@�

> 0, 3�n+ n+�n2 + n2 � 2 < 2
p
(1 + �n+ �2n+ �n2)(n+ 1) and �) s(�; �) is increasing in

n , (�n+ �2n� 2
p
(1 + �n+ �2n+ �n2) + 2)(1� �) > 0:
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Let P (s(�; n); n; �) � F (�; n), say. Figure 8 shows F (�; n) for several values of n and
for � 2 (0; 50]. For � 2 (�1; 0) maximal PWL is obtained under monopoly. This is
why all the curves in the �gure tend to the same value when � ! 0, namely to PWL

under monopoly, which by v�) above is e�2e = 0:264; see also Figure 1 above.
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FIGURE 8: F (�; n) for n = 2 (red), 3 (light red), 4 (green), 5 (brown) and 10 (black).

Now we state and prove some useful properties of F (�; �):
I) s1(�; n) and F (�; n) are continuous in �:

Proof: Clearly, each of the di¤erent pieces that de�ne s1(�; n) are continuous so we
have only to check continuity at � = 0; 1. First, when �! 0, �n�1+

p
1+�n+�2n+�n2

�n�n ! 1.

The continuity of s1(�; n) at � = 1 can be shown by multiplying the numerator and the
denominator of �n�1+

p
1+�n+�2n+�n2

�n�n by �n � 1 �
p
1 + �n+ �2n+ �n2:19 Finally,

continuity of F (�; n) follows from the continuity of s(�; n) and P (s1; n; �)

II) F (�; �) is increasing in n.
19This is a general method to show that solutions of a quadratic equation ax2 + bx + c = 0 are

continuous in a when a! 0.
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Proof: Extend the functions P (s1; �; �) and F (�; �) to have real values in the domain.
It is clear that such functions are di¤erentiable in n. Now compute,

@F (�; n)

@n
=
dP (s(�; n); n; �)

dn
=
@P (s1; n; �)

@s1

@s1
@n

+
@P (s1; n; �)

@n
=
@P (s1; n; �)

@n
;

where the last equality comes from the fact that s(�; n) maximizes PWL with respect

to s1 (this is the envelope theorem). Finally, it was established in Proposition 3 that

P (s1; �; �) is increasing in n so the desired result follows.

This result implies that, for any number of �rms, it is possible to �nd the PWL

of, at least, the magnitude of F (�; 2) which for values of � 2 (0; 50] never goes below
0:209 7. Finally, we state two limiting properties of F (�; �) :

III) lim�!1 F (�; n) =
(
p
n)

3
+
p
n�2n

(
p
n)

3�
p
n
:

IV ) limn!1 F (�; n) = 1�
(
p
��1)

2
(�+1)+(��1)2

(��1)
��1
� (�

p
��1)

�+1
�
:

Notice that in both cases PWL is high even for small values of � and n; see Figure

9. It is clear that limn!1;�!1 F (�; n) = lim�!1;n!1 F (�; n) = 1: The previous

properties have two interesting consequences.
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FIGURE 9: LIM�!1PWL (black) and LIMn!1PWL (green).

Corollary 1. 1: Any PWL 2 (0; (
p
n)

3
+
p
n�2n

(
p
n)

3�
p
n
) can be obtained for some value of �.

2: PWL is obtainable for some value of n i¤ PWL 2 (0; 1� (
p
��1)

2
(�+1)+(��1)2

(��1)
��1
� (�

p
��1)

�+1
�
):

The �rst part of the Corollary follows from I) and III) and the second part from

II) and IV ). We now turn to the study of the market structure that minimizes PWL.

Lemma 1. Suppose that (ŝ1; ŝ2; ::::; ŝn) minimizes P (s1;
Pn
i=1 s

2
i ; �). Then @ ŝi; ŝj ;

j > 1 such that ŝ1 > ŝi � ŝj > 0.

Proof: Increasing ŝi by an small amount, say dx, and decreasing ŝj by dx too is

feasible -i.e. ŝi + dx and ŝj � dx 2 [0; s1]; increases H and so decreases PWL which

contradicts that PWL is minimized.

Lemma 1 implies that only three market structures might minimize PWL.

1: All �rms produce the same output: Market structure is ( 1n ;
1
n ; :::;

1
n):

2: All �rms minus one, say n, produce the same output. Market structure is

(x; x; :::; y) with x > y.

3: A number of �rms, say 1; :::;m with m < n produce the same output, and the

remaining �rms produce zero output. Market structure is ( 1m ; :::;
1
m ; 0; :::; 0).

But option 3) cannot minimize PWL since it was established that when all �rms

are identical, PWL decreases with the number of (active) �rms (Property iv) in Section

2). So we are left with options 1 and 2.

Proposition 5. The market structure that minimizes PWL is when all �rms produce

the same output.

Proof: Notice that market structures 1 and 2 can be written as (x; x; :::; 1�(n�1)x)
with x 2 [ 1

n�1 ;
1
n ], where the lower bound of this interval comes from 1 � (n � 1)x. In

this case H = (n� 1)x2 + (1� (n� 1)x)2: Plugging H into (4.5) we obtain

PWL = 1�
(�+ 1)

�
(n� 1)x2 + (1� (n� 1)x)2

�
+ 1

(1 + �x)
�+1
�

� PW (�; x; n):
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Now, computing @PW (�;x;n)
@x this expression is found to be equal to

� (1 + �)
(1 + x�)

1+�
�

[2n2x� 2nx� 2n+ 2�
(1 + �)

�
(n� 1)x2 + (1� (n� 1)x)2

�
+ 1

1 + x�
]

Solving for @PW (�;x;n)
@x = 0 we obtain the following. If � = 1,

@PW (�; x; n)

@x
= 0, 4n+ 4x+ 2� 4n2x = 0, x =

2n+ 1

2n2 � 2 <
1

n� 1 :

So only boundary solutions are feasible and PWL is minimized when x = 1
n : If � 6= 1,

@PW (�; x; n)

@x
= 0, x =

�n2 + 1�
p
n4 + 1 + 2�n3 + �2n2 � 3�n2 � �2n� 2n3 + �n

(�� 1)(n2 � n) :

Suppose that � > 1. Clearly, the negative root is not feasible, so consider the

positive root, say x�. If x� � 1
n , it must be that (n� 1)(�

2 +�n� 1� n) � 0 which for
n > 2 and � > 1 is impossible.

Suppose that � < 1. If the negative root is less than or equal to 1
n , we have

that

�
p
n4 + 1 + 2�n3 + �2n2 � 3�n2 � �2n� 2n3 + �n � (n+ �)(n� 1)

which is impossible. Take the positive root. If this root is larger than or equal to 1
n�1 ,

then n(1��) � �2� 3�+2 or n � �2�3�+2
1�� . The right hand side of this inequality has

a maximum at 3 when � ! �1: Since this value of � is never actually achieved, this
inequality only may hold when n = 2. But @PW (�;0:5;2)

@x = 0:5�+1: 5
0:5�+1 > 0 which means

that the minimum is achieved at the boundaries of x. Since in this case these bounds

imply monopoly and duopoly, by iv) in Section 2 we achieve the desired result.

The implication of this result is that disregarding �rms heterogeneity stacks the

deck in favour of small WL because the assumption that all �rms are identical implies

that PWL is minimal among all market structures. Thus, minimal PWL is given by

the function L(�; �) in (2.4). Notice that since L(�; �) is decreasing in n and F (�; �) is
increasing in n, the di¤erence between maximal and minimal PWL increases with n for

a given �, see Figure 10. Figure 10 also suggests that for a given n � 5, the distance
between these two magnitudes increases with �. Finally, since P (�; n; �) is continuous
in s1, any PWL between L(�; n) and F (�; n) is reachable by the choice of s1:
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Finally we consider the e¤ect of � alone on PWL. We have little to say about the

value of � that maximizes PWL because �rst order condition of maximization with

respect to � is not very informative.20 However, the continuity of P (s1; n; �) has an
interesting implication. Let V � maxf s1�Hs1 ; (1+s1)

2�2H�1
(1+s1)2

; e
s1�1�H
es1 g. The values in the

bracket are respectively, P (s1; n; 0); P (s1; n; 1) and lim�!1 P (s1; n; �): Then, we have:

Corollary 2. Any PWL 2 (0; V ) is obtainable by the choice of �:

5. Final Comments

When one observes public policies on oligopolies one sees some concern about the num-

ber and the relative size of �rms. But the question of the output set by oligopolists

is cause of little or no concern at all. This paper provides some justi�cation to this

attitude: We found that WL due to the divergence between equilibrium and optimal

output are small, even with as few as four �rms in the market as shown in Section 2. On

20 @P (s1;n;�)
@�

= 0,
�
n� 2s1 + �� 2�s1 + ns21 + ns21�

�
1
�
ln (s1�+ 1) = n� 2s1 + ns21.
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the contrary WL due to the number and relative size of �rms can be quite substantive

as found in Sections 3 and 4. This conclusion, though, is likely to be exaggerated by

our assumption that the optimal number of �rms is one. Other factor that may bring

down WL is the consideration of other solution concepts, e.g. Bertrand or Stackelberg

equilibria, the latter particularly suited to the case of a dominant �rm. However, in a

dynamic framework WL can be larger than here because �rms may collude. Thus, our

results are just a �rst cut to the problem.

Our results have a number of implications for the applied literature.

1: To measure WL due to oligopolistic output setting is misguided because these

are likely to be small. However WL due to overentry or to asymmetric �rms can be

substantial. Lack of consideration of these points biases downwards our estimates of

WL.

2: Bresnahan and Reiss (1991) found markets where, as the number of �rms in-

creased beyond three, the competitive e¤ect of additional �rms on average markups

was exhausted, a fact that suggests that the outcome is very close to perfect competi-

tion. A possible explanation for their �ndings is that they considered markets where

asymmetries and economies of scale were possibly small such as doctors, dentists, drug-

gists, plumbers and tire dealers. In contrast, Campbell and Hopenhayn (2002) �nd that

this competitive e¤ect persists with a large number of �rms in markets were �rms are

asymmetric and the product is di¤erentiated.

3: The impact of mergers and collusive agreements on social welfare depends on

the characteristics of the market. For instance, with identical �rms and no �xed costs

our results in Section 2 suggest that anti-trust authorities should not be very concerned

with mergers that do not bring the number of competing �rms below, say four. However

merging from duopoly to monopoly approximately doubles PWL.

4: WL depend on the parameter � that cannot be observed, but can be estimated.

Our results point out the importance of the estimation of � for the proper account of

WL.
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