
XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 109

A Highly Available Cluster of Web Servers
with Increased Storage Capacity

José Daniel Garćıa, Jesús Carretero, Félix Garćıa, David E. Singh and Javier Fernández

Resumen— Web servers scalability has been tradi-

tionally solved by improving software elements or in-

creasing hardware resources of the server machine.

Another approach has been the usage of distributed

architectures. In such architectures, usually, file al-

location strategy has been either full replication or

full distribution. In previous works we have showed

that partial replication offers a good balance between

storage capacity and reliability. It offers much higher

storage capacity while reliability may be kept at an

equivalent level of that from fully replicated solutions.

In this paper we present the architectural details of

Web cluster solutions adapted to partial replication.

We also show that partial replication does not imply a

penalty in performance over classical fully replicated

architectures. For evaluation purposes we have used

a simulation model under the OMNeT++ framework

and we use mean service time as a performance com-

parison metric.

Palabras clave— Web Cluster, Web Switch, Content

replication, Partial replication.

I. Introduction

DUE to increasing development of Web based ap-
plications a huge interest has arised in building

hardware and software for this kind of systems in
such a way that solutions are scalable both in per-
formance and storage capacity. Traditional solutions
to this problem include software and hardware scale
up [1], [2], [3]. A recent architectural alternative is
the distributed Web server [4] where a set of server
nodes are used to host a Web site. In those systems,
performance scalability is achieved by adding new
server nodes. In a distributed Web server, requests
must be distributed among the server nodes.

Distributed Web server architectures may be clas-
sified in three families.

Cluster based Web systems Cluster nodes own IP
addresses are not visible from the clients. In-
stead, clients use an virtual IP address which
corresponds to that of some request distribu-
tion device (Web switch). The Web switch [5]
receives requests from clients and sends each re-
quest to some server node.

Virtual Web clusters All the server nodes share a
single common public IP address [6]. Each node
receives all messages in a way that every request
is discarded by all nodes except one.

Distributed Web systems Each node has its own
different publicly visible IP address [7], [8]. Re-
quest distribution is made by a combination of
dynamic DNS [9] and request redirection.

Usually, solutions are based either on full content

Grupo de Arquitectura de Computadores, Comunicaciones
y Sistemas. Univerisdad Carlos III de Madrid. e-mail:
josedaniel.garcia@uc3m.es

replication (every file is replicated in every server
node) or full distribution (every file is stored in one
and only one server node).

With full replication [10] the system is highly re-
liable and request distribution is easy to implement,
as each request may be served by any server node.
On the other hand, storage scalability is minimal, as
the full storage capacity is limited by the server node
with the lowest capacity. Furthermore, adding new
server nodes to the system does not increase storage
capacity.

With full distribution the system gives a lower re-
liability (a node failure makes some content unavail-
able) and request distribution needs to use some sort
of directory service [11] to determine which node is
storing the requested file. On the other hand, storage
scalability is maximum, as adding a new node means
increasing the total amount of available storage.

A third alternative is partial replication [12], [13],
[14], where each file is replicated in a possibly dif-
ferent subset of the server nodes set. With partial
replication reliability is higher than in the case of
full distribution and lower than in the case of full
replication. In terms of storage capacity, partially
replicated solutions provide less capacity than fully
distributed solutions but more than fully replicated
solutions. However, an important difference with full
replication is that partial replication provides storage
capacity scalability (i.e. adding new server nodes in-
creases the system storage capacity) while full repli-
cation does not.

This paper is organized as follows: section 2 dis-
cusses architectural alternatives for a distributed
Web server under the restriction of partial replica-
tion of contents; section 3 presents our architecture
for a single switched Web cluster; section 4 presents
our architecture for a multiple switched Web cluster;
section 5 shows details about our simulation model
and the obtained results; section 6 summarizes con-
clusions; section 7 enumerates lines for future work.

II. Architectural Alternatives

Partial replication restricts the architectural alter-
natives for a distributed Web server. When a Web
request arrives into the system, that request cannot
be sent to any node in the system, as not every node
stores every content. Besides every file is not stored
in a single node, but in a set of server nodes. Thus,
a mechanism to determine that set of server nodes is
needed.

Virtual Web Clusters cannot be easily integrated
with the idea of partial replication [15]. In that case,
every request reaches to every node of the cluster.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


110 GARCÍA Y COL.: A HIGHLY AVAILABLE CLUSTER OF WEB SERVERS WITH INCREASED STORAGE CAPACITY

Nodes not storing the requested content may ignore
the request. But if two or more nodes store the re-
quested content it is not simple to determine which
node should take the responsibility of answering the
request. Furthermore, in most cases communication
among cluster nodes is not feasible, and this fact ex-
cludes the possibility that a node may notify others
when it takes the responsibility of taking in charge
of a request and its response.

In a Distributed Web System any request may
reach any node, but it is guaranteed that one request
reaches to one and only one node. However, there is
no guarantee that the node receiving the request con-
tains a replica of the requested node. In that case
the only solution is that the node receiving the re-
quest performs a redirection to another node which
effectively contains the requested resource. This fact
introduces additional complexities in the load bal-
ancing mechanisms.

Although it is not impossible to integrate the par-
tial replication strategy into a Virtual Web Cluster

or into a Distributed Web System we consider that
such strategy can be more easily integrated into a
Cluster based Web System (or Web Cluster). The
main difference of a Web Cluster with other architec-
tures is that it has a single point where every request
arrives, namely the Web Swtich. In case of partial
replication the Web Switch must be a content aware
one [4]. That is, the switch must operate at level 7 of
the protocol stack and it must parse each request be-
fore deciding to which server node that request will
be routed. In a previous work [16], we showed that
a Web Cluster with partial replication using a small
amount of replicas per file offers a reliability equiva-
lent to that of a fully replicated system and, at the
same time, it offers a much higher storage capacity.
However, reliability is negatively affected by the fact
of using a single Web Swtich and thus having a sin-
gle point of failure. This flaw is mitigated by using
more than one Web Switch (2 or three are enough).

III. Single Switched Web Cluster

Architecture

In a single switched Web Cluster, every request
arrives into the Web Switch. The Web Switch is re-
sponsible for selection of the node which must serve
the request (through a dispatching algorithm). The
Web Switch is also responsible for sending the re-
quest to the selected node (through a request routing
algorithm). Existing solutions do not apply because
they usually assume either that every file is repli-
cated in every node (full replication of contents) or
that every file is stored in one and only node (full
distribution of contents). However, general architec-
ture is very similar to that of a standard Web Cluster
(see fig. 1) where every server node has two network
interfaces: one connected to the Web Switch net-
work, and another one connected to high bandwidth
output link.

In the case of partial replication the dispatching
algorithm is dependent of the exact set of nodes ef-

Fig. 1. Architecture of a single switched Web Cluster

fectively containing the requested file. Thus, the
Web Switch must have the knowledge of the allo-
cation of each file to nodes (the set of nodes where
it resides). It is for that reason that content blind
routing is not applicable. As the dispatching algo-
rithm must use the allocation information, some sort
of directory service is needed to keep such informa-
tion. Although a generic directory service could lead
to excessive delays, it is possible to build low de-
manding resources data structures with lower delays
[11]. As an example, Luo et al. [17] implemented a
data structure using URL formalization and multi-
level hash tables. There solution stored the informa-
tion related to 76000 files in 540 KB and the time
needed for a query was about 1.12 microseconds.

Once the dispatching algorithm has selected a
server node for a request, it is necessary to use some
request routing mechanism to effectively send the
request to the selected node. As we have already
stated, request routing needs to be content aware.
The routing mechanism may be implemented at the
application level (e.g. TCP gateway [18]) or at the
operating system kernel level (e.g. TCP splicing [19]
or TCP handoff [20]).

Fig. 2. Internal architecture of Web Switch software for a
single switched Web Cluster



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 111

Several modules are needed in the Web Switch
software, as depicted in fig. 2:

Request dispatching Receives requests and selects
the node which must serve each request. The
request dispatching algorithm uses replica allo-
cation information (given by directory service)
and node state information (given by monitor-

ing module).
Request Routing Receives dispatched requests and

performs request routing to selected server node.
We propose the usage of TCP handoff for effi-
cient request routing.

Directory service Efficiently keeps replica alloca-
tion to node information.

Monitoring Keeps node state information (pro-
vided periodically by each node) which is used
by the request dispatching module. It also keeps
trace of routed requests information (provided
by the request routing module).

IV. Multiple Switched Web Cluster

Architecture

Single switched Web clusters present a reliability
drawback. As they have a single switch, that element
becomes in a single point of failure. That is, if there
is a failure in the Web switch, the full system fails. To
avoid this flaw, we propose a new architecture: the
multiple switched Web Cluster based on the concept
of distributed Web switch.

The main idea is the usage of a set of Web switches
as front end of the Web cluster. This allows a high
increase of the global reliability [16]. To distribute
request arrival among the Web switches we use the
combination of two mechanisms dynamic DNS and
request redirection among switches.

Dynamic DNS [21] has been widely used in con-
junction with Distributed Web Systems to share re-
quests from clients among a set of publicly available
nodes. However this technique is of limited useful-
ness due to DNS caching as several experiments [22]
have showed.

To complement dynamic DNS each Web switch
may redirect some requests to another Web switch
of the front end. In our system, when a Web switch
is highly loaded, it redirects incoming requests to
another Web switch. That redirection may be per-
formed by means of standard HTTP redirection.

Fig. 3 shows the flow of a request in multiple
switched Cluster. When a client starts a request it
first issues a DNS resolution request (1) which is an-
swered by the DNS server (2) with the IP address of
a Web switch in the front end of the cluster. The
client, then sends a HTTP request to the selected
Web switch (3), which may answer with a redirec-
tion to another Web switch (4). In that case, the
client resends the HTTP request to the newly se-
lected Web switch (5). The Web switch selects a
server node through its dispatching algorithm and
resends the HTTP request to it (6). At last, the
selected node answers the client (7).

For the solution to work properly, each Web switch

Fig. 3. Request routing in a multiple switched Web cluster

must monitor its own state and periodically in-
terchange that information with the rest of Web
switches. This allows that each switch has enough in-
formation to decide when it is able to transfer some
requests to another switch to achieve some degree
of load balancing at the front end level. It is im-
portant to remark that transferring a request to an-
other switch has a lower cost than keeping it in the
original switch. That is because transfer operation
may be performed in a content blind manner at the
TCP level of the protocol stack and may be easily
integrated in the operating system kernel. When a
switch takes the responsibility of managing a request
it selects a server node and it routes the request to
that server node.

Fig. 4. Internal architecture of Web Switch software for a
multiple switched Web Cluster

The structure of the software running in each
server node (see fig. 4) is more complex than the one
used for a single switched web cluster. Main modules
are listed below:

Switch routing filter Decides if an incoming re-



112 GARCÍA Y COL.: A HIGHLY AVAILABLE CLUSTER OF WEB SERVERS WITH INCREASED STORAGE CAPACITY

quest may be processed by the current switch
or if there is a better switch to serve the re-
quest. The decision is based in the load state of
every switch. That information is provided by
the state synchronization module.

Request dispatching Receives requests not discar-
ded by the switch routing filter and selects the
node which must serve each request. The re-
quest dispatching algorithm uses replica alloca-
tion information (given by directory service) and
system state information (given by state syn-
chronization).

Request routing Receives dispatched requests and
performs request routing to selected server node.
We propose the usage of TCP handoff for effi-
cient request routing.

Directory service Efficiently keeps replica alloca-
tion to node information. To reduce commu-
nication overheads we place a directory service
replicated in every Web Switch of the system.

Monitoring Keeps node state information (pro-
vided periodically by each node). It also keeps
trace of routed requests information (provided
by the request routing module). The informa-
tion it gathers is provided to the state synchro-
nization module to build an integrated system
state view.

State synchronization Periodically notifies its own
statte to the rest of Web switches. This al-
lows that every switch has knowledge about the
state of other switches. That information is inte-
grated with information about server nodes pro-
vided by the monitoring module to help switch
routing filter and request dispatching modules
to make their own decissions.

V. Evalution

Even if reliability and storage capacity are key is-
sues for a Web server, these goals must be achieved
without loss of performance or with a minimum loss.
To evaluate performance of our solutions we have
built a simulation model using the OMNeT++ 3.0
framework (http://www.omnetpp.org).

For our simulations we have used a Web cluster
with 16 server nodes. We have set up 800 client ma-
chines which are continuously performing Web re-
quests to the cluster. Requests are routed using a
one-way strategy (responses from server nodes use a
different connection so they do not return through
the Web switch). The request dispatching algorithm
has been fixed to round robin over the set of server
nodes storing each file. Table I shows the main sim-
ulation parameters used in the evaluations.

We have performed our evaluations for different
replication strategies:

FREP Full replication of contents. Every file is
replicated in every node.

R2 Every file is replicated in two nodes.
R4 Every file is replicated in four nodes.
RV Every file is replicated in a variable number

of nodes. The number of replicas for a file is

TABLA I

Simulation parameters used in the evaluation.

Parameter Distribution

Number of included
files

Pareto (α = 2.43, k = 1)

Main file size (body) Lognormal (µ = 7.63, σ = 1.001)

Main file size (tail) Pareto (α = 1, k = 10240)

Embedded files size Lognormal (µ = 8.215, σ = 1.46)

Inter session time Pareto (α = 1.4, k = 20)

Requests per session Inverse gaussian (µ = 2.86, λ =
9.46)

Inactivity time Pareto (α = 1.4, k = 1)

Parsing time Weibull (α = 1.46, β = 0.382)

selected using popularity of the file and size as
critera.

We have used two test scenarios: a single switched
Web cluster (SSWC) and a multiple switched web
cluster (MSWC) with three Web switches. For
each scenario we performed 35 simulation realiza-
tions with different random seeds. Table II shows
mean service time and variance for SSWC and Table
III shows mean service time and variance for MSWC.

Replication Mean Time Variance

FREP 5.422234027 0.001745808
R2 5.422842417 0.001739406
R4 5.422525610 0.001755285
RV 5.422836699 0.001744325

TABLA II

Mean service time and variance for request processing

in a Web cluster for different replication strategies.

Replicacin Media Variance

FREP 5.436501603 0.003001719
R2 5.436536060 0.002974351
R4 5.436385993 0.003007949
RV 5.436293051 0.003026502

TABLA III

Mean service time and variance for request

processing in a Web cluster with three Web switches

for different replication strategies.

The obtained result show slight overheads in case
of partial replication over the case of full replication.
To estimate if there is difference in obtained results
we have performed an analysis of variance (ANOVA)
with α = 0.05 over our simulation results (see Ta-
ble IV.

Thus, there is no evidence that the usage of a
partial replication strategy affects negatively perfor-
mance in our simulation experiments. This is true for
both our experiment of a single switched Web clus-
ter and for our experiment using a front end of three
Web switches. It is remarkable to note that even if we



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 113

Value SSWC MSWC
F 0.00169626 0.000144015
F critical value 2.67117796 2.67117796
Probability 0.999903073 0.999997599

TABLA IV

Analysis of variance for simulation results

admitted that performance is not equal differences
in performance are below 0.5% which makes our so-
lution very useful as it offers a very good tradeoff
between reliability and storage capacity.

VI. Conclusions

In this paper we have presented the advantages of
partial replication over full replication of Web con-
tents: higher storage capacity, reliability and mini-
mal or null performance penalty. We have explored
the architectural alternatives and the advantages of
Web clusters over other architectural families. Start-
ing with the Web cluster architecture, we have de-
fined the modifications needed over a standard Web
cluster to be able to cope with the restrictions de-
rived from partial replication of contents.

Our architecture for single switched Web clus-
ters is based on an efficiently implemented directory
service capable of determining the server nodes set
where the requested file is effectively stored. Request
dispatching algorithms need to use that information
to route every request to a node which contains the
requested file.

In case of multiple switched Web clusters we use
several switches as a front end for the system. Re-
quest arrival is distributed over the set of switches by
a combination of dynamic DNS and HTTP redirec-
tion. The software running each Web switch uses
a replicated directory service as primary informa-
tion source for the dispatching algorithm. Besides,
switches periodically interchange information to keep
their state information synchronized.

Performance evaluations have been conducted us-
ing a simulation model and leading to the result
that the performance penalty is, if existing, mini-
mal. Thus additional complexities of the solution are
justified by the obtained advantages, namely higher
storage capacity and a reliability equivalent to that
of a fully replicated solution.

VII. Future Work

A key issue in partial replication is the determi-
nation of the number of replicas needed for each el-
ement and the allocation of replicas to server nodes.
We are working to find algorithms which help to de-
termine the replication number for each element so
that reliability is not compromised. We are specially
interested in the case where storage capacities and
performance characteristics of server nodes are het-
erogeneous, as we see that case of special interest for
cluster upgrading.

The number of replicas for each file and its al-

location into server nodes should change over time,
as load conditions of nodes and preferences of users
evolve. Our current solution is of static nature.
We plan to define a dynamic replication strategy to
evolve as the system situation changes.

VIII. Acknowledgements

This work has been partially supported by the
Spanish Ministry of Science and Education under the
TIN2004-02156 contract.

Referencias

[1] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel,
“Flash: An efficient and portable Web server,” in Pro-
ceedings of the USENIX 1999 Annual Technical Confer-
ence, Monterey, CA, June 1999, USENIX Association,
pp. 199–212.

[2] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel,
“IO-Lite: A unified I/O buffering and caching system,”
ACM Transactions on Computer Systems, vol. 18, no. 1,
pp. 37–66, Feb. 2000.

[3] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul,
“Resource containers: A new facility for resource man-
agement in server systems,” Operating Systems Review,
vol. Special Issue, Winter 1998, pp. 45–58, 1999.

[4] Valeria Cardellini, Emiliano Casalicchio, Michele Cola-
janni, and Philip S. Yu, “The state of the art in locally
distributed Web-server systems,” ACM Computing Sur-
veys, vol. 34, no. 2, pp. 263–311, June 2002.

[5] Trevor Schroeder, Steve Goddard, and Byrav Rama-
murthy, “Scalable web server clustering technologies,”
IEEE Network, vol. 14, no. 3, pp. 38–45, May 2000.

[6] Sujit Vaidya and Kenneth J. Christensen, “A single sys-
tem image server cluster using duplicated MAC and IP
addresses,” in Proceedings of the 26th Annual IEEE
Conference on Local Computer Networks (LCN 2001),
Tampa, FL, USA, Nov. 2001, IEEE, pp. 206–214.

[7] Luis Aversa and Azer Bestavros, “Load balancing a clus-
ter of web servers: using distributed packet rewriting,” in
Conference Proceedings of the 2000 IEEE International
Performance, Computing, and Communications Con-
ference (IPCCC 2000), Phoenix, AZ, USA, Feb. 2000,
IEEE, pp. 24–29.

[8] Valeria Cardellini, “Request redirection algorithms for
distributed web systems,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 14, no. 4, pp. 355–368,
Apr. 2003.

[9] T. Brisco, DNS Support for Load Balancing. RFC 1794,
Internet Engineering Task Force, Apr. 1995.

[10] Bill Devlin, Jim Gray, Bill Laing, and George Spix, “Scal-
ability terminology: Farms, clones, partitions, and packs:
Racs and raps,” Technical Report MS-TR-99-85, Mi-
crosoft Research. Advanced Technology Division, Dec.
1999.

[11] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradham,
and D. Saha, “Design, implementation and performance
of a content-based switch,” in Proceedings of the Nine-
teenth Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2000), Tel
Aviv, Israel, Apr. 2000, vol. 3, pp. 1117–1126, IEEE.

[12] Jos D. Garca, Jess Carretero, Jos M. Prez, Flix Garca,
and Javier Fernndez, “A distributed web switch for par-
tially replicated contents,” in Proceedings of the 7th
World Multiconference on Systemics, Cybernetics and
Informatics (SCI 2003), Orlando, FL, USA, July 2003,
vol. VIII, pp. 1–6.

[13] Ling Zhuo, Cho-Li Wang, and Francis C. M. Lau, “Docu-
ment replication and distribution in extensible geograph-
ically distributed web servers,” Journal of Parallel and
Distributed Computing, vol. 63, no. 10, pp. 927–944, Oct.
2003.

[14] S. S. H. Tse, “Approximate algorithms for document
placement in distributed web servers,” Transactions on
Parallel and Distributed Systems, vol. 16, no. 6, pp. 489–
496, June 2005.

[15] Jose Daniel Garcia, Jesus Carretero, Felix Garcia, Javier
Fernandez, Alejandro Calderon, and David E. Singh.,
“A quantitative justification to partial replication of web



114 GARCÍA Y COL.: A HIGHLY AVAILABLE CLUSTER OF WEB SERVERS WITH INCREASED STORAGE CAPACITY

contents,” in International Conference on Computa-
tional Science and its Applications. May 2006, vol. 3983
of Lecture Notes in Computer Science, pp. 1136–1145,
Springer Verlag.

[16] Jose Daniel Garcia, Jesus Carretero, Felix Garcia, Ale-
jandro Calderon, Javier Fernandez, and David E. Singh,
“On the reliability ofweb clusters with partial replica-
tion of contents,” in First International Conference on
Availability, Reliability and Security, 2006. ARES 2006.
IEEE, April 2006, pp. 617– 624.

[17] Mon-Yen Luo, Chun-Wei Tseng, and Chu-Sing Yang,
“URL formalization: An efficient technique to speedup
content-aware switching,” IEEE Communication Let-
ters, vol. 6, no. 12, pp. 553–555, Dec. 2002.

[18] Emiliano Casalicchio and Michele Colajanni, “A client-
aware dispatching algorithm for web clusters providing
multiple services,” in Proceedings of the tenth interna-
tional conference on World Wide Web, Hong Kong, May
2001, pp. 535–544, ACM Press.

[19] D. A. Maltz and P. Bhagwat, “TCP splice for applica-
tion layer proxy performance,” Journal of High Speed
Networks, vol. 8, no. 3, pp. 225–240, June 1999.

[20] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svend-
sen, Peter Druscheland Willy Zwaenepoel, and Erich
Nahum, “Locality-aware request distribution in cluster-
based network servers,” ACM SIGPLAN Notices, vol.
33, no. 11, pp. 205–216, Nov. 1998.

[21] Daniel Andresen, Tao Yang, and Oscar H. Ibarra, “To-
ward a scalable distributed www server on workstation
clusters,” Journal on Parallel and Distributed Comput-
ing, vol. 42, no. 1, pp. 91–100, Apr. 1997.

[22] Michele Colajanni, Philip S. Yu, and Daniel M. Dias,
“Analysis of task assignment policies in scalable distrib-
uted web-server systems,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 9, no. 6, pp. 585–600,
June 1998.


