Departamento de Economía Universidad Carlos III de Madrid

Calle Madrid, 126
Fax (34) 916249875

Games of Capacities: A (Close) Look to Nash Equilibria*

Antonio Romero-Medinat Universidad Carlos III de Madrid

Matteo Triossi \ddagger
Collegio Carlo Alberto

July 2007§

Abstract

The paper studies two games of capacity manipulation in hospital-intern markets. The focus is on the stability of Nash equilibrium outcomes. We provide minimal necessary and sufficient conditions guaranteeing the existence of pure strategy Nash Equilibria and the stability of outcomes.

Keywords: Stable Matchings, Capacity, Nash Equilibrium, Cycles.
JEL Classification: C71, C78, D71, D78, J44.

[^0]
1 Introduction

This paper considers capacity reporting games in many-to-one matching markets. A matching market consists of two finite and disjoint sets of agents, say medical interns and hospitals. Each hospital has a capacity that limits the maximum number of interns it can employ. Each agent has a preference relation over the other side of the market. A matching assigns interns to hospitals. The stability criterion is central in studies concerning two-sided matching problems. The ability of a mechanism to achieve stable allocations is decisive in its success and its endurance (see Roth and Sotomayor 1990 and Roth 2002). A matching is stable if it is individually rational for hospitals and for interns and there is no unmatched hospital-intern pair such that the intern prefers the hospital to her assignment and the hospital prefers the intern to one of its interns or keeping a vacant position.

Unfortunately stable matchings are prone to different kinds of manipulation. Dubins and Freedman (1981) show that hospital-optimal stable matching is manipulable via preferences. Roth (1982) shows that no stable matching rule is immune to preference manipulation. ${ }^{1}$ Gale and Sotomayor (1985 a and b) study preference manipulation under the hospital-optimal stable rule. Sönmez (1997a) shows that there is no stable matching rule immune to capacity manipulation. Finally Sönmez (1999) show that no stable rule is immune to manipulation by early contracting.

The intern-optimal and the hospital-optimal stable matching rules are of particular interest. They are used in the United States and in the United Kingdom to match medical interns and hospitals (see Roth 1984, 1991, Roth and Peranson 1999, Niederle and Roth 2003). The hospital-intern model has also been used to model school admissions. Balinski and Sönmez 1999 study the admissions to Turkish universities. The preferences of the colleges are derived by the results of a public examination according to a publicly known formula. Abdulkadiroğlu and Sönmez (2003) consider primary and secondary school choice in the United Stated. In many districts students are allocated to schools on the basis of priorities, that are determined by the school district. Schools have not control over priorities, but they can manipulate their capacities. Abdulkadiroğlu, Pathak, and Roth (2005) argue that manipulation via capacities is not only a theoretical possibility: under-reporting of capacities was a source of major concern in the school choice program in NYC before it was redesigned.

In the capacity reporting games studied here hospitals report their capacities and the outcome is determined according either to the hospital-optimal rule or to the intern-optimal rule. Information is complete. Konishi and \ddot{U} nver (2006) observe that these games might fail to have a pure strategy Nash equilibrium. They show that under strong-monotonicity in population, a pure strategy Nash equilibrium exists and under the intern-optimal matching rule truthful capacity reporting is a dominant strategy. ${ }^{2}$ If the interests of one side of the market are aligned truthful capacity reporting is a dominant strategy, too.

Our analysis complements and extends the work of Konishi and \ddot{U} nver (2006). ${ }^{3}$ We focus on the stability of pure strategy Nash equilibrium outcomes. We connect equilibrium stability and incentives in truthful capacity reporting. If an hospital is part of a pair blocking some equilibrium outcome, then it has incentive for under-reporting its true capacity. We provide conditions sufficient to guarantee the stability (and the existence) of pure strategy Nash equilibrium outcomes. The first one is acyclicity. Under acyclicity truthful capacity reporting is a dominant strategy and every Nash equilibrium outcome is stable. Furthermore, under acyclicity the stable set is a singleton (an extension of Eeckhout 2000 result). It is the minimal condition able to guarantee the stability of Nash equilibrium outcome when the hospital-optimal stable rule is used. There is an important difference between the two games. Under the hospital-optimal stable rule, capacity

[^1]under-reporting prevents the creation of harmful cycles of rejection. Under the intern-optimal stable rule, capacity under-reporting engenders new cycles of rejection. Therefore, it is harder to manipulate. We prove that manipulability of this rule needs that at least one hospital has non-monotonic preferences and it is involved in multiple cycles. If none of such cycles exists the game yields the intern-optimal stable matching at equilibrium and true capacity reporting is a dominant strategy. Furthermore, no weaker conditions can be found.

The structure of the article is the following: in Section 2, we present the model, in Section 3 we present the results and Section 4 concludes. The proofs are in the Appendix.

2 The Model

An hospital-intern market is a quadruple (H, I, q, P). The $\operatorname{set} H=\left\{h_{1}, \ldots, h_{m}\right\}$ is the set of hospitals, $I=\left\{i_{1}, \ldots, i_{n}\right\}$ is the set of interns, $q=\left(q_{1}, \ldots, q_{m}\right)$ is the vector of hospitals capacities where q_{h} is the capacity of hospital hospital h. Finally $P=\left(P_{h_{1}}, \ldots, P_{h_{m}}, P_{i_{1}}, \ldots, P_{i_{n}}\right)$ is the list of agents preferences, where P_{h} is the preference of hospital h and P_{i} is the preferences of intern i.

For any $h \in H, P_{h}$ is a linear order on $2^{I}{ }^{4}$ Let $I^{\prime} \subset I$ be a set of interns. If $\varnothing P_{h} I^{\prime} I^{\prime}$ is unacceptable to i. Otherwise I^{\prime} is acceptable to h. $A(h)$ denotes the set of interns who are individually acceptable to h. All along the paper we assume that every hospital has responsive preferences. An hospital has responsive preferences if, for any two assignments that differ in one intern only, it prefers the assignment containing the most preferred intern. Formally P_{h} are responsive if for all $J \subseteq I$ we have: (i) for all $i, j \in I \backslash J, J \cup\{i\} P_{h} J \cup\{j\} \Leftrightarrow i P_{h} j$ and (ii) for all $i \in I \backslash J, J \cup\{i\} P_{h} J \Leftrightarrow i \in A(h)$. An hospital h has strong monotonic preferences if it prefers group of acceptable interns of larger cardinality to sets of acceptable interns of smaller cardinality: if,f or all $J, K \subset A(h), \sharp J>\sharp K \Rightarrow J P_{h} K$.

For any $i \in I, P_{i}$ is a linear order on $H \cup\{i\}$. Any hospital i such that $i P_{i} h$ is unacceptable to i. Otherwise i is acceptable to i. For every $i \in I, A(i)$ denotes the set of hospitals that are acceptable to i. For every agent $i \in H \cup I$ let R_{x} be x 's weak preference relation.

A matching assigns each hospital h to a set of at most q_{h} interns and assigns each intern to at most one hospital. Formally, a matching is a function $\mu: H \cup I \rightarrow 2^{I} \cup I$, such that, for every $(h, i) \in H \times I$ (i) $\mu(h) \in 2^{I}$, (ii) $\sharp \mu(h) \leq q_{h}$, (iii) $\mu(i) \in F \cup\{i\}$, (iv) $\mathrm{i} \mu(i)=f \Leftrightarrow i \in \mu(h)$.
We introduce two binary relations on the set of matchings, P_{H} and P_{I}. Let μ, ν be matchings. Let $\mu P_{H} \nu$ if and only if and $\mu(h) R_{h}(h)$ for all $h \in H$ and $\mu(h) P_{h}(h)$ for at least one h. Let $\mu P_{I} \nu$ if and only if $\mu(i) R_{i} \nu(i)$ for all $i \in I$ and $\mu(i) P_{i} \nu(i)$ for at least one $i \in I$. A matching μ is individually rational if (i) $\mu(h) P_{h} \emptyset, \forall h \in H$, (ii) $\mu(w) R_{i} i \forall i \in I . \mu$ is blocked by the pair $(h, i) \in H \times I$ if (i) $i P_{i} \mu(i),(\mathrm{i}) \exists J \subseteq \mu(h)$ such that $J \cup\{i\} P_{h} \mu(h)$. Finally, μ is stable in (H, I, q, P) if it is individually rational and if no pair blocks it. Otherwise μ is unstable. $\Gamma(I, H, q, P)$ denotes the stable set, the set of matchings that are stable in market (I, H, q, P). If the hospitals have responsive preferences the stable set is not empty.
There is a stable matching, the hospital-optimal stable matching that is (weakly) preferred to any other stable matching by every hospital. Another stable matching the intern-optimal stable matching is (weakly) preferred to any other stable matching by every intern. We denote by $\varphi^{H}(H, I, q, P)$ and $\varphi^{I}(H, I, q, P)$ the hospital-optimal and the intern-optimal stable matching of (H, I, q, P), respectively. When there is on ambiguity we will use $\varphi^{H}(q)$ and $\varphi^{I}(q)$ instead than $\varphi^{H}(H, I, q, P)$ and $\varphi^{I}(H, I, q, P)$, respectively.
The hospital-proposing deferred acceptance algorithm (Gale and Shapley 1962) generates the hospital-optimal stable matching of (H, I, q, P) and intern-proposing deferred acceptance algorithm generates the the internoptimal stable matching of (H, I, q, P).

[^2]
2.1 Capacity-reporting games

In a capacity reporting game, each hospital h simultaneously reports a capacity q_{h} and the outcome is determined according to φ^{H} or φ^{I}. Interns are passive players and information is complete. Let $V \in\{H, I\}$. The capacity reporting game induced by φ^{V} is a normal form game of complete information. The set of players is H and the strategy space of hospital h is $\left\{1, \ldots, q_{h}\right\}$ (see also Hurwicz et al 1995). The outcome functions is φ^{V}. The preferences over outcomes are naturally induced by their preferences over subsets of interns.

2.2 Cycles

We finally introduce the notion of cycle in agents preferences that generalizes the notion of common preferences presented in Konishi and \ddot{U} nver.

Definition $1 A$ cycle (of length $T+1$) is given by h_{0}, \ldots, h_{T} with $h_{l} \neq h_{l+1}{ }^{5}$ for $i=0, \ldots T$ and distinct $i_{0}, i_{1}, \ldots, i_{T}$ such that

1. $i_{0} P_{h_{0}} i_{T} P_{h_{T}} i_{T-1} \ldots i_{1} P_{h_{1}} i_{0}$,
2. for every l, $i_{l+1} \in A\left(h_{l}\right) \cap A\left(h_{l+1}\right)$.

Hospitals preferences are acyclical if they have no cycles of length 2 .
Assume that a cycle exists. If every i_{l} is initially assigned to h_{l+1} every hospital is willing willing to exchange the its assigned interns with its successor.

Similarly.
Definition $2 A$ cycle (of length $T+1$) in interns preferences is given by h_{0}, \ldots, h_{T} and $i_{0}, i_{1}, \ldots, i_{T}$ and

1. $h_{0} P_{i_{T}} h_{T} P_{i_{T-1}} h_{T-1} \ldots . h_{1} P_{i_{0}} h_{0}$.
2. for every l, $h_{l} \in A\left(i_{l-1}\right) \cap A\left(i_{l}\right)$.

Interns preferences are acyclical if they have no cycles of length 2 .

Observe that under acyclicity the interests of one side of the market are almost aligned: if interns (resp. hospitals) preferences are acyclical any two interns (resp. hospitals) have the same preferences over every two hospitals (resp. interns) that are acceptable to both.

A simultaneous cycle is given by $h=h_{0}, \ldots, h_{T}$ and $i_{0}, i_{1}, \ldots, i_{T}$ that constitute both a cycle in hospitals and interns preferences.

We next define a generalized cycle.
Definition 3 A generalized cycle (of length $T+1$) at h is given by a cycle in interns preferencesh $=h_{0}, \ldots, h_{T}$, $i_{0}, i_{1}, \ldots, i_{T}$ and by i_{-1} such that: $i_{0} P_{h_{0}} i_{-1} P_{h_{0}} i_{T}$. Hospitals preferences are weakly acyclical if, there is no generalized cycle at any h.

[^3]I can be shown (see Ergin (2002)) that any generalized cycle can be reduced to a generalized cycle of length 2. Assume that a generalized cycle of length 2 at h exists. Let h_{0} be assigned with two interns i_{-1} and i_{1}. and let h_{1} be assigned with i_{0}. Assume also that $i_{0} P_{h}\left\{i_{-1}, i_{1}\right\}$. Hospital h_{0} would be willing to exchange its two interns for i_{0} only and h_{1} would accept the proposal (maybe hiring i_{1} only). ${ }^{6}$

Definition $4 A$ non-monotonic cycle at h is given by $M, M^{\prime} \subseteq I$, with $\sharp M<\sharp M^{\prime}$ such that:

1. $M^{\prime} P_{h} M$
2. Let $M^{\prime} \backslash M=\left\{i^{1}, \ldots, i^{s}\right\}$. For $k=1, \ldots, s$ there is a generalized cycle at $h, h_{0}^{k}, \ldots, h_{T^{k}}^{k}, i_{-1}^{k}, i_{0}^{k}, i_{1}^{k}, \ldots, i_{T^{k}}^{k}$, $T^{k} \geq 1$ such that $i^{k}=i_{0}^{k}$ and $i_{-1}^{k}, i_{T^{s}}^{k} \in M \backslash M^{\prime}$.
3. For $k \neq k^{\prime}, i_{l}^{k} \neq i_{l^{\prime}}^{k^{\prime}}$ for all $l=0, \ldots T^{k}, l^{\prime}=0, \ldots, T^{k^{\prime}}$.

3 A look to Nash Equilibrium

The literature on capacity manipulation games has devoted a lot of attention to strong-monotonicity in population. ${ }^{7}$

While intuitively linked to capacity manipulation, the notion of strong monotonicity does not guarantees the stability of pure strategy Nash Equilibrium outcomes in the under the hospital-optimal rule.

Example 1 There are two hospitals h_{1}, h_{2} and two interns i_{1}, i_{2}. $\operatorname{Let} P_{h_{1}}: i_{1}, i_{2}$ and $P_{h_{2}}: i_{2}, i_{1}$. $\operatorname{Let}_{i_{1}}$: h_{2}, h_{1} and let $P_{i_{2}}=h_{1}, h_{2}$. Then there are cycles in interns and in hospitals preferences. When quotas are $(2,2),(1,2)(2,1)$, the unique stable matching is
$\mu_{1} \begin{array}{cc}h_{1} & h_{2} \\ & \left\{i_{2}\right\} \\ & \left\{i_{1}\right\}\end{array}$
When quotas are $(1,1)$ the hospital-optimal stable matchings is
$h_{1} \quad h_{2}$
$\mu_{2}\left\{i_{1}\right\} \quad\left\{i_{2}\right\}$
When quotas is $(2,2)$ the capacities revelation game induced by φ^{H} has two Nash Equilibrium, $(1,1)$ and $(2,2)$. The former yields μ_{2} as outcome which is blocked by $\left(h_{1}, i_{1}\right)$. The latter yields the hospital-optimal stable matching.

When hospitals state their true capacities, each intern will receive the offers of both hospitals, along the deferred acceptance algorithm. She can choose her favorite hospital and every hospital hires its worst intern. When both hospitals understate their capacities each one makes an offer to its favorite intern, only. Each intern accepts it so each hospital can hire its favorite intern. Observe that the equilibrium outcome of the game induced by the intern-optimal stable matching is stable.

3.1 General Results

The presence of cycles in agents preferences makes capacity manipulation profitable. Under acyclicity stating the true capacities is dominant strategy for hospitals. All Nash equilibria yields stable matchings. Furthermore, the set of stable matchings is a singleton, a result that extends Eeckhout 1999. The result holds under both rules.

[^4]The first preliminary result links instability of Nash equilibrium outcomes and incentives to capacity manipulation.
Lemma 1 Let q be a Nash Equilibrium of the capacity revelation game induced by φ^{V} at $\left(H, I, q^{*}, P\right)$. If h belongs to a pair blocking $\varphi^{V}(q)$, then $\varphi_{h}^{V}(q) P_{h} \varphi^{V}\left(q_{h}^{*}, q_{-h}\right)$.

It turns out that if some hospital has incentive to understate its capacity a simultaneous cycle exists.
Lemma 2 If $\varphi_{h}^{V}(q) P_{h} \varphi^{V}\left(q_{h}^{*}, q_{-h}\right)$ for some h and some $q_{h}>q_{h}^{*}$ there exists a simultaneous cycle.

Theorem 1 Assume that no simultaneous cycle exist. Then:

1. Stating the true capacities is a dominant strategy under φ^{V}.
2. The stable set of (H, I, q, P) is a singleton for every q.
3. The capacity revelation games induced by φ^{H} and by φ^{I} have the same pure strategy Nash Equilibrium outcome for every q : the unique stable matching of (H, I, q, P).
Checking the existence of cycles of any possible length is very complex. But any cycle can be reduced to a cycle of length 2 .
Lemma 3 Let $h=h_{0}, \ldots, h_{T}$ and $i_{0}, i_{1}, \ldots, i_{T}, T \geq 1$ be such that $h_{k} \neq h_{k+1}$ and $i_{k} \neq i_{k+1}$.
4. If $i_{0} P_{h_{0}} i_{-1} P_{h_{0}} i_{T} P_{h_{T}} i_{T-1} \ldots i_{1} P_{h_{1}} i_{0}$ hospitals preferences have a cycle of length 2.
5. If $h_{0} P_{i_{T}} h_{T} P_{i_{T-1}} h_{T-1} \ldots . h_{1} P_{i_{0}} h_{0}$, interns preferences have a cycle of length 2.

Unfortunately, it is not true that any simultaneous cycle can be reduced to a simultaneous cycle of length 2 as the reader can easily check. From Theorem 1 and Lemma 3 follows a more operative result.
Corollary 1 Assume that either the preferences of the hospitals or the preference of the interns are acyclical. Then

1. Stating the true capacities is a dominant strategy under φ^{V}.
2. The stable set of (H, I, q, P) is a singleton for every q.
3. The capacity revelation games induced by φ^{H} and by φ^{I} have the same Nash Equilibrium outcome for every q : the unique stable matching of (H, I, q, P).

In particular, the result holds when the interests of one side of the market are aligned (Theorem 6 and 7 in Konishi and \ddot{U} nver 2006).

If we restrict our attention to the hospital-optimal mechanism, acyclicity is the weakest condition guaranteeing that stating the true capacities is a dominant strategy and that every Nash Equilibrium yields a (unique) stable matching. It can also be stated as a maximal domain result.
Proposition 1 The domain of acyclical preferences is the maximal one that guarantees 1, 2, and 3.

1. Assume that hospitals preferences have a cycle. There exists a vector of interns preferences such that the capacity revelation game induced by φ^{H} has an unstable Nash Equilibrium outcome.
2. Assume that interns preferences have a cycle. There exists a vector of hospitals preferences such that the capacity revelation game induced by φ^{H} has an unstable Nash Equilibrium outcome.

3.2 The intern-optimal stable matching

The game induced by the intern-optimal matching is more resistant to manipulation via capacities (see also Example 1) First of all, in order to manipulate the intern optimal stable matching there is at least three interns are needed. The result is straightforward. Consider the case where at least one hospital has quota two. If there the two interns are assigned to only one hospital this hospital cannot benefit from rejecting one of them because preferences are responsive. If the interns are assigned to two different hospitals, reducing capacities does not affect the outcome of the game.

Result 1 If there are only two interns the capacity revelation game induced by φ^{I} yields the intern-optimal stable matching as Nash equilibrium outcome.

The next example provides the basic intuition that explains how the intern-optimal stable rule can result in unstable matchings.

Example 2 Let $I=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}, H=\left\{h_{1}, h_{2}\right\}$.
Let $P_{h_{1}}$ be such that $\left\{i_{1}, i_{2}, i_{3}\right\} P_{h_{1}}\left\{i_{1}, i_{2}\right\} P_{h_{1}}\left\{i_{1}, i_{3}\right\} P_{h_{1}} i_{1} P_{h_{1}}\left\{i_{2}, i_{3}\right\} P_{h_{1}} i_{2} P_{h_{1}} i_{3} P_{h_{1}} i_{4}$, let $P_{h_{2}}$ be strongly monotonic in population and such that $i_{4} P_{h_{2}} i_{3} P_{h_{2}} i_{2} P_{h_{2}} i_{1}$. Let $P_{i_{1}}=h_{2} h_{1}, P_{i_{2}}=h_{1} h_{2}, P_{i_{3}}=h_{1} h_{2}$ and $P_{i_{4}}=h_{2} h_{1}$. There is a non-monotonic cycle at $h_{1}: i_{1} P_{h_{1}}\left\{i_{2}, i_{3}\right\}, i_{1} P_{h_{1}} i_{3} P_{h_{1}} i_{2} P_{h_{2}} i_{1}$. When the capacity is $(2,2)$ the intern-optimal stable matching is
$h_{1} \quad h_{2}$
$\mu_{1}\left\{i_{2}, i_{3}\right\} \quad\left\{i_{1}, i_{4}\right\}$
When the capacity is $(1,2)$ the intern-optimal stable matching is
$h_{1} \quad h_{2}$
$\mu_{2}\left\{i_{1}\right\} \quad\left\{i_{3}, i_{4}\right\}$.
When the capacity is $(2,2)$ the unique Nash Equilibrium under the intern-optimal rule matching is $(1,2)$, which yields an unstable matching, μ_{2}.

If h_{1} states her true capacity it only receives the offer by i_{2} and i_{3} and it never receives an offer by i_{1} during the the intern-proposing deferred acceptance algorithm. If it understates its capacity, at the first stage of the deferred acceptance algorithm it rejects the offer by i_{3}. At the second stage of the deferred acceptance algorithm i_{3} applies to h_{2} and induces the rejection of i_{1} by h_{2}. Finally h_{1} receives the offer by i_{1} and rejects i_{2}. Non-monotonicity of h_{1} 's preferences is necessary to generate the instability. The generalized cycle at h_{1} makes it possible the chain of rejections.

There is an important difference between the manipulation of the hospital-optimal stable matching and the manipulation of the interns optimal stable matching. In the former case by understating capacities hospitals restrain from applying to some interns (in the deferred acceptance algorithm) and prevents potential cycles of rejections of hospitals by interns. In the latter by understating capacities they generate a chain of rejections of interns by hospitals. Some hospitals will receive more offers from interns, but they will be able to cover less positions, which makes non-monotonic preferences necessary for manipulation.

Proposition 2 Assume that no non-monotonic cycle exists. Then:

1. Stating the true capacities is a dominant strategy under φ^{I}.
2. The capacity revelation game induced by φ^{I} yields the intern-optimal stable matching at equilibrium.

In particular if preferences are strongly monotonic in population no non-monotonic cycle exists and the result implies Theorem 5 in Konishi and \ddot{U} nver (2006).

Corollary 2 Under the following conditions stating the true capacity is a dominant strategy in capacity revelation game induced by φ^{I}. The game yields the intern optimal stable matching at every Nash equilibrium.

1. The preferences of the hospitals are strongly monotonic in population.
2. The maximum length of every preference cycle is two.

The absence of non-monotonic cycles is the minimal condition able to prevent capacity manipulation and equilibrium instabilities under φ^{I}. The same applies to the profile of interns preferences having only cycle of length less than 3.

Proposition 3 1. If a non-monotonic cycle exists there is a profile of interns preferences and a vector of capacities q such that the capacity reporting game yields an unstable matching at equilibrium.
2. If interns preferences have a cycle of length at least 3, there exists a profile of hospitals preferences and and a vector of capacities q such that the capacity reporting game yields an unstable matching at equilibrium.

4 Conclusions

In the paper we have considered two capacity manipulation games using the intern-optimal and the hospital optimal-stable rules. Generalizing Konishi and Ünver (2006) we have provided minimal conditions that guarantee existence and stability of pure strategy Nash equilibrium outcomes and the strategy-proofness of truthful capacity revelation. We have also underlined the difference between the two mechanisms.

Appendix

Proof of Lemma 1: Let q be a Nash Equilibrium when the quota vector is q^{*} and let $\mu=\varphi^{V}(q)$ be the outcome matching. Assume μ is unstable. Let (h, j) blocking μ and set $\mu^{*}=\varphi^{V}\left(q_{h}^{*}, q_{-h}\right)$. It must be the case that $q_{h}<q_{h}^{*}$ otherwise (h, j) would block μ in (H, I, P, q). For the same reason $\sharp \mu(h)=q_{h}$. Consider the related one-to-one matching market. From Proposition 2 in Gale and Sotomayor (1985b) it follows that $\mu^{*} R_{I} \mu$ and $\mu\left(h_{c}^{\prime}\right) R_{h_{c}} \mu^{*}\left(h_{c}^{\prime}\right)$ for every $h^{\prime} \neq h$ and $\mu\left(h_{c}\right) R \mu^{*}\left(h_{c}\right)$ for every h_{c} such that $\mu\left(h_{c}\right) \neq h_{c}$. Furthermore, $\mu(h) R_{h} \mu^{*}(h)$ because q is a Nash Equilibrium and $\mu \neq \mu^{*}$ because μ is unstable $\left(H, I, P,\left(q_{h}^{*}, q_{-h}\right)\right)$. So $\mu P_{H} \mu^{*}$ and $\mu^{*} P_{I} \mu$. Finally $\mu(h) P_{h} \mu^{*}(h)$, otherwise (h, j) would block μ in (H, I, q, P).

Proof of Lemma 3: We prove only 1, the proof of 2 being identical. Let \bar{T} be the largest T satisfying $i_{0} P_{h_{0}} i_{-1} P_{h_{0}} i_{T} P_{h_{T}} i_{T-1} \ldots i_{1} P_{h_{1}} i_{0}$. By contradiction assume $\bar{T}>1$. We prove that the cycle can be reduced to one of length at most $\bar{T}-1$. If $i_{0} P_{h_{2}} i_{1}$, then $i_{0} P_{h_{2}} i_{1} P_{h_{1}} j_{0}$ a contradiction. If $i_{1} P_{h_{2}} i_{0}$, then $i_{0} P_{h_{0}} j_{0} P_{h_{\bar{T}-1}} i_{\bar{T}-1} \ldots \ldots i_{2} P_{h_{2}} i_{0}$ and we have a cycle of length $\bar{T}-1$, a contradiction.

Proof of Theorem 1: 1. Let $h \in H$. Let $q_{h}<q_{h}^{*}$ and let q_{-h} be a vector of capacities for the other hospitals. Set $\mu=\varphi^{V}(q)$ and set $\mu^{*}=\varphi^{V}\left(q_{h}^{*}, q_{-h}\right)$. Assume that $\mu(h) P_{h} \mu^{*}(h)$. Proposition 2 in Gale and Sotomayor (1985b) (applied to the related one-to-one matching market) implies that $\mu^{*} P_{I} \mu$ and $\mu P_{H} \mu^{*}$ and that for all h^{\prime} such that $\mu\left(h^{\prime}\right) \neq \mu^{*}\left(h^{\prime}\right)$, for all $i \in \mu\left(h^{\prime \prime}\right) \backslash \mu^{*}\left(h^{\prime}\right)$ and for all $j \in \mu^{*}\left(h^{\prime}\right) \backslash \mu\left(h^{\prime}\right), i P_{h^{\prime}} j$. Set $I^{\prime}=\left\{i: \mu^{*}(i) P_{i} \mu(i)\right\} \neq \emptyset$. Let $h_{0} \in \mu\left(I^{\prime}\right)$, then $\mu\left(h_{0}\right) P \mu^{*}\left(h_{0}\right)$ and let $i_{0} \in \mu\left(h_{0}\right) \backslash \mu^{*}\left(h_{0}\right), i_{0} \in I^{\prime}$. For all $n \geq 1$ set $h_{n+1}=\mu^{*}\left(i_{n+1}\right)$ if $h_{n} \neq h_{t}$ for every $t<n$ and set $h_{n+1}=h_{n}$ otherwise. Observe that
$h_{0} \neq h_{1}$. Let $i_{n}=\max _{P_{n-1}} \mu\left(h_{n-1}\right) \backslash\left(\mu^{*}\left(h_{n-1}\right) \cup\left\{i_{1}, \ldots, i_{n-1}\right\}\right)$ if $\mu^{*}\left(h_{n-1}\right) \cup\left\{i_{1}, \ldots, i_{n-1}\right\} \nsupseteq \mu\left(h_{n-1}\right)$ and set $i_{n+1}=i_{n}$ otherwise . The sequence is stationary because I^{\prime} is finite and it stops with at some $\bar{n}>1$ such that $h_{\bar{n}}=h_{\bar{n}+1}$. Let k be the such that $h_{k}=h_{\bar{n}}$. Set $j_{n}=j_{n+k}$ and $r_{n}=h_{n+k}$ for every $n \leq \bar{n}-k$. The sequence is made of different interns and two consecutive hospitals are distinct. It satisfies $\mu\left(j_{n}\right)=r_{n}=\mu^{*}\left(j_{n+1}\right)$ for $n \leq \bar{n}-k$, and $\mu^{*}\left(j_{k}\right)=r_{0}$. It follows that (i) $j_{0} P_{r_{0}} j_{k} P_{r_{k-1}} j_{k-1} \ldots \ldots j_{2} P_{r_{2}} j_{1} P_{r_{1}} j_{0}$ and (ii) $r_{0} P_{j_{k}} r_{k} P_{j_{k}} r_{k-1} \ldots P_{j_{0}} r_{0}$. So $h_{0}, \ldots h_{k}, r_{0}, \ldots r_{k}$ are a simultaneous cycle.
2. Let μ, μ^{*} be different stable matchings of (H, I, q, P) for some q and assume that $\mu P_{H} \mu^{*}$. Set $I^{\prime}=$ $\left\{i: \mu^{*}(i) P_{i} \mu(i)\right\} \neq \varnothing$. The proof of the existence of simultaneous cycles is exactly like in 1.
3. From 1 a Nash equilibrium yielding a stable matching exists. From Lemma 1 and 1 the game does not yields unstable matchings at equilibrium. From 2 such outcome is unique.

Proof of Proposition 1: 1. Let $h_{1}, h_{2}, i_{1}, i_{2}$ be like in Definition 1. Define a profile of preferences for interns preferences as follows. Let $h_{2} P_{i_{1}} h_{1} P_{i_{2}} h_{2}$ and let $A\left(i_{1}\right)=A\left(i_{2}\right)=\left\{h_{1}, h_{2}\right\}$. Let $P_{I^{\prime} \backslash\left\{i_{1}, i_{2}\right\}}^{\prime}$ be any vector of preferences. Consider the market $\left(H \backslash\left\{h_{1}, h_{2}\right\}, I \backslash\left\{i_{1}, i_{2}\right\}, q_{-\left\{h_{1}, h_{2}\right\}}, P_{H \backslash\left\{h_{1}, h_{2}\right\}}, P_{I^{\prime} \backslash\left\{i_{1}, i_{2}\right\}}^{\prime}\right)$ and let μ^{\prime} be the hospital optimal stable matching. Let $P_{I \backslash\left\{i_{1}, i_{2}\right\}}$ such that $A(i)=\mu(i)$ for every $i \in I$. When $q_{h_{1}}=q_{h_{2}}=2$ the market (H, I, q, P) has a unique stable matching: $\mu(i)=\mu^{\prime}(i)$ for every $i \neq i_{1}, i_{2}$, $\mu\left(i_{1}\right)=h_{2}, \mu\left(i_{2}\right)=h_{1}$. It is easily seen that when $q=\left(2,2, q_{-\left\{h_{1}, h_{2}\right\}}\right)$, the message $\left(1,1, q_{-}\left\{h_{1}, h_{2}\right\}\right)$ is a Nash Equilibrium. The outcome matching is μ^{*}, where $\mu^{*}(i)=\mu^{\prime}(i)$ for every $i \neq i_{1}, i_{2}, \mu^{*}\left(i_{1}\right)=h_{1}, \mu^{*}\left(i_{2}\right)=h_{2}$, and is blocked by $\left(h_{1}, i_{2}\right)$ and $\left(h_{2}, i_{1}\right)$. The proof of 2 is similar.

Proof of Proposition 2: 1. Let $h \in H$. Let $q_{h}<q_{h}^{*}$ and let q_{-h} be a vector of capacities for the other hospitals. Set $\mu=\varphi^{I}(q)$ and set $\mu^{*}=\varphi^{I}\left(q_{h}^{*}, q_{-h}\right)$. Assume that $\mu(h) P_{h} \mu^{*}(h)$. Proposition 2 in Gale and Sotomayor (1985) implies that $\mu^{*} P_{I} \mu$ and, in the associated one-to one matching market $\mu\left(h_{c}^{\prime}\right) R_{h_{c}} \mu^{*}\left(h_{c}^{\prime}\right)$ for every $h^{\prime} \neq h$ that and $\mu\left(h_{c}\right) R \mu_{h_{c}}^{*}\left(h_{c}\right)$ for every h_{c} such that $\mu\left(h_{c}\right) \neq h_{c}$. It follows that for every h such that $\mu(h) \neq \mu^{*}(h)$, for all $i \in \mu(h) \backslash \mu^{*}(h)$ and for all $j \in \mu^{*}(h) \backslash \mu(h), i P_{h} j$ otherwise (h, j) would block μ^{*} in market $\left(H, I,\left(q_{h}^{*}, q_{-h},\right) P\right)$. There is no loss of generality in assuming that $\mu^{*}(i)$ is i 's favorite firm, for very $i \in I$, because $\mu P_{H} \mu^{*}$ and $\mu P_{I}^{*} \mu$. Consider the deferred acceptance algorithm where interns apply with quotas q. Let i the first intern to be rejected by $\mu^{*}(i)=h^{\prime}$. It must be the case that i is rejected in favor of some intern in $\mu^{*}\left(h^{\prime}\right)$. It follows that $\sharp \mu\left(h^{\prime}\right)<\sharp \mu^{*}\left(h^{\prime}\right)$ and that $h=h^{\prime}$ so h^{\prime} preferences are not monotonic. Also, $\mu(h) P_{H} \mu^{*}(h)$.
Set $M^{\prime}=\mu(h)$ and set $M^{\prime}=\mu^{*}(h)$. Let $M^{\prime} \backslash M=\left\{i^{1}, \ldots, i^{s}\right\}$ and let $M \backslash M^{\prime}=\left\{j^{1}, \ldots, j^{q}\right\}$. Set $r=$ $\sharp M-\sharp M^{\prime}=\sharp M-q_{h}$. We have assumed that $\mu^{*}(i)$ is i 's favorite hospital. Then $\mu^{*}(i)$ is the first firm i proposes to in the deferred acceptance algorithm. So it must be the case that exactly r interns are rejected by h at the first stage of the deferred acceptance algorithm. Furthermore $r<q$, otherwise during the deferred acceptance algorithm no other intern in M^{\prime} would be rejected by h and h would end up with $M^{\prime}=M \backslash\left\{j^{1}, \ldots, j^{r}\right\}$, a contradiction. Assume that such intern are j^{q-r+1}, \ldots, j^{q}.
Consider $i_{1}^{1}=i^{1}$. Let $t_{0}>1$ the step at which i_{1}^{1} has been accepted by h and let i_{1} be an intern that has been rejected in favor of i^{t}. If $i_{1} \in M$ stop and set $i_{-1}^{t}=i_{1}^{1}$, otherwise at step $t_{1}, 1<t_{1}<t_{0}$, i_{1} has been accepted and some i_{2} has been rejected in favor of i_{1}^{1}. For all $k \geq 2$, If $i_{k} \in M$ stop, at step $t_{k}, 1<t_{k}<t_{0}$, i_{k} has been accepted by h and some i_{k+1} has been rejected by h in favor of i_{k+1}. The sequence eventually stop at some $i_{K^{1}} \in M$ who has been rejected in a step $t_{K^{1}}>1$ of the deferred acceptance algorithm. ${ }^{8}$ There is no loss of generality in assuming that $i_{K^{1}}=j^{1}$. We have $i^{1} P_{h} j^{1}$. Fort ≥ 2, define $i_{K^{2}}$ as before, but choose any $i_{k}^{t} \neq i_{s}^{l}$ for every $l<t$. It can be done because if at the same stage (after the first one) of the deferred acceptance algorithm p interns are accepted by h then p who were engaged to h are rejected. So $i_{K^{t}} \neq i_{K^{l}}$ if

[^5]$t \neq l$. There is no loss of generality in assuming that $i_{-1}^{t}=j^{t}$ for $t=1, \ldots, s$, because every i_{-1}^{t} has been rejected at a step of the deferred acceptance algorithm successive to the first one.
For $t=1, \ldots, s$ set $i_{0}^{t}=i^{t}$. Let i_{1}^{t} be the intern in favor of which i_{0}^{t} has been rejected by $\mu^{*}\left(i_{0}^{t}\right)=h_{1}^{t}$. For every $p \geq 1$ at step t_{p} of the deferred acceptance algorithm j_{p}^{t} has been rejected by $h_{p+1}^{t}=\mu^{*}\left(j_{p}^{t}\right) \neq h_{p}^{t}$ in favor of some $j_{p+1}^{t} \notin \mu^{*}\left(h_{p}^{t}\right) i_{1}$. If $h_{p}^{s}=h_{l}^{s^{\prime}}$ and $t_{p}^{t}=t_{l}^{t^{\prime}}$ for some $t^{\prime}<t$ then h_{p}^{t} has received at least $\sharp\left\{t^{\prime}<t: h_{p}^{t}=h_{l}^{t^{\prime}}\right.$ for some l and $\left.t_{p}^{t}=t_{l}^{t^{\prime}}\right\}+1$ better proposal than j_{p}^{t}. So we can choose j_{p}^{t} different from every other $j_{l}^{t^{\prime}}, 0 \leq t^{\prime}<t$. We have $h_{p+1}^{t}=\mu^{*}\left(i_{p}^{t}\right)$ for all $t, h_{p+1}^{t} P_{i_{t}} h_{p}^{t 9}$ and $i_{p}^{t} P_{h_{p+1}^{t}} i_{p}^{t}$. The sequence stops at some K^{t} where $h_{K^{t}}^{t}=h$ rejects some some intern at the first stage of the algorithm. Then, there $h \in H, M, M^{\prime}$, satisfy $\sharp M<\sharp M^{\prime} M^{\prime} P_{h} M$ and $h_{0}^{k}, \ldots, h_{T^{k}}^{k}, i_{-10}^{k}, i_{0}^{k}, i_{1}^{k}, \ldots, i_{K^{t}}^{k}$ with $K^{t} \geq 1$ such that $h=h_{0}^{k}, i^{k}=i_{0}^{k}, i_{-1}^{k}, i_{T^{s}}^{k} \in M \backslash M^{\prime}$ and $i_{-1}^{k} \neq i_{-1}^{k^{\prime}}$, for $k \neq k^{\prime}$. Then there is a non-monotonic cycle at h.
2. By 1 a Nash equilibrium yielding a stable matching exists. By Lemma 1 there are not unstable equilibria, so every equilibrium outcome is stable. By contradiction assume that the outcome is not the intern optimal stable matching. It must be the case that some hospital has misrepresented capacity. Let q be the Nash equilibrium of the game and let $q^{*} \geq q$ be the true capacity vector. Set $\mu=\varphi^{I}(q)$ and set $\mu^{*}=\varphi^{I}\left(q^{*}\right)$. From 1μ is stable in $\left(H, I, q^{*}, P\right)$ so $\mu P_{H} \mu^{*}$ and $\mu^{*} P_{I} \mu$. There is no loss of generality in assuming that $\mu^{*}(i)$ is intern i 's favorite hospital. The matching μ is obtained through the intern-proposing deferred acceptance algorithm. It must be the case that at least one i is rejected by $\mu^{*}(i)=h$ at the first stage of the deferred acceptance algorithm. Because every intern applies to her hospital under μ^{*} at this stage it is because h has manipulated its true capacity. Then h has less interns under μ than under μ^{*}. This yields a contradiction because both matching are stable in $\left(H, I, q^{*}, P\right)$.

Proof of Proposition 3: 1. Assume that there is a non-monotonic cycle at h. Using the notation of definition 4 let $I^{\prime}=\left\{i_{T^{k}}^{1}: h_{l}^{k}=h\right\} \cap M^{\prime} \cup\left\{i_{-1}^{1}, \ldots ., i_{-1}^{s}\right\}$. Set $M^{*}=M^{\prime} \cap M \cup I^{\prime}$. Note that $\sharp M^{*}>\sharp M$ and $M P_{h} M^{*}$. Set the preferences of interns as follows. Let $A\left(i_{l}^{k}\right)=\left\{h_{l}^{k}, h_{l+1}^{k}\right\}$ and $h_{l+1}^{k} P_{h_{k}} h_{l}^{k}$ for all k and for all l. Let $A(i)=\{h\}$ if $i \in M^{\prime} \cap M$. For all other interns let $A(i)=\{h(i)\}$ for some $h(i) \notin$ $\left\{h_{l}^{k}: k=1, \ldots s, l=1, \ldots T^{k}\right\}$. Let $q_{h_{0}}=q_{h}=\sharp M^{*}$ and let $q_{h_{l}^{k}}=1$ for all k, l such that $h_{l}^{k} \neq h$. Set all other capacities arbitrarily. We have $\varphi_{h}^{I}(q)=M^{*}$. From the property of the non-monotonic cycle at h, $\varphi_{h}^{I}\left(q_{h}^{\prime}, q_{-h}\right) R_{h} M P_{h} M^{*}$. Let q_{h}^{\prime} be h 's best response to q_{-h}. We have $q_{h}^{\prime}<q_{h}$. It is easily seen that $\left(q_{h}^{\prime}, q_{-h}\right)$ is a Nash equilibrium at (H, I, q, P). It yields a matching that is unstable because in any stable matching of $(H, I, q, P) h$ is matched to $\sharp M^{*}>q_{h}^{\prime}$ interns.

References

Abdulkadiroğlu A, Pathak PA, Roth AE, (2005) The New York City high school match. Am Econ Review 95:364-367
Abdulkadiroğlu A, Sönmez T (2003) School choice: a mechanism design approach , Am Econ Review 93:729747
Alcalde J, Barberá S (1994) Top dominance and the possibility of strategy-proof stable solutions to matching problems. Econ Theory 4:417-435
Balinski M, Sönmez T, (1999) A Tale of Two Mechanisms: Student Placement. J Econ Theory 84:73-94
Dubins LE, Friedman DA (1981) Machiavelli and the Gale Shapley algorithm. Am Math Mon 88:485-494 Eeckhout J (2000) On the uniqueness of stable marriage matchings. Econ Lett 69:1-8.

[^6]Ergin H (2002) Efficient resource allocation on the basis of priorities. Econometrica 70:2489-2497
Gale D, Shapley L S (1962) College admissions and the stability of marriage. Am Math Mon 69:9-15
Gale D., Sotomayor M (1985a) Some remarks on the stable marriage problem. Discrete Appl Math 11:223232
Gale D. , Sotomayor M. (1985b) Ms Machiavelli and the stable matching problem Am Math Mon 92:261-268 Hurwicz L, Maskin E, Postlewaite A (1995) Feasible Nash implementation of social choice rules when the designer does not know endowments or production sets. in The economics of informational decentralization: complexity, efficiency and stability. Ledyard JO (ed.) Kluwer Academic Publishers, Amsterdam
Kojima F (2006) Mixed strategies in games of capacity manipulation in hospital-intern markets. Soc Choice Welfare 27:25-28
Kojima F (2007) When can Manipulations be Avoided in Two-Sided Matching Markets? Maximal Domain Results. Mimeo
Konishi I. and M. Utku Ünver (2006) "Games of capacity manipulation in hospital-intern markets. Soc Choice Welfare 27:3-24
Ma J (1995) Stable matchings and rematching-proof equilibria in a two-sided matching market. J Econ Theory 66:352-369
Niederle M, Roth AE Unraveling reduces mobility in a labor market: gastroenterology with and without a centralized match. J Polit Economy 111:1342-1352
Roth AE (1982) The economics of matching: stability and incentives. Math Oper Res 7:617-628
Roth AE (1984) The evolution of the labor market for medical interns and residents: a case study in game theory. J Polit Economy 92:991-1016
Roth AE (1991) A natural experiment in the organization of entry level labor markets: regional markets for new physicians and surgeons in the U.K. Am Ec Rev 81:415-440
Roth AE, Peranson E (1999) The redesign of the matching market for American physicians: some engineering aspects of economic design. Am Ec Rev 89:748-780
Roth A. E. (2002) The economist as engineer: game theory, experimentation as tools for design economics. Econometrica 70:1341-1378
Roth AE, Sotomayor M (1990) Two-sided matching: a study in game theoretic modeling and analysis. Cambridge University Press, Cambridge
Sönmez T (1997a) Games of manipulation in marriage problem. Games Econ Behav 20:169-176
Sönmez T (1997b) Manipulation via capacities in two-sided matching markets. J Econ Theory 77:197 204
Sönmez (1999) Can pre-arranged matches be avoided in two sided matching markets? J Econ Theory 86:148156

[^0]: The Authors acknowledge financial support from the Spanish Ministerio de Educacion y Ciencia, Grant No. SEJ2005-06167/ECON.
 ${ }^{\dagger}$ Department of Economics, Universidad Carlos III de Madrid, Calle Madrid 126, 28903 Getafe, Spain. E-mail: aromero@eco.uc3m.es.
 *Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri (TO), Italy. E-mail: matteo.triossi@carloalberto.org
 § © 2006 by Antonio Romero-Medina and Matteo Triossi. Any opinions expressed here are those of the authors and not those of the Collegio Carlo Alberto.

[^1]: ${ }^{1}$ Alcalde and Barbera (1994) extend the result to individually rational and Pareto optimal rules.
 ${ }^{2}$ Strong-monotonicity in population is satisfied if hospitals prefer larger set of interns to smaller ones.
 ${ }^{3}$ See also Kojima (2006, 2007).

[^2]: ${ }^{4}$ As usual, for all $h, i, i^{\prime}, i P_{h} i^{\prime}, i P_{h} \varnothing$ and $\varnothing P_{h} i$ denote $\{i\} P_{h}\left\{i^{\prime}\right\},\{i\} P_{h} \varnothing$ and $\varnothing P_{h}\{i\}$, respectively.

[^3]: ${ }^{5}$ From now on indexes are considered modulo $T+1$.

[^4]: ${ }^{6}$ An alternative interpretation is provided in Ergin (2002), who prove that if a generalized cycle exists then the intern-optimal stable rule is not Pareto optimal for interns.
 ${ }^{7}$ Every counterexample in Konishi and \ddot{U} nver (2006) and in Sönmez (1997b) use non-strong monotonic preferences and involves at least three interns.

[^5]: ${ }^{8}$ Every intern in the sequence is rejected because of the arrival of a proposal from another intern.

[^6]: ${ }^{9}$ Because i_{t} first proposes to h_{t+1} in the deferred acceptance algorithm

