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Volatility modeling and accurate minimum capital risk

requirements: a comparison among several approaches.

A. Grané(1) H. Veiga(2)

Statistics Department. Universidad Carlos III de Madrid.

Abstract

In this paper we estimate, for several investment horizons, minimum capital risk

requirements for short and long positions, using the unconditional distribution

of three daily indexes futures returns and a set of GARCH-type and stochastic

volatility models. We consider the possibility that errors follow a t-Student dis-

tribution in order to capture the kurtosis of the returns distributions. The results

suggest that an accurate modeling of extreme returns obtained for long and short

trading investment positions is possible with a simple autoregressive stochastic

volatility model. Moreover, modeling volatility as a fractional integrated process

produces, in general, excessive volatility persistence and consequently leads to

large minimum capital risk requirement estimates. The performance of models is

assessed with the help of out-of-sample tests and p-values of them are reported.

Keywords: Minimum Capital Risk Requirement, Moving Block Bootstrap,

Stochastic Volatility, Volatility Persistence.

JEL classification: C14, C15, G13.

1 Introduction

In recent years, financial markets across the world have reported an increase in volatil-

ity that has started to concern financial institutions such as banks since they could

incur in large trading losses. Consequently, this has created a need for quantitative

techniques that aim at specifying the possible losses that these institutions can suffer.

Concerned with the first goal, financial econometrics has developed models to account

for the empirical facts of financial data and to provide accurate estimators of volatil-

ity. One of the most well known models for its good performance in dealing with

financial data is the generalized autoregressive conditional heteroscedasticity model

(GARCH) of Bollerslev (1986). Later, other GARCH-type models have appeared
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to capture important characteristics within financial time series: the asymmetric re-

sponse of volatility to positive and negative returns and the volatility persistence.

Some examples are the exponential GARCH (EGARCH) of Nelson (1991), the frac-

tional integrated GARCH (FIGARCH) of Baillie (1996) and the fractional integrated

EGARCH (FIEGARCH) of Baillie et al. (1996). The latter models specify volatility

as a fractional integrated process with the purpose to capture the slow decay of the

autocorrelation functions of non-linear transformations of returns like squares and

absolute values. Relatively to the FIGARCH model, Davidson (2004) and Zaffaroni

(2004) showed, respectively, that it has the unpleasant property that the persistence

of shocks to volatility decreases as the long-memory parameter increases and that

it cannot generate squared returns autocorrelations with long-memory. Therefore,

Davidson (2004) presented an alternative to the previous model, denoted hyperbolic

GARCH (HYGARCH), that re-establishes the traditional relation between the long-

memory parameter and volatility. Alternatively to the GARCH-type models, Taylor

(1986) proposed an autoregressive stochastic volatility model, denoted ARSV, that

specifies volatility as a latent variable modeled as an autoregressive process. Carnero

et al. (2004) favored the ARSV model because it explains the relationship between

the kurtosis of returns distribution and the persistence of volatility better than the

GARCH(1,1). Later but still in the context of stochastic volatility, Breidt et al.

(1998) and Harvey (1998) proposed a stochastic volatility model whose volatility

process follows a fractional integrated process and can be regarded as an alternative

to the FIGARCH and the HYGARCH models.

Concerning the second goal of quantifying losses, value-at-risk (VaR) is a very popular

technique providing an estimate of the probability of likely losses to occur over a given

time horizon due to changes in market prices. A very related concept is the minimum

capital risk requirement (MCRR) defined as the minimum sufficient capital to absorb

all except a pre-specified percentage of unforeseen losses (see Brooks et al., 2000).

Several methods have been proposed to calculate the VaRs, among them we include

the ”delta-normal” method, the historical simulation that involves the estimation

of the quantile of the portfolio returns, and the structured Monte Carlo simulation

(see Dowd, 1998; Jorion, 2001). Although the Monte Carlo approach is powerful

and flexible for generating VaR estimates because it can be specified any stochastic

process for the asset price, it is not free of important drawbacks. The first and more

important one is related to the stochastic process that has been assumed for the price

of the asset, because if this assumption is not correct, the calculated VaRs can be

inaccurate. The second drawback is related to the computational time required to

compute the VaRs. It may be very high for a large portfolio. An alternative approach

that could overcome the first drawback, is to use bootstrap rather than Monte Carlo

simulation.

In this paper, we address an approach to the calculation of the MCRRs similar to the

works of Hsieh (1993) and Brooks et al. (2000). We calculate the MCRRs for three

indexes futures (the FTSE-100 Index Futures, the Russell 2000 Index Futures and the

S&P 500 Index Futures) defined on long and short positions for 1, 5, 10, 30, 90 and

180 days horizons, using the unconditional and conditional approaches. We use the

moving block bootstrap of Künsch (1989) and Liu and Singh (1992) for computing

the unconditional distribution of returns since, contrary to previous papers, we have

found that the returns of the considered financial series are not iid, not only due to
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the existence of non-linear dependence, but also due to a weak linear dependence

structure of the own returns detected by the rejection of the null hypothesis of the

Ljung-Box test. Moreover, we have calculated (for the FTSE-100 Index Futures)

the MCRRs both with the iid bootstrap described in Efron and Tibshirani (1993)

and the moving block bootstrap described in Lahiri (2003) and we have found huge

differences in the MCRRs estimates, specially for long positions and larger investment

horizons. Thus, the motivation of this paper is to add new evidence from the futures

market to the modeling of financial data by calculating appropriate MCRRs for these

three indexes futures, to highlight some volatility forecasting features of well known

specifications, since accurate volatility estimators for futures positions are essential

to impose optimal capital deposits, and to compare different approaches in order to

understand better the risks associated to derivative positions.

As in Hsieh (1993) and Brooks et al. (2000) we have fitted several GARCH-type

models and we have found that the BDS test (Brock et al., 1996) applied to the

residuals rejects models that introduce asymmetries between the conditional variance

and the returns, such as the EGARCH, the GJR of Glosten et al. (1993) and the

FIEGARCH models, which is consistent with previous works. The ”best” models

according to the BDS test take into account the volatility clustering, the fat tails

of the returns distributions and the volatility persistence. The performance of the

models is assessed by computing the failure rates in an out-sample period.

The most important findings in this paper are: first, the simple autoregressive

stochastic volatility model of Taylor (1986) with errors following a normal distribution

performs better in terms of volatility forecasting and provides accurate MCRRs esti-

mates; second, the MCRRs based upon GARCH models are generally larger for short

investment horizons and smaller for long investment horizons than the ones obtained

with the alternative specifications due to the decreasing volatility forecastability reg-

istered by GARCH models when the forecasting horizon increases (see Christoffersen

and Diebold, 2000); and finally, the fractional stochastic volatility model, in general,

generates excessive MCRRs due to the extreme volatility persistence that is produced

by this model.

The remainder of the paper proceeds as follows: In Section 2, we present a description

of data and its main statistical properties. In Section 3, we estimate several condi-

tional heteroscedastic and stochastic volatility models and we present the forecasting

and the MCRRs methodologies. We present the moving block bootstrap in Section 4.

Section 5 reports the main empirical results and we conclude in Section 6.

2 Data Analysis

In this study, we calculate the MCRRs for three indexes futures: the FTSE-100 Index

Futures, the S&P 500 Index Futures, and the Russell 2000 Index Futures. The data

was collected from EconWin and spans the period 2 August 1989 - 18 May 2005 for

the FTSE-100 Index Futures, the period 4 August 1989 - 16 October 2006 for the S&P

500 Index Futures and the period 5 February 1993 - 15 December 2006 for the Russell

2000 Index Futures. We have deleted from the data set observations corresponding to

non trading days to avoid the incorporations of spurious zero returns, leaving 3980,

4366 and 3421 observations for the FTSE-100, S&P 500 and Russell indexes futures,
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respectively.
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Figure 1: Series of financial returns: (a) FTSE-100 Index Futures, (b) Russell Index Futures and
(c) S&P 500 Index Futures.

Figure 1 and Figure 2 show graphs of the financial returns and their volatility evo-

lutions. In Table 1, where we report some summary statistics, we observe that the

three returns series are negatively skewed and have a kurtosis between 5.7349 and

8.3197.
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Figure 2: Squared returns: (a) FTSE-100 Index Futures, (b) Russell Index Futures and (c) S&P

500 Index Futures.

Futures Contracts FTSE-100 Russell S&P 500

Mean 0.0002 0.0004 0.0004
Variance 0.0001 0.0001 0.0002
Skewness -0.0841 -0.2588 -0.2961
Kurtosis 5.8592 8.3197 5.7349

Table 1: Summary statistics of returns.

Next, we test whether the returns are independently and identically distributed (iid)

because a rejection of this hypothesis leads to a difference how conditional and un-

conditional densities describe short term dynamics of prices (see Hsieh, 1993). To

this end, we apply the BDS test of Brock et al. (1996) to the returns series. Under

the null hypothesis the BDS test statistic is asymptotically normal distributed (see

Brock et al., 1991). Table 2 shows the results of the BDS test. The null hypothesis

of iid is rejected for all the three returns series at a 5% level of significance, which is

consistent with the results of Hsieh (1993) and Brooks et al. (2000).

Hsieh (1991) showed that the BDS test can detect many types of non iid causes includ-

ing linear dependence, non-stationarity, chaos and non-linear stochastic processes. In
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ǫ/σ Contracts Embedding dimensions
2 3 4 5

0.5 FTSE-100 8.9 13.0 17.0 20.6
Russell 15.4 22.9 30.3 40.9
SPF 10.9 14.8 18.3 23.2

1.0 FTSE-100 10.7 15.0 18.6 21.7
Russell 14.4 21.3 25.9 31.4
SPF 11.0 15.3 18.5 22.4

1.5 FTSE-100 12.7 17.4 20.6 23.3
Russell 14.0 20.7 24.1 27.1
SPF 11.1 15.5 18.1 21.0

2.0 FTSE-100 13.8 18.7 21.7 23.9
Russell 13.8 20.7 23.7 25.9
SPF 11.9 15.9 17.9 20.2

Table 2: BDS test statistic for financial returns. The critical values of the statistic for a two-tailed
test are: 1.645 (10%), 1.960 (5%), 2.326 (2%), and 2.576 (1%).

order to understand the underlying reason, we calculate the autocorrelation function

of the returns and squared returns up to order 15 and we test for the joint signification

of the autocorrelations with the Ljung-Box Q statistic.

Lag FTSE-100 Sq. Russell Sq. S&P 500 Sq.
length Returns Returns Returns Returns Returns Returns

1 0.015 0.214 -0.002 0.188 -0.038 0.193
2 -0.028 0.304 -0.045 0.326 -0.055 0.168
3 -0.075 0.251 0.012 0.206 -0.017 0.149
4 0.037 0.230 0.010 0.269 0.011 0.118
5 -0.026 0.249 -0.018 0.214 -0.039 0.158
6 -0.041 0.258 -0.028 0.251 -0.018 0.113
7 -0.024 0.201 -0.010 0.186 -0.037 0.139
8 0.045 0.282 -0.003 0.189 -0.002 0.122
9 0.033 0.164 -0.004 0.232 0.014 0.101
10 -0.025 0.234 -0.033 0.205 0.002 0.116
11 0.003 0.242 0.043 0.190 -0.001 0.110
12 0.003 0.191 0.055 0.183 0.047 0.102
13 0.037 0.227 0.017 0.193 0.023 0.081
14 -0.019 0.146 -0.030 0.144 0.011 0.088
15 0.028 0.166 0.009 0.240 -0.022 0.089
Q(15) 68.631∗ 3113.5∗ 36.758∗ 2458.6∗ 50.913∗ 1058.7∗

Table 3: Autocorrelations of returns and squared returns. The last line contains the values of
the Ljung-Box Q statistic. The critical values are: 22.31 (10%), 25.00 (5%), and 27.49 (1%), and *
means significant at a 5% level.

Table 3 shows that the autocorrelations and the Ljung-Box Q statistic of the squared

returns are larger than the ones of the returns. Moreover, the Ljung-Box Q statistic

shows evidence (at a 5% significance level) that both the returns and the squared

observations are autocorrelated, although the autocorrelation is much stronger for

the series of the squared returns.

So far, we have found a non-linear dependence of the series, we check next whether

this non-linearity is in mean or in variance. We test the null of zero conditional

mean with the proposal of Hsieh (1989, 1991). If the null hypothesis is true, the bi-

5



correlation coefficients, ρ(i, j) = E(yt yt−i yt−j)/[Var(yt)]
3/2, are zero for all i, j ≥ 1.

These coefficients are asymptotically normal distributed with zero mean and vari-

ance [(1/T )
∑

y2
t y2

t−i y
2
t−j ]/[(1/T )

∑

y2
t ]

3. We have implemented the individual sig-

nificance test of the bicorrelation coefficients in Ox, available upon request. The

bicorrelation coefficients are reported in Table 4. None of the bicorrelation coef-

ficients are statistically significant, which leads us to conclude that the non-linear

dependence is in variance.

ρ(i, j) FTSE-100 Russell S&P 500

ρ(1, 1) 0.08 0.04 0.24
ρ(1, 2) -0.06 -0.03 0.03
ρ(2, 2) 0.14 0.10 0.05
ρ(1, 3) 0.00 0.06 0.07
ρ(2, 3) -0.02 -0.02 0.02
ρ(3, 3) 0.07 0.10 0.12
ρ(1, 4) 0.04 0.04 0.03
ρ(2, 4) 0.13 0.05 0.03
ρ(3, 4) 0.03 -0.10 -0.07
ρ(4, 4) 0.01 0.08 0.13
ρ(1, 5) -0.08 -0.04 -0.01
ρ(2, 5) -0.03 0.07 0.05
ρ(3, 5) 0.02 0.01 -0.01
ρ(4, 5) -0.01 -0.01 0.00
ρ(5, 5) -0.01 -0.04 0.12

Table 4: Bicorrelation coefficients of the futures returns.

3 Conditional Approach: GARCH and Stochastic

Volatility Modeling

3.1 Model selection and estimation

Given the conclusions of Section 2, we need to model carefully the conditional vari-

ance of the returns series to obtain accurate MCRR estimates. Rather than choosing

a model a priori, we estimate several models in an attempt to choose the best specifi-

cations for each series. In the conditional heteroscedasticity context, we first estimate

the GARCH(1,1), the FIGARCH(1,1) and the HYGARCH(1,1) with normal and t-
Student errors. We estimate the FIGARCH model, despite its drawbacks, because

we would like to compare its forecasting performance to the one of its alternative,

the HYGARCH model. Finally, we consider also the GJR(1,1), the EGARCH(1,1)

and the FIEGARCH(1,1) since Brooks and Persand (2003) found that allowing for

asymmetric responses of volatility to positive and negative returns can improve the

VaR estimates. The criterium chosen to select the models is based on their capacity

to capture the non-linear dependence in returns. To this end, we apply the BDS test

to the standardized residuals. If they are iid, the models are correctly specified. In

this case, we need to calculate new critical values because the test favors the null of

iid, when we apply it to the standardized residuals of GARCH-type models. There-

fore, we have simulated 2000 data series from each model with a sample size similar

to the original one (imposing the same coefficient estimates), fitted each model on

the simulated data and run the BDS test on the residuals. The models are estimated

by quasi-maximum likelihood (QML) with the Ox GARCH 4.2 package of Laurent

and Peters (2006).
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Embedding dimensions
Russell ǫ/σ 2 3 4 5

GARCH-Gauss 0.5 0.183 1.357 1.509 1.841
1.0 -0.371 1.028 1.231 1.541
1.5 -0.961 0.254 0.514 0.799
2.0 -1.539 -0.609 -0.191 0.038

GARCH-Stud 0.5 0.550 1.847 2.096 2.397∗

1.0 -0.057 1.441 1.700 2.045
1.5 -0.580 0.710 1.042 1.353
2.0 -1.090 -0.088 0.400 0.646

FIGARCH-Stud 0.5 1.029 1.534 1.412 1.461
1.0 0.672 1.386 1.069 1.038
1.5 0.251 0.786 0.566 0.556
2.0 -0.188 0.195 0.141 0.110

Table 5: BDS test statistic for the standardized residuals (∗ significant at a 5% significance level).
The critical values can be obtained from the authors upon request.

The selected models are the ones for which we do not reject the null hypothesis of iid

standardized residuals, which are: the GARCH-Gauss (normal errors), the GARCH-

Stud (t-Student errors), the FIGARCH-Stud and the HYGARCH-Gauss (this model

is only significant for the FTSE-100 Index Futures). Table 5 presents the results of

the BDS test for the standardized residuals obtained from fitting the selected models

to the Russell Index Futures.1

The HYGARH model proposed by Davidson (2004) is given by:

yt = µ + εt = µ + σt ǫt,

where εt is the prediction error, σ2
t is the variance of yt given information at time

t − 1, σt > 0, ǫt ∼ NID(0, 1) or a t-Student distribution and

σ2
t = ω + θ(L) ε2

t ,

where

θ(L) = 1 −
α∗(L)

β(L)
(1 + ψ((1 − L)d − 1)),

α∗(L) = 1 −
∑q

i=1 α∗
i Li, β(L) = 1 −

∑p
i=1 βi L

i, ω > 0, ψ ≥ 0 and d ≥ 0. For

values of d ∈ [0, 1/2) the conditional variance is stationary. The model simplifies

to a GARCH(p,q) and to a FIGARCH(p,d,q) for ψ = 0 and ψ = 1, respectively.

For 0 < ψ < 1, we have a nested model that is able to generate long-memory as d
increases.

From Table 6 we observe that the volatility implied by the GARCH-type models, that

depends on the sum of α and β for the GARCH models and also on the parameter

d for the fractional integrated GARCHs, is quite high. As an example and for the

FTSE-100 Index Futures, we obtain values of implied volatility of 0.988 and 0.991

for the GARCH-Gauss and GARCH-Stud, respectively.

1The results for the other series are similar to the ones presented here, except for the GARCH
model that performs slightly worse for the FTSE-100 Index Futures. All test results are available on
request from the authors.
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Parameters
µ γ α β DF d ln(ψ)

GARCH-Gauss
FTSE-100 0.0003 0.013 0.076 0.912

(0.0001) (0.003) (0.009) (0.011)

Russell 0.0007 0.019 0.115 0.875
(0.0002) (0.005) (0.013) (0.013)

S&P 500 0.0005 0.008 0.057 0.936
(0.0001) (0.002) (0.008) (0.009)

GARCH-Stud
FTSE-100 0.0004 0.010 0.070 0.921 14.030

(0.0001) (0.003) (0.009) (0.010) (2.539)

Russell 0.0008 0.014 0.104 0.890 17.009
(0.0002) (0.004) (0.013) (0.013) (4.061)

S&P 500 0.0006 0.005 0.054 0.943 6.271
(0.0001) (0.002) (0.008) (0.009) (0.576)

FIGARCH-Stud
FTSE-100 0.0004 1.197 0.142 0.587 13.575 0.4801

(0.0001) (0.393) (0.041) (0.068) (2.325) (0.050)

Russell 0.0008 0.737 n.s. 0.266 18.640 0.3374
(0.0002) (0.158) (0.039) (4.287) (0.033)

S&P 500 0.0006 0.752 0.227 0.608 6.576 0.420
(0.0001) (0.239) (0.041) (0.058) (0.541) (0.045)

HYGARCH-Gauss
FTSE-100 0.0003 0.039 0.145 0.658 0.594 -0.041

(0.0001) (0.012) (0.040) (0.076) (0.093) (0.020)

Table 6: Estimates and standard errors (in parenthesis) of the ARCH-type models. n.s. stands for
non significant at any relevant significance level.

In the context of stochastic volatility, natural competitors to the GARCH, FIGARCH

and HYGARCH models are the autoregressive stochastic volatility model (denoted

ARSV) of Taylor (1986) and the autoregressive fractional integrated stochastic volatil-

ity model (denoted ARLMSV) that extends the models of Breidt et al. (1998) and

Harvey (1998). The first is a short-memory model while the second has as a short-

memory component and a long-memory component (a fractional integrated process

is specified for the volatility). These models are estimated with the Whittle estima-

tion method. Following the same procedure as before, we apply the BDS test to the

residuals of the ARSV and the ARLMSV models and observe that the null hypothesis

of iid is not rejected for the ARSV residuals in all series except for the Russell Index

Futures. Relatively to the ARLMSV model, it seems that the model fits very well

the FTSE-100 Index Futures returns.

The ARLMSV model is given by the following expressions:

yt = σ ǫt exp

(

ht

2

)

(1)

(1 − φL)(1 − L)d ht = ηt. (2)

In equation (1), σ denotes a scale parameter, σt = exp(ht/2) is the volatility of yt (the

returns at time t), ǫt is NID(0, 1) and ηt is NID(0, σ2
η), where σ2

η is the variance of

ηt. The ARSV model is obtained from equations 1 and 2 by imposing the restriction

d = 0.
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Parameters
φ σ σ2

η d

ARSV FTSE-100 0.994 0.003 0.007
Russell 0.995 0.003 0.010
S&P 500 0.996 0.002 0.007

ARLMSV FTSE-100 0.968 0.003 0.001 0.467
Russell 0.810 0.003 0.004 0.660
S&P 500 -0.795 0.002 0.098 0.874

Table 7: Estimates of the stochastic volatility models.

Table 7 reports the stochastic volatility models parameter estimates. The estimate

of σ is σ̂=exp{0.5 µ̂ + 0.5 E(log ǫ2t )} where µ̂ is the sample mean of log(y2
t ), and

assuming the normality of errors we have that E(log ǫ2t ) = −1.27 (see Zaffaroni,

2005). We also observe that the volatility persistence implied is very high, inducing

that the effects of shocks to the conditional variance take time to dissipate. Remind

that in the case of the ARSV, the persistence is only given by φ, and in the case of

the ARLMSV it is given by φ and d.

3.2 Forecasting

The main aim of this subsection is to highlight the volatility forecasting methodology.

Thus, and concerning the GARCH-type models, we start by eliciting the dynamics

of the one-step-ahead conditional variance. With the idea that a GARCH(1,1) model

can be written by recursive substitution as a ARCH(∞), the multi-step forecast of

the conditional variance based upon the available information at t is

σ2
t+k|t = σ2 + (α + β)k−1

(

σ2
t+1|t − σ2

)

,

where σ2 (the unconditional variance) is equal to σ2 = γ (1 − α − β)
−1

and it is

assumed that (α + β) < 1 in order to guarantee that σ2 exists and the multi-step

forecast of the conditional variance converges to the unconditional variance at an

exponential rate fixed by α+β (see Andersen et al., 2005). If instead of a GARCH(1,1)

we have a FIGARCH(1,d,1), the actual conditional variance forecasts are given by

σ2
t+k|t+k−1 = γ (1 − β)

−1
+ λ (L) σ2

t+k−1|t+k−2,

with σ2
t+k|t+k−1 ≡ ε2

t for k < 0, λ (L) ≡ 1−(1 − βL)
−1

(1 − αL − βL) (1 − L)
d
, whose

coefficients are computed from the following expressions:

λ1 = α + d, λj = β λj−1 +

[

j − 1 − d

j
− (α + β)

]

δj−1, j = 2, 3, . . .

and δj ≡ δj−1 (j − 1 − d) /j. Note that the δj ’s are the coefficients in the Maclaurin

series expansion of (1 − L)d (see Andersen et al., 2005).

With respect to stochastic volatility, first, we have to estimate ht based on the full

sample. To this end, we use a state-space smoothing algorithm (Kalman filter) that

leads to the minimum mean square linear estimator (MMSLE) of ht, (see Harvey and
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Shephard, 1993; Harvey, 1998). The method is based on transforming equation (1)

to obtain

w = k 1 + h + ξ, (3)

where w is a T × 1-vector that contains the observations of log y2
t , t = 1 . . . , T , 1 is

a T × 1-vector of ones, ξ is a T × 1-vector containing log ǫ2
t −E(log ǫ2t ), t = 1, . . . , T ,

and k = log σ2 + E(log ǫ2t ). Under the assumptions that ht is stationary and ht and

ξt are uncorrelated, the covariance matrix of w is V = Vh + Vξ, where Vh and Vξ

are the covariance matrices of ht and ξt, respectively. Hence, the MMSLE of ht, in

matrix notation, is given by

h̃ = Vh V−1w + k (I − Vh V−1)1, (4)

where I is the identity matrix T×T . Moreover, since the ξt’s are serially uncorrelated,

Vξ = σ2
ξ I, where σ2

ξ is the variance of ξt. Then, equation (4) can be written as

h̃ =
(

I − σ2
ξ V−1

)

w + k σ2
ξ V−1 1,

and k can be estimated by the sample mean of log y2
t (see Harvey, 1998).2 Yajima

(1988) showed that there is only a slight loss of efficiency if the mean is used instead

of the GLS estimator. Since the matrix V is a Toeplitz matrix, we have implemented

the Trench algorithm described in Zohar (1969) to invert it.

Forecasting the log y2
t , for t = T + 1, ..., T + l, implies for the stationary case that

w̃l = RV−1w + k(Ĩ − RV−1)1,

where Ĩ is an l × T -matrix defined in blocks in the following way:

Ĩ =











1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
...

0 0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0











,

w̃l is a l×1-vector containing the forecasts of log y2
t , for t = T +1, ..., T +l, and R is a

l×T -matrix of covariances between wl and w. The forecasts of σ2
T+j , for j = 1, ..., l,

are obtained by taking the exponential of the elements of wl and multiplying them

by σ̃2 = T−1
∑T

t=1 ỹ2
t , where ỹt = yt exp(−h̃t/2).

3.3 MCRR Methodology

Capital risk requirements, given by the percentage of the initial value of the position

for 95% coverage, are estimated for 1, 5, 10, 30, 90 and 180 days investment horizons.

To this end, we generate 20000 paths of future values of the price series with the help

of the parameter estimates, the disturbances obtained by sampling with replacement

from the iid standardized residuals (iid bootstrap), and the multi-step ahead volatil-

ity forecasts. The maximum loss over a given holding period is then obtained by

computing

Q = (P0 − P1)n,

2Harvey (1998) showed that if ht is not stationary, we should differentiate equation (3) and then
estimators of the first differences of ht can be calculated from an analogous equation to equation (4).
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where n is the number of contracts, P0 is the initial value of the position and P1 is the

lowest simulated price (for a long position) or the highest simulated price (for a short

position) over the period. We assume that the futures position is opened on the final

day of the sample (see Brooks et al., 2000; Brooks, 2002). If the number of contracts

is one, without loss of generality, we can write Q
P0

=
(

1 − P1

P0

)

for a long position,

and Q
P0

=
(

P1

P0
− 1

)

for a short position. Note that, since that P0 is constant, the

distribution of Q only depends on the distribution of P1.

In this paper we proceed as in Hsieh (1993) assuming that simulated prices are

lognormal distributed since this hypothesis is frequent in the finance literature. Con-

sequently, the maximum loss for a long position over the simulated days is given by

Q/P0 = 1−exp(cα s+m), where cα is the α×100% percentile of the standard normal

distribution and s and m are the standard deviation and mean of the ln (P1/P0), re-

spectively. The analogous for a short position is given by Q/P0 = exp(c1−α s+m)−1,

where c1−α is the (1−α)× 100% percentile of the standard normal distribution (see

Brooks, 2002).

The confidence intervals for the MCRRs are obtained as the 95% percentile intervals

estimated by iid bootstrap. For each model we estimate the parameters, we forecast

the volatility and we keep the standardized residuals. Each value of the MCRR is

obtained from 200 re-samples of the standardized residuals, proceeding as described

above, and the confidence intervals are computed from 1000 estimated MCRR values.

We choose the percentile intervals because it is possible to obtain a better balance

in the left and right sides using the empirical distribution of the MCRRs instead of

the underlying normal distribution (Efron and Tibshirani, 1993, chapter 13). The

confidence intervals not only allow us to determine if the differences in the MCRRs

are significant for the conditional and unconditional approaches, but they also give

us an idea about the sample dispersion in the MCRR estimates.

4 Unconditional Approach: Moving Block Bootstrap

We now proceed to compute the unconditional density of the returns series. Instead

of using the iid bootstrap technique of Efron and Tibshirani (1993), as it was done

by Hsieh (1993) and Brooks et al. (2000), we apply the moving block bootstrap (see

Lahiri, 2003) on the observed price changes directly. We have seen in Section 2 that

the return series are not iid mainly due to the existence of non-linear dependence.

In fact, the autocorrelation functions of the squared returns are strongly significant.

On the other hand, we also find that the returns of the three series present a weak

dependence structure confirmed by the rejection of the null hypothesis of the Ljung-

Box test. These two findings lead to the rejection of the iid hypothesis and to the

inadequacy of the iid bootstrap.

In order to select the block size we have run a pilot experiment, following the algo-

rithm described below. First, we simulate a series of size T from a GARCH model

(we have seen in Section 3 that this model generates residuals that are iid for the

three series, and consequently, it is a good specification for the financial returns) and

we obtain the “true values” of the 2.5 and 97.5 percentiles (estimators of the VaR

for long and short positions, respectively) as the mean values of 10000 realizations
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of the simulated series. Second, we perform a moving block bootstrap of size b. For

this, we select M realizations of the simulated series and a block size b. For each

realization, we split it in blocks of size b and reconstruct it B times to obtain the

percentiles of the realization. Using the M computed values of the 2.5 and 97.5

percentiles we obtain a confidence interval for each one of them. Then, we evaluate

the coverage of the confidence intervals obtained in the second step, using the “true

values” of the percentiles computed previously. Finally, we repeat this procedure for

different values of the block size b and we select the value of b for which the coverage

of the confidence intervals is optimal. We have used values of T = 2049, M = 1000,

B = 200 and b = 2k, for k = 0, . . . , 11 and the best results have been obtained

for b = 2, which is a common value for the block size when the inference problem

involves higher-level parameters (see Lahiri, 2003). Once the block size has been

fixed to b = 2, the estimation of the MCRRs (see Table 8–Table 10) has been carried

out over 20000 block bootstrap replicates of each returns series and the confidence

intervals shown in Table 11–Table 13 have been obtained as explained in Section 3.3.
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(a) (b)

Figure 3: Comparison of the moving block bootstrap and the iid bootstrap methods in computing

the capital requirement for 95% coverage probability as a percent of the initial value of the FTSE-100

Index Futures for (a) Long Position and (b) Short Position.

Figure 3 shows the difference in the estimates of the MCRRs obtained with the

iid bootstrap and the moving block bootstrap, specially for a long position. This

difference reenforces the adequacy of the moving block bootstrap in our case.

5 Results

All series show larger MCRRs for short positions than for long positions, specially,

as the investment horizon increases.

As an example, for the FTSE-100 Index Futures and according to the Gaussian

GARCH(1,1), approximately 1%, 2.18% and 3.01% of the value of a long position (as

a percentage of the initial value of the position) will be enough to cover 95% of the

expected losses if the position is held for 1, 5 and 10 days, respectively. The MCRRs

for a short position are approximately 1.06%, 2.38% and 3.41%, respectively. This

finding could be explained by the existence of a positive drift in the returns over

the sample period, indicating that series are not symmetric about zero. In fact, the

mean for all series is positive over the sample period. The FTSE-100 Index Futures

MCRRs are smaller than the ones obtained by Brooks et al. (2000) for the same

12



Long Position

No. GARCH- GARCH- FIGARCH- HYGARCH-

days Gauss t-Stud t-Stud Gauss ARSV ARLMSV Uncond

1 1.00 0.98 0.88 0.89 0.90 0.77 1.26
5 2.18 2.16 2.05 1.95 2.02 1.73 2.74
10 3.01 2.99 2.96 2.71 2.88 2.46 3.82
30 4.77 4.77 5.27 4.40 5.09 4.34 6.41
90 6.46 6.62 9.28 6.70 9.15 7.74 10.08
180 6.80 7.10 12.98 8.11 13.32 11.09 12.94

Short Position

No. GARCH- GARCH- FIGARCH- HYGARCH-

days Gauss t-Stud t-Stud Gauss ARSV ARLMSV Uncond

1 1.06 1.05 0.95 0.96 0.94 0.80 1.35
5 2.38 2.37 2.28 2.17 2.14 1.82 3.14
10 3.41 3.42 3.42 3.14 3.10 2.64 4.62
30 6.06 6.16 6.75 5.79 5.79 4.90 8.78
90 10.37 10.89 14.03 11.06 11.63 9.69 17.55
180 14.16 15.39 22.80 16.92 19.12 15.48 28.07

Table 8: Minimum capital risk requirements for 95% coverage probability as a percent of the initial

value of the FTSE-100 Index Futures.

series possibly because our sample period does not include such extreme events like

the stock market crash of October 1987.

Long Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 1.21 1.23 1.29 1.09 2.00 1.57
5 2.56 2.60 2.89 2.39 4.50 3.56
10 3.55 3.62 4.24 3.44 6.34 5.00
30 5.41 5.60 7.42 5.93 11.02 8.22
90 7.11 7.67 12.45 10.44 18.52 12.62
180 7.50 8.34 16.42 15.08 25.41 16.17

Short Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 1.32 1.34 1.40 1.13 2.06 1.66
5 2.93 2.99 3.24 2.50 4.61 3.74
10 4.32 4.42 4.96 3.65 6.70 5.57
30 8.14 8.46 10.10 6.95 12.21 10.78
90 15.37 16.51 20.74 13.95 22.70 21.93
180 23.82 26.27 33.51 23.20 33.96 35.68

Table 9: Minimum capital risk requirements for 95% coverage probability as a percent of the initial

value of the Russell Index Futures.

Moreover, the MCCRs derived from block bootstrap are in general larger than those

obtained from the conditional approach. This may occur because the level of volatility

at the beginning of the MCRRs calculation period is low relatively to its historical

level (see Figure 2). Therefore, the conditional approach gives us lower volatility

forecasts than the historical average. As the holding period increases from 1 to

180 days, the MCRR estimates converge to those of the unconditional approach,

except the ones obtained with the ARLMSV model for the returns of the Russell and

S&P 500 indexes futures. Those seem to diverge from the unconditionally estimated
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MCRRs as the horizon increases (see Table 8–Table 10). The reason for this to happen

is the excessive volatility persistence implied in the ARLMSV model for these two

returns series. Note that the estimates of d (the long-memory parameter) in these

two cases lead to a non-stationary model.

Long Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 0.89 0.85 0.92 0.61 3.85 1.31
5 1.89 1.82 1.96 1.35 11.89 2.82
10 2.64 2.53 2.81 1.96 16.81 3.96
30 4.08 3.93 4.87 3.49 27.77 6.32
90 5.54 5.49 8.37 6.51 43.63 9.49
180 5.96 6.11 11.20 10.11 55.31 11.68

Short Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 0.96 0.93 1.00 0.62 4.08 1.45
5 2.20 2.15 2.29 1.39 14.08 3.23
10 3.27 3.23 3.50 2.05 20.98 4.79
30 6.20 6.27 7.23 3.85 41.00 9.39
90 12.08 12.80 15.79 7.86 85.86 19.79
180 18.83 20.88 26.74 13.45 148.95 32.84

Table 10: Minimum capital risk requirements for 95% coverage probability as a percent of the

initial value of the S&P 500 Index Futures.

0 50 100 150 200
0

0.005
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0.015

Forecasting Horizon

Figure 4: Russell Index Futures volatility forecasts: GARCH-Gauss (thick solid line), GARCH-
Stud (dotted), FIGARCH (dashdot), ARSV (dashed) and ARLMSV (thin solid line).

We also observe that the MCRRs calculated with the Gaussian GARCH are in general

higher for short investment horizons and smaller for larger investment horizons in

comparison to the ones calculated with other specifications. Moreover, the MCRRs

based upon the FIGARCH model (for the Russell and the S&P 500 indexes futures)

are larger than the ones calculated based upon the alternative models. This is due to

the low volatility forecastability of the GARCH model in larger forecasting horizons

and the high volatility forecasted by the FIGARCH model. In fact, from Figure 4 we

observe that GARCH models forecast high values for the volatility at the beginning

of the out-of-sample period that decrease exponentially with the forecasting horizon.

Table 11-Table 13 show the 95% confidence intervals for the MCRRs based upon the

unconditional and the conditional approaches. The results show that the amplitude of
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the intervals increase with the investment horizon, which makes the MCRR estimates

for longer horizons less reliable. Except for the FTSE-100 Index Futures series, the

confidence intervals for 5 or more investment days for both the GARCH and the

HYGARCH models never overlap with the ones obtained with the unconditional

density (see Brooks et al., 2000). This indicates that there is a huge difference

between the MCRRs obtained using these models and the ones obtained with the

unconditional density. This is not the case for the other conditional specifications.

Long Position

No. GARCH- GARCH- FIGARCH- HYGARCH-

days Gauss t-Stud t-Stud Gauss ARSV ARLMSV Uncond

1 [0.85, 1.14] [0.86, 1.15] [0.76, 1.02] [0.77, 1.04] [0.79, 1.03] [0.67, 0.88] [1.07, 1.48]
5 [1.89, 2.40] [1.91, 2.43] [1.78, 2.29] [1.70, 2.17] [1.78, 2.23] [1.52, 1.90] [2.41, 3.07]
10 [2.64, 3.34] [2.66, 3.37] [2.59, 3.31] [2.39, 3.04] [2.53, 3.19] [2.16, 2.73] [3.35, 4.26]
30 [4.22, 5.30] [4.22, 5.29] [4.65, 5.86] [3.90, 4.90] [4.54, 5.62] [3.87, 4.80] [5.63, 7.09]
90 [5.89, 7.34] [5.74, 7.12] [8.21, 10.31] [5.91, 7.46] [8.19, 10.10] [6.94, 8.56] [8.96, 11.26]
180 [6.27, 7.93] [5.99, 7.51] [11.49, 14.39] [7.10, 9.03] [12.00, 14.64] [9.98, 12.20] [11.41, 14.37]

Short Position

No. GARCH- GARCH- FIGARCH- HYGARCH-

days Gauss t-Stud t-Stud Gauss ARSV ARLMSV Uncond

1 [0.90, 1.20] [0.91, 1.21] [0.81, 1.08] [0.82, 1.10] [0.81, 1.07] [0.69, 0.91] [1.14, 1.59]
5 [2.11, 2.60] [2.12, 2.61] [2.03, 2.51] [1.93, 2.38] [1.90, 2.36] [1.62, 2.02] [2.73, 3.66]
10 [3.05, 3.77] [3.04, 3.77] [3.05, 3.77] [2.80, 3.46] [2.75, 3.42] [2.34, 2.91] [4.08, 5.31]
30 [5.57, 6.73] [5.47, 6.62] [6.11, 7.42] [5.24, 6.33] [5.22, 6.40] [4.43, 5.41] [7.86, 9.86]
90 [9.79, 11.86] [9.90, 11.27] [12.62, 15.38] [9.93, 12.02] [10.43, 12.82] [8.69, 10.68] [15.72, 19.34]
180[14.04, 16.74][12.88, 15.34][20.54, 25.00][15.37, 18.39][17.15, 21.10][13.90, 17.07][25.47, 30.91]

Table 11: Approximate 95% central confidence intervals for the minimum capital risk requirements

for 95% coverage probability as a percent of the initial value of the FTSE-100 Index Futures.

Long Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 [0.99, 1.40] [1.00, 1.42] [1.06, 1.50] [0.91, 1.26] [1.68, 2.41] [1.24, 1.97]
5 [2.25, 2.88] [2.29, 2.93] [2.55, 3.26] [2.12, 2.69] [3.92, 5.09] [2.97, 4.05]
10 [3.10, 3.96] [3.17, 4.04] [3.72, 4.75] [3.03, 3.84] [5.65, 7.14] [4.28, 5.71]
30 [4.79, 6.04] [4.96, 6.25] [6.62, 8.29] [5.30, 6.57] [9.94, 12.21] [7.14, 9.18]
90 [6.23, 8.02] [6.75, 8.72] [11.11, 14.00] [9.36, 11.65] [16.72, 20.40][11.20, 14.29]
180 [6.53, 8.31] [7.30, 9.35] [14.55, 18.32][13.44, 16.63][23.22, 27.61][14.27, 18.05]

Short Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 [1.14, 1.46] [1.16, 1.49] [1.22, 1.56] [0.97, 1.27] [1.77, 2.40] [1.39, 2.01]
5 [2.64, 3.21] [2.69, 3.27] [2.92, 3.56] [2.24, 2.78] [4.04, 5.16] [3.28, 4.21]
10 [3.89, 4.70] [3.98, 4.82] [4.46, 5.43] [3.27, 4.04] [5.89, 7.37] [4.95, 6.22]
30 [7.35, 8.81] [7.65, 9.16] [9.11, 10.97] [6.21, 7.62] [10.89, 13.61] [9.71, 11.84]
90 [13.92, 16.69][14.99, 17.99][18.70, 22.80][12.47, 15.40][20.06, 25.26] [19.9, 24.34]
180[22.02, 25.51][24.33, 28.32][30.38, 36.94][20.76, 25.41][30.14, 37.59][32.42, 39.46]

Table 12: Approximate 95% central confidence intervals for the minimum capital risk requirements

for 95% coverage probability as a percent of the initial value of the Russell Index Futures.

For a full evaluation of the results, we perform an out-of-sample test of the MCRRs

calculated with the selected models. By definition, the failure rate of a model is
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Long Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 [0.72, 1.21] [0.69, 1.17] [0.74, 1.27] [0.51, 0.78] [2.93, 5.19] [1.06, 1.73]
5 [1.60, 2.26] [1.54, 2.18] [1.66, 2.36] [1.16, 1.57] [9.71, 14.11] [2.38, 3.40]
10 [2.26, 3.03] [2.17, 2.93] [2.41, 3.26] [1.72, 2.21] [14.40, 19.39] [3.38, 4.56]
30 [3.54, 4.66] [3.40, 4.51] [4.23, 5.55] [3.10, 3.90] [24.95, 30.53] [5.55, 7.16]
90 [4.76, 6.21] [4.73, 6.21] [7.19, 9.33] [5.79, 7.20] [39.95, 47.41] [8.33, 10.73]
180 [5.06, 6.68] [5.22, 6.92] [9.70, 12.50] [9.03, 11.08] [50.86, 58.76] [10.19, 13.19]

Short Position

No. GARCH- GARCH- FIGARCH-

days Gauss t-Stud t-Stud ARSV ARLMSV Uncond

1 [0.83, 1.22] [0.80, 1.19] [0.86, 1.30] [0.53, 0.76] [3.06, 5.59] [1.12, 1.77]
5 [1.94, 2.43] [1.91, 2.38] [2.03, 2.54] [1.22, 1.57] [11.14, 17.54] [2.80, 3.58]
10 [2.91, 3.58] [2.88, 3.53] [3.12, 3.83] [1.81, 2.26] [17.64, 25.13] [4.23, 5.36]
30 [5.64, 6.77] [5.72, 6.84] [6.57, 7.92] [3.46, 4.24] [35.18, 47.01] [8.40, 10.33]
90 [11.08, 13.04][11.83, 13.83][14.53, 17.28] [7.09, 8.67] [73.68, 98.27] [17.88, 21.42]
180[17.42, 19.98][19.42, 22.28][24.47, 28.78][12.11, 14.70][123.87, 169.07][29.85, 35.62]

Table 13: Approximate 95% central confidence intervals for the minimum capital risk requirements

for 95% coverage probability as a percent of the initial value of the S&P 500 Index Futures.

the number of times the estimated MCRRs are inferior to the returns (in absolute

value). If the MCRR model is correctly specified, the failure rate should be equal

to the pre-specified MCRR level (in our case, 5%). Therefore, we calculate the

MCRRs for one day horizon for both long and short positions and then check if

these MCRRs have been exceeded by price movements in day t + 1. We roll this

process forward and we calculate the MCRRs for 252 days.3 In Table 14 we present

the number of violations of the MCRR estimates generated by the models and by

sampling with the moving block bootstrap from the unconditional distribution of

returns. For both the FTSE-100 and the S&P 500 indexes futures the number of

violations (in percentage) never exceeds the 5% nominal value. This indicates that

the models generate ”slight” excessive MCRRs. The best performance is for the

ARSV model that registers failure rates closer to the nominal 5% level. Contrarily,

if the models underperform in the failure rate (reject less than the nominal level) for

the previous series, they overperform (reject more than the nominal level) with the

returns of the Russell Index Futures. In the case of the ARLMSV model and for the

Russell and S&P 500 indexes futures, we have not calculated the failure rate due to

its bad performance in calculating the MCRR estimates.

Since the calculation of the empirical failure rate defines a sequence of ones (MCRR

violation) and zeros (no MCRR violation), we can use the well known likelihood ratio

test for a proportion in order to test H0 : f = 5% vs. H1 : f 6= 5%, where f is the

theoretical failure rate. We apply this test to the failure rates for long and short

positions. Table 15 reports the p-values of this test. The results evidence that the

ARSV model is the only model for which we never reject the null hypothesis that

the theoretical failure rate is equal to the nominal level. We also observe that among

3For a long position the failure rate is obtained as the percentage of negative returns smaller
than one day ahead MCRRs for long positions. Analogously, for a short position the failure rate
is estimated as the percentage of positive returns larger than one day ahead calculated MCRRs for
short positions (see Giot and Laurent, 2003, 2004)
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FTSE-100 Russell S&P 500

Unconditional

GARCH-Gauss

GARCH t-Stud

FIGARCH t-Stud

HYGARCH-Gauss

ARSV

ARLMSV

L. Position S. Position

1.6% 0.8%
4.0% 2.4%
4.0% 2.4%
4.0% 2.0%
4.0% 2.4%
4.0% 3.2%
1.6% 0.4%

L. Position S. Position

8.3% 7.1%
6.3% 5.6%
6.3% 5.6%
6.7% 5.6%

* *
7.1 % 7.1%

* *

L. Position S. Position

2.8% 2.8%
3.2% 4.0%
4.0% 4.0%
3.2% 3.6%

* *
3.2% 4.8%

* *

Table 14: Results of the out of sample test. Estimates of the failure rate. The MCRR’s are

computed to cover the 95% of expected losses. The * means that we have not calculated the failure

rate for these models.

the GARCH-type models, the FIGARCH has the worst performance, the GARCH

models perform quite well for the Russell Index Futures returns, and the GARCH

with errors following a t-Student distribution improves upon the Gaussian GARCH

for the S&P 500 Index Futures returns.

FTSE-100 Russell S&P 500

Unconditional

GARCH-Gauss

GARCH t-Stud

FIGARCH t-Stud

HYGARCH-Gauss

ARSV

ARLMSV

L. Position S. Position

0.000 0.000
0.209 0.004
0.209 0.004
0.209 0.000
0.209 0.004
0.209 0.052
0.000 0.000

L. Position S. Position

0.029 0.091
0.198 0.339
0.198 0.339
0.140 0.339

* *
0.091 0.091

* *

L. Position S. Position

0.017 0.017
0.052 0.209
0.209 0.209
0.052 0.116

* *
0.052 0.441

* *

Table 15: p-values for the null hypothesis f = α, with α =5%. The * means that we have not

calculated the failure rate for these models.

6 Conclusions

This paper compares three different approaches (unconditional density, conditional

heteroscedastic and stochastic volatility models) to calculate minimum capital risk

requirements for long and short positions for three indexes futures. We calculate the

MCRRs for 1, 5, 10, 30, 90 and 180 days investment horizons and we find that the

volatility forecastability decreases with the increase of the investment horizons, which

is reflected by the range of the MCRRs confidence intervals (see Christoffersen and

Diebold, 2000, for similar conclusions). The results show that MCRRs based upon

GARCH-type models with errors that follow a normal and/or a t-Student distribu-

tion underperform in terms of failure rate. On the other hand, the autoregressive

stochastic volatility model is able to produce more accurate estimates. This paper

also shows that fractional integrated stochastic volatility models produce extreme

volatility persistence that conduces to very large values of the MCRRs and, conse-

quently, to a wasting of valuable resources to those financial institutions that use or

plan to use these models to calculate minimum capital risk requirements.
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out the estimation of the ARLMSV model.
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