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Abstract

The market for tranched credit products (CDOs, Itraxx tranches) is
one of the fastest growing segments in the credit derivatives industry.
However, some assumptions underlying the standard Gaussian one-
factor pricing model (homogeneity, single factor, Normality), which
is the pricing standard widely used in the industry, are probably too
restrictive. In this paper we generalize the standard model by means
of a two by two model (two factors and two asset classes). We as-
sume two driving factors (business cycle and industry) with indepen-
dent t-Student distributions, respectively, and we allow the model to
distinguish among portfolio assets classes. In order to illustrate the
estimation of the parameters of the model, an empirical application
with Moody’s data is also included.

Keywords: Collateral Debt Obligations, Factor Models, Probit-Logit
Models

Journal of Economic Literature classification: G13, C35, C51
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1 Introduction

The market of credit tranched products is one of the fastest growing segments
in the credit derivative industry. As an example, Tavakoli (2003) reports an
increase in market size from almost $19 billions in 1996, to $200 billions in
2001. Recent reports estimate market size to be $20 trillions in 2006.1 As
a result, an increasing attention of the financial sector audience has focused
on the pricing of these new products.

The development of pricing models for multiname derivatives is relatively
recent. As was pointed out by Hull and White (2004), the standard approach
on the credit risk literature tends to subdivide the pricing models for multi-
name derivatives in two groups: structural models, which are those inspired
in Merton’s (1974) model or Black and Cox (1976), or the intensity based ap-
proach, like Duffie and Garlenau (2001). Roughly speaking, their differences
remain on how the probability of default of a firm is obtained: using their
fundamental variables - assets and liabilities - as in the case of the struc-
tural models, or using directly market spreads, as in the intensity models
approach. Up to a point, the structural based approach has been extensively
implemented by the financial sector, maybe due to the extended use of indus-
trial models like Vasicek (1987) or Creditmetrics model of Gupton, Finger
and Bathia (1997).2 However, recent academic literature analyze the prices
of CDO tranches using intensity models, as Longstaff and Rajan (2006). We
refer to Bielecki and Rutkowski (2002) for a general presentation of structural
and intensity based models.

This paper presents an extension of the standard gaussian model of Va-
sicek (1991), in line with the structural models literature. Basically, Vasicek’s
(1991) model assumes that the value of a firm is explained by the weighted
average of one common factor for every asset plus an independent idiosyn-
cratic factor. By means of linking the realization of one systematic factor
to every firm’s values, Vasicek (1991) provides a simple way to reduce the
complexity of dealing with dependence relationships between firms. Gibson
(2004) or Gregory and Laurent (2004, 2005) provide additional insights about
risk features of this model.

1See BBA Credit Derivatives Report (2006).
2It is worth mentioning that the appearance of techniques within the Structural frame-

work that diminishes the traditional high computing cost of multiname credit derivatives
(see Andersen, Sidenius and Basu (2003) or Glasserman and Suchitabandid (2006), among
others) has contributed to the widely usage of structural models.
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Our approach relies on the connection between the changes of value of a
firm and the sum of two factors: systematic and idiosyncratic. Our approach
overcomes the limitations of the standard Gaussian model: the different areas
or regions of correlation that could compose a credit portfolio (see Gregory
and Laurent, 2004). This article presents a model that captures some of
the facts found in real data. Motivated by this fact, this article proposes an
extension to the two Gaussian asset classes as in Schönbucher (2003). Our
paper extends the existing literature in three ways: firstly, the assumption of
asset homogeneity is relaxed by introducing two asset classes. Secondly, we
consider an additional source of systematic risk by including another common
factor related with industry factors. Finally the normality assumption on
common factors is relaxed.

This paper is divided as follows: Section 2 presents the model. Section 3
studies the sensitivity to correlation and to changes in credit spreads. Sec-
tion 4 addresses the econometric modelling. Finally, some conclusions are
presented on section 5.

2 The model

To motivate our model we discuss some empirical features found in CDO
data that are not captured by the standard Gaussian models and propose an
extension to the asset class models posited by Schönbucher (2003). Notation
is taken from Mardia, Kent and Bibby (1979).

2.1 The Standard Gaussian model

The Gaussian model introduced by Vasicek (1991) has become a standard
in the industry. Basically, it addresses in a simple and elegant way the key
input in CDOs price: the correlation in default probabilities between firms
affects the price of the CDO.

Usually a CDO is based on a large portfolio of firms bonds or CDS.3 Let
Vn×1 (subscript denotes matrix dimension) be a random vector with mean
zero and covariance matrix Σ. As standard notation in multivariate analysis,
we will define the p-factor model as

Vn×1 = Λn×pFp×1 + un×1 (1)

3CDO tranches of NYME are composed by 100 firms.
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where Fp×1 and un×1 are random variables with different distributions.
The interpretation of the model (1) is the following:

• The vector Vn×1 represents the value of the assets for each of the
individual n-obligors.

• The vector Fp×1 captures the effect of systematic factors - business
cycle, industry, etc. - that affect to the whole economy.

• By contrast, un×1 represents the idiosyncratic factors that affect each
of the n-companies.

• Finally, Λn×p is called the loading matrix, and determines the correla-
tion between each of the n-firms.

By assumption, we have that

E(F) = 0, V ar(F) = I, (2)

E(u) = 0, cov(ui,uj) = 0, i 6= j, (3)

and

cov(F,u) = 0 (4)

where I is the identity matrix.
We will also assume that vector un×1 is standardized to have zero mean

and unit variance.
Using a simplified form of equation (1), Vasicek (1991) assumes that

firm’s values in the asset pool backing the CDO are affected by the sum of
two elements: on one hand, a common factor to every firm which represents
the systematic component represented by the factor F ; on the other hand,
an idiosyncratic component modelled by a noise εi. Both are assumed to be
standard N(0,1) random variables

Vi = ρi1F1 +
√

1− ρi1
2εi, with i ≤ n (5)

By means of equation (5) it is possible to capture the correlation between
different firms in a portfolio. As equation (5) reveals, Vasicek (1987) assumes
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that correlation coefficient is homogeneous for each pair of firms.4 Addition-
ally, the simplicity of their assumptions permits a fast computation of CDO
prices under this framework.

As an immediate consequence of equation (5), a further step is given by
generalizing the number of factors that affects firms values. Thus, Lucas,
Klaassen, Spreij and Staetmans (2001) consider the following factor model

Vi =

p∑
j=1

ρijFj +

√√√√1−
p∑

j=1

ρij
2ui, with i ≤ n (6)

where Vi represents the value of the i-company, Fj, j = 1, ..., p capture the
effect of p-systematic factors and ui is the idiosyncratic factor associated
to the i-firm. Needless to say, assumptions on the distribution of common
and idiosyncratic factors (F and u, respectively) could be imposed. Hull
and White (2004) also includes an extension to many factors, including the
t-Student distributed case. Finally, Glasserman and Suchitabandid (2006)
implements in a recent paper numerical approximations to deal with these
multifactor structures within a Gaussian framework.

With the purpose of getting intuition about the behaviour of these dif-
ferent models, Figure 1 exhibits the loss distribution generated by three al-
ternative models:

• The standard Gaussian model (Vasicek, 1991),

V G
i = ρi1F1 +

√
1− ρi1

2εi, and F1, εi ∼ N (0, 1)

• The one factor double-t model (Hull and White, 2004),

V S
i = ρi1F1 +

√
1− ρi1

2εi,

where F1 and εi follows t-Student distributions, with 6 degrees of free-
dom.

• The two-factor Gaussian model (Hull and White (2004), or Glasserman
and Suchitabandid, 2006),

V DG
i = ρi1F1 + ρi2F2 +

√
1− ρi1

2 − ρi2
2εi

with F1, F2, εi ∼ N (0, 1) and ρ2
i1 + ρ2

i2 < 1.

4For a detailed exposition of assumptions in structural models see Bielecki and
Rutkowski (2002).
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As we will see later, the loss distribution plays a role crucial in the CDO
pricing. Different distributions are computed for a portfolio of 100 firms, with
constant default intensities of 1% per year. Correlation parameters are 0.3
for all models, except for two-Gaussian factor, with 0.1 and 0.3. The double-
t model considers a common and idiosyncratic factors each distributed as
t-Student with 6 degrees of freedom. The picture shows that, under the
same correlation parameters, the Standard Gaussian model assigns lower
probability to high losses (see for instance the case of 20 firms) than the
double-t model. By considering an additional factor, as in the 2-Gaussian
case, the probability of high losses is substantially higher than in previous
cases.

[INSERT FIGURE 1 AROUND HERE]

Table 1 presents the spreads (in basis points) of a 5-years CDO portfolio
composed by 100 firms. The individual default probabilities are constant and
fixed at 1%. The recovery rate is 40%, a standard in the market. Finally,
the different correlation parameters are displayed in the table. We remember
that all spreads are obtained considering only one asset class. As Table
1 shows, results are consistent with the loss distribution lines presented in
Figure 1: the double t-Student distribution gives prices systematically bigger
than those obtained for the Standard Gaussian model, keeping constant the
correlation. In the 2 Gaussian factor model prices, we observe a mixture of
effects due to different combinations of correlations in the portfolio.

[INSERT TABLE 1 AROUND HERE]

2.2 A 2-by-2 model

Generally, as considered by Schonbücher (2003) or Lando (2004), a credit
portfolio is composed by different asset classes or buckets, attending to cri-
teria of investment grade, non-investment grade assets or industry, among
others. The exposure of a credit portfolio to a set of common risk factors
could be significant between groups, but should be homogeneous within them.
In line with this, the idea of two groups of assets treated in different ways is
a more realistic assumption.

As was pointed out by Gregory and Laurent (2004), the one-factor model
imposes a limited correlation structure on the credit portfolio, which is not
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realistic. Initially, one can argue that increasing the number of factors could
be enough to capture a richer structure of correlation within the portfolio.
However, this is not yet consistent with the idea of heterogeneity correlation
among groups, due to the fact that every asset is exposed to the same degree
of correlation. By contrast, a richer correlation structure could be imposed
in the portfolio if these two groups are treated in different ways.

To illustrate these ideas, Figure 2 shows the yearly percentage default
rates for investment and non-investment grades. Rates for investment data
have been multiplied by ten with the intention of clarifying the exposition.
Figure 2 reveals that correlation between these two assets groups varies
through time: periods with high degree of default in non-investment grade
assets do not match with high default rates for investment grade. With refer-
ence to this idea, Figure 3 displays the correlation coefficients computed using
a moving window of five years. This also provides some additional insights
on the degree of correlation between asset classes: the picture shows how the
correlation among different groups changes during the sample period, from
negative correlation (1975, 1977 or 1990), to zero (1993, 1996) or highly
positive (1982, 1995 or 2000). These differences in default rates through
time could reveal the existence of an idiosyncratic component between asset
classes. This fact could support the idea of modelling in a different way the
behaviour of different assets.

[INSERT FIGURES 2 AND 3 AROUND HERE]

This article considers a family of models that take account the existence of
these different asset classes or regions, in line with the suggestions of Gregory
and Laurent (2004). We analyze a model in the line of the two assets-two
Gaussian factor model of Schonbücher (2004), where no distinction is made
between the obligors which belongs to the same class. Our model generalizes
that posited by Schonbücher (2004) by considering a t-Student distribution,
which assigns a higher probability to high default events. Empirical evidence
seems to go in this direction.5 Our work contributes to the existing literature
in the analysis of these asset class models. To the best of our knowledge, no
similar studies has been reported yet in this direction.

The model we propose is a two-by-two factor model as follows6

5See, for example, Mashal and Naldi (2002).
6For the sake of brevity, we omit the graph of th loss distribution implied by this model.
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Vi1 = α11F1 + α12F2 + β1ui1

Vi2 = α21F1 + α22F2 + β2ui2 (7)

where

• Vi1, Vi2 (i < n) represents the value of the i-company which belongs to
the different asset class

• Fj, j = 1, 2 captures the effect of systematic factors - business cycle and
industry - with independent t- distributions with nj degrees of freedom,
and

• ui1, ui2 are idiosyncratic factors distributed also with ni1, ni2 degrees
of freedom, respectively.

Under the assumptions of factor models, Fj are scaled to have variance

1, then α11 = ρ11

√
n1−2

n1
and so on. Idiosyncratic errors are also scaled, for

instance β1 =
√

ni1−2
ni1

√
1− α2

11 − α2
12. Finally, we assume the same default

barriers Ki1, Ki2 for the obligors of the same class.
Needless to say that the model could be easily generalized to the case of

m-asset classes, as follows:

Vi,m =

p∑

h=1

ρmhFh + ui,m

√√√√1−
p∑

h=1

ρmh
2

where Vi,m represents the value of the i-company which belong to the m-asset
class, Fj, j = 1, ..., p capture the effect of systematic factors and ui,m is the
idiosyncratic factor corresponded to i-firm of the m−asset class. Generally
speaking, assumptions relying on distribution factors or more asset classes
could also be proposed. However, a trade-off between accuracy, parsimony
and computing efficiency must be considered.

2.3 Conditional Default Probabilities

Without loss of generality we omit the subscript that refers to the i-firm for
the ease of exposition. We want to study the probability of default for the
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i-firm which belongs to an asset class m, with m = 1, 2,

P [Vm ≤ K|F = f ] = P

[
um ≤ K − αF

βm

|F = f

]
= Tm

(
K − αf

βm

)

where Tm denotes the distribution function of a t-student with nm degrees
of freedom for the i-firm, and F, α are the common vector factors and their
coefficients, respectively.

It is usual to calculate the probability of having k default events, condi-
tional to realization of vector factor F as

P [X = k|F] =
k∑

l=0

b (l, N1, T1) b (k − l, N2, T2)

where b (l, N, T ) denotes the binomial frequency function, which gives the
probability of observing l successes with probability T , where N represents
the number of firms which belong to each asset class. In the same manner,
the unconditional probability of k default events is obtained considering all
possible realizations of factors F

P [X = k] =
k∑

l=0

∫ +∞

−∞

∫ +∞

−∞
b (l, N1, T1) b (k − l, N2, T2) ψ (f) df

where ψ (f) denotes the probability density function of F.
Finally, the total failure distribution is just obtained as the sum of all the

defaults up to level k,

P [X ≤ k] =
k∑

r=0

P [X = r]

=
k∑

r=0

r∑

l=0

∫ +∞

−∞

∫ +∞

−∞
b (l, N1, T1) b (r − l, N2, T2) ψ (f) df (8)

Lando (2004) refers to this problem as a different buckets problem in sense
that by means of multinomial distributions we compute the total loss distri-
bution of the portfolio. Our approach to this point would be the computation
of this set of bucket probabilities but we will adopt a different approach.
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2.4 Loss distribution

As is pointed out in Lando (2004), calculation of multinomial expressions
like (8) is burdensome. Instead of computing (8) by brute force, we will use
a simple idea due to Andersen, Sidenius and Basu (2003) that could improve
the efficiency in terms of computing cost.7

Andersen, Sidenius and Basu (2003) provides an efficient algorithm which
has become widely used by the industry. Roughly speaking, the main idea
behind is to observe what happens to the total loss distribution of a portfolio
when we increase its size by one firm.

Consider a portfolio that includes n credit references and let pn (i|f) be
the probability of default of i firms in this portfolio conditional on factors f .
Let qn+1 (f) be the default probability of an individual firm that is added to
this portfolio. These two probabilities are conditional on the realization of
the common factor vector f .

Consider the total Loss Distribution (LD) in this portfolio. Intuition says
that the probability of i-defaults in this portfolio - conditional on f - can be
written as

LD (i|f) = pn(i|f)× (1− qn+1 (f)) + pn(i− 1|f)× qn+1(f), 0 < i < n + 1

where the first term reflects that default is due to i-firms included in the initial
portfolio while the new reference (just included in the portfolio) survives.
In a similar way, the second term reflects the new firm (just included in
the portfolio) defaults while the other i − 1 defaulted firms were previously
included in the original portfolio.

Moreover, for the extreme cases of default firms, we have

pn+1(0|f) = pn(0|f)× (1− qn+1 (f))

pn+1(n + 1|f) = pn(n|f)× qn+1(f)

Then, taking into account the last firm just included in the portfolio, these
equations reflect that no firm defaults or all of them default, respectively.

As an example, consider an initial portfolio including two firms. Adding

7Their contribution has been also explored and extended in Hull and White (2004).
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a third firm, the total default probabilities are given by

p3 (0|f) = p2 (0|f) (1− q3 (f))

p3 (1|f) = p2 (1|f) (1− q3 (f)) + p2 (0|f) q3 (f)

p3 (2|f) = p2 (2|f) (1− q3 (f)) + p2 (1|f) q3 (f)

p3 (3|f) = p2 (2|f) q3 (f)

Using this iterative procedure, we can compute the unconditional total Loss
Distribution by considering all possible realizations of f .8

3 Results for 2-by-2 model

In this section we present some results of the model (7). Firstly, we discuss
the spreads obtained using the two-by-two approach. Secondly, we give an
approach useful for cases of high degrees of freedom based on Cornish-Fisher
expansions, which is useful in terms of computing cost.

3.1 Numerical results

To give some results of model (7), we analyze different cases for a two asset
classes, 5-year CDO with 100 firms with quarterly payments. We also assume
that the recovery rate is fixed and equal at 40%. Risk-neutral default indi-
vidual default probabilities are fixed at 1% and 5% for assets which belong
to class 1 and 2, respectively. For ease of explanation, the size of each asset
class in the portfolio is the same (50% for each one). More results concerning
the size of the portfolio will be provided in Section 4.

Table 2 displays the main results obtained. First row corresponds to the
three simulated base cases: the standard Gaussian model9 with one factor,
two asset classes; the two assets-two Gaussian factor; finally, the two assets-
two t-Student factors.10 t-Student distributions have been fixed at 5 degrees
of freedom for idiosyncratic and systematic factors. Second row displays the
correlation parameters of each asset class with both factors. For example,

8See Andersen, Sidenius and Basu (2003) or Gibson (2004) for more details.
9Standard Gaussian model has been computed using a Gauss-Hermite quadrature with

8 nodes.
10t-Student simulations have been computed using a Simpson’s quadrature with 25

points.
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0.1/0.3 in the two Gaussian case refers to a correlation of 0.1 (0.3) for ele-
ments of class 1 (2) with the two systematic factors. In line with Gregory and
Laurent (2004), our idea is to check the behaviour of the CDO to a portfolio
exposed to two different degrees of correlation.

[INSERT TABLE 2 AROUND HERE]

All the simulations have been carried on for different tranches values.
Looking at the riskier tranche (equity tranche), we observe that, for the
same degree of correlation, its spread is systematically bigger for the two t-
Student case than for the 2 Gaussian factors. One conclusion that arises from
Table 2 is that the two assets-one Gaussian factor spreads for equity tranche
are close to those values obtained for two assets-two t-Student factors.

As expected, the same does not apply for mezzanine tranches: the addi-
tion of more factors provides more weight to extreme default events, which
results in an increase in spread of mezzanine tranches. The same conclusions
apply to senior tranche.

3.2 Approximation for n infinite

The asymptotic relationship between a t-distributed random variable and
a normal random variable by means of the Cornish-Fisher expansion could
be interesting for cases of big degrees of freedom. Shaw (2006) provides
the Cornish-Fisher expansion for a t-distributed random variable, with zero
mean and unit variance, in terms of a standard normal random variable
distribution. This reduces considerably the computational time as, in this
case, it is possible to use a double Gauss-Hermite quadrature, instead of a
Simpson quadrature. Basically, Shaw (2006) provides the relationship

s = z +
1

4n
z

(
z2 − 3

)
+

1

96n2
z

(
5z4 − 8z2 − 69

)
+ ... (9)

where s is the t-distributed random variable with n degrees of freedom, and
z is a standard normal random variable. To check the accuracy of the ap-
proximation (9), Table 3 displays the spreads (in basis points) for different
tranches in a two asset classes, 50-named CDO with quarterly payments un-
der different correlation parameters for various degrees of freedom. As in the
previous section, correlation parameters correspond to factors of each asset
classes. As in previous examples, risk neutral default probabilities have been
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also fixed at 0.1 and 0.3 for each asset class. The recovery rate is fixed at
40%.

[INSERT TABLE 3 AROUND HERE]

Basically, two general models have been computed: two Gaussian factors
and a two t-Student factor. The last column refers to the two t-Student
factor approximation using the Cornish-Fisher expansion. Correlation co-
efficients and degrees of freedom for each one are displayed in the table.11

The Gaussian case is presented to get intuition of how far we are from the
asymptotic result. As expected, the larger the degree of freedom, the higher
the accuracy of the results. The differences between the equity tranche range
from 20% for 10 degrees of freedom to 12% for a 15 degrees of freedom case.
In a similar way, considering the mezzanine cases, differences go from 21%
to 11%. There are no substantial changes in the case of senior tranche. It
is worth to remember that computations under the exact t-Student distribu-
tion have been done using a numerical quadrature and, so, they are exposed
to numerical errors.

4 Sensitivity analysis

Now, we are interested in the prices of the CDO under two different scenarios:
changes in portfolio size and correlation. Firstly, we present some standard
measures in risk management as the Value at Risk and the Conditional Value
at Risk ones. Secondly, we analyze the sensitivity of different tranches to
changes in correlation.

4.1 VaR and CVaR

Value at Risk (VaR) and Conditional Value at Risk (CVaR) are usually
taken as representative risk measures for a portfolio. VaR is defined as the
percentile of the distribution of portfolio losses given a certain level of confi-
dence.12 Artzner, Delbaen, Eber and Heath (1999) enumerates some limita-
tions of the VaR measure and discuss some interesting properties of a proper
measure of risk. According to this, we also include the CVaR measure,13 de-

11The two Gaussian factor model is equivalent to a two t-Student factor model with
infinite degrees of freedom.

12See Duffie and Pan (1997) for details.
13This measure was posited by Acerbi, Nordio and Sirtori (2001).
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fined as the expected loss in a portfolio conditional to a certain loss threshold
u, that is,

CV aRu = E [x|x > u]

where the sign of the inequality has been changed because we are working
directly with the total loss distribution.

Table 4 includes the VaR and CVaR measures for a 100-named CDO
composed by two different risky asset classes under different correlation pa-
rameters and different proportions in the portfolio. The (yearly) risk-neutral
default probabilities for each obligor of asset class 1 have been fixed at 0.01,
and 0.05 for those which belong to asset class 2. For the sake of simplicity, all
the factors - systematic and idiosyncratic - in the model (7) have been fixed
at 5 degrees of freedom. The first column includes the correlation coefficients
corresponding to both factors of each class (i.e. 0.1/0.3 means a correlation
coefficient of 0.1 (0.3) for both factors in asset class 1 (2)). Correlation co-
efficients equal to zero refers to independence case between obligors. With
the purpose of analyze the response of the loss distribution generated by
the model (7) with respect to different sizes of the portfolio, the remaining
columns show different percentage sizes of the portfolio. The first term refers
to the portfolio percentage of class 1, and so on.

[INSERT TABLE 4 AROUND HERE]

Needles to say that two main results arise form Table 4. Firstly, the
higher the correlation the higher expected extreme loss as measured by VaR
and CVaR, as expected. Secondly, an increase in the percentage of the risky
asset (asset class 2) produces an increase in the losses of the portfolio.

4.2 Sensitivity to correlation

To analyze the sensitivity to correlation of the model (7) we have created
a CDO based on a portfolio of 50 names. Individual default probabilities
have been fixed at 1% for asset class 1 and 5% for asset class 2, respectively.
To reduce the computational cost of the implementation, we have set the
distribution of the two systematic factors as t-Student ones with 15 degrees
of freedom. We have used the results of Shaw (2006) developed in Section
2.5, without loss of generality. All simulations have been performed using a
double Hermite quadrature with 64 nodes. Idiosyncratic factors have been
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fixed at 5 for each asset class. To search differences in the portfolio com-
position, we have applied our study to two different sized portfolio: equally
weighted portfolio (50% asset class 1, 50% asset class 2) and risky portfolio
(25% asset class 1, 75% asset class 2).

Figures 4 and 5 display the spreads obtained under different sets of corre-
lations for the equally weighted and risky portfolios. In general, the convexity
pattern of the equity-senior curves remains constant in both cases, which is
consistent with the preference (aversion) for risk on equity (senior) tranche
investors, as expected.

Regarding changes in correlation, Figure 4 reveals that correlation with
risky asset classes are, by large, responsible of changes in the value of equity
spreads. When it comes to the risky portfolio (Figure 5), it is interesting to
observe how changes produced by the correlation in asset class 1 or 2 (see
Equity and Mezzanine tranches) produce almost the same effects.

[INSERT FIGURE 4 AROUND HERE]

As it is also expected, an increase in global correlation raises the spreads
of senior tranche. A higher correlation increases the probability of big losses,
which is reflected in the senior spreads. This feature could be also mentioned
(in a different scale) to the case of the risky portfolio in Figure 5.

[INSERT FIGURE 5 AROUND HERE]

5 Econometric Framework

This section focuses on the parameters estimation of the model (7). As
pointed out in Embretchs, Frey and McNeil (2005), the statistical estimation
of parameters in many industrial models are simply assigned by means of
economic arguments or proxies variables. We will develop an exercise of
formal estimation using some well known econometric tools as logit-probit
regressions.14 Due to the features of our data, some cautions must be taken
to understand our results. This is due to the shortage of relevant data (for
instance, rates of default of high-rated companies) or the sample size, as
was also noticed by Embretchs, Frey and McNeil (2005). These authors also
provide a more general discussion on the statistical estimation of portfolio
credit risk models.

14Standard references on this type of regressions using grouped data can be found in
Novales (1993) or Greene (2003).
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5.1 Estimation Techniques

As suggested by Schonbucher (2003) or Embretchs, Frey and McNeil (2005),
the estimation of parameters in the expression (7) will be carried on using the
models for discrete choice of proportions data. Basically, the idea consists
in explaining the sample rates of default pi (where i refers to the asset class
or group) as an approximation to the population rates of default Pi plus an
error term, εi. The idea behind is to link the population probability with
some function F (·) over a set of explanatory factors xi and their coefficients
β, as follows:

pi = Pi + εi = F (x′iβ) + εi (10)

To be interpreted as a probability, the function F (·) must be bounded and
monotonically increasing in the interval [0, 1]. Some widely used functions
for F are the standard Normal distribution, which corresponds to the probit
model, or the uniform distribution, which results in the linear probability
model.

As suggested by Greene (2003), we could use regression methods as well
as maximum likelihood procedures to estimate the set of coefficients β of
the expression (10). For example, in the case of the probit regression, the
relationship between the sample rates of default pi and their population coun-
terparts are

pi = Pi + εi → Φ−1 (pi) = Φ−1 (Pi + εi)

which could be aproximated by (Novales, 1993)

Φ−1 (pi) ' x′iβ+
εi

f (x′iβ)

where Φ (·) denotes the distribution function of a standard Normal variable.
As mentioned in Novales (1993), the last expression suggests that we can
estimate the parameter vector β by regressing the sample probits Φ−1 (pi) on
the variables x. Considerations about the heteroscedasticity of the residual
can be found in the cited reference.

To check the model’s goodness of fit, Novales (1993) also provides a com-
parison of different regressions (probit, logit or lineal) in terms of the mean
square error (MSE) . The statistic s is defined as

s =
T∑
1

ni

(
pi − P̂i

)2

P̂i

(
1− P̂i

) ∼ χ2
T−k (11)
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where ni represents the sample size of the data (subscript i refers to asset class

or group) and pi, P̂i are the observed and estimated frequencies, respectively.
The statistic s follows a chi-square distribution with T−k degrees of freedom,
sample length T and k restrictions.

5.2 Variables and estimation

With the intention of illustrating the estimation of the model (7), we have
chosen a set of six explanatory variables for the rates of default: the real
Growth Domestic Product (GDP), the Consumers Price Index (CPI), the
annual return on the S&P500 index (SP ret), its annualized standard devi-
ation (SP std), the 10-year Treasury Constant Maturity Rate (10 rate) and
the Industrial Production Index (IPI).15 As dependent variables we have the
annual rates of default for two investment grades: non investment grade (SG)
and investment grade (IG), both collected from Hamilton, Varma, Ou and
Cantor (2005). Due to the availability of default rate data, the sample pe-
riod has been taken from 1970 to 2004, which results in 35 observations. A
summary of the main statistics and the correlation coefficients is presented
in Tables 5 and 6, respectively.

[INSERT TABLES 5 AND 6 AROUND HERE]

To visualize the influence of the proposed explanatory variables in the de-
fault rates, Figures 6 and 7 represent the scatter plots of different investment
classes versus different explanatory variables. Figure 6 seems to corroborate
what we could guess departing from the correlation parameters included in
Table 6: the standard deviation of the S&P 500 returns, the GDP and the
CPI can be good candidates for explaining the default rate in the case of the
non-investment firms. Additionally, at a certain degree, the S&P 500 return
can be added to this list as a possible explanatory variable in the case of the
investment firms.16

[INSERT FIGURES 6 AND 7 AROUND HERE]

15All data are available from the Federal Reserve Bank of St. Louis webpage
(www.stlouisfed.org) except the S&P 500 index level, which has been taken from
Bloomberg.

16As Figure 7 reveals, due to the high number of null observations in the IG sample,
conclusions about the factors affecting IG rates should be taken carefully.
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One step ahead is to compute how much of the sample can be explained
by the set of variables under study. To answer this question, we regress the
explanatory variables on the non-investment and investment rates. Table 7
shows the results. The first row corresponds to the different independent
variables under study. The first column contains the model under study -
linear, probit, logit - and the different regressed variables (SG and IG default
rates). Second to eighth columns display different betas obtained under
different models. Finally, the last column shows the s statistic defined in (11),
which will be used as a näıve benchmark: if the whole set of independent
variables explains some quantity of the sample, two variables would explain
“less”: the pair of variables whose s value are closest to the benchmark could
be good candidates as common factors in the model (7).

[INSERT TABLE 7 AROUND HERE]

We start with regressions on SG rates. One main reason recommends
this procedure: their data are more relevant to determine which factors may
cause default. Up to a point, conclusions on the factors will be more ro-
bust. Previous regressions suggest choosing the variables GDP, CPI, IPI and
SP stdas common factors in the model (7). These variables minimize the
statistic (11) with respect to other pairs of alternatives. Finally, we select
GDP and CPI as common factors according to two main reasons:

1. Firstly, the Industrial Production Index could be seen as a proxy of the
GDP and its information could result redundant. Moreover, regressions
of probit-logit models using these two variables support the choice of
GDP against the IPI.

2. Secondly, regressions on the parameter SP std give a beta close to the
precision imposed to our estimated parameters (10−4).

Table 8 presents in columns the OLS17 estimates for betas of independent
term, GDP variable and CPI variable, respectively, using the SG rates. Con-
fidence intervals at the 95% level are displayed into brackets. The rows in
this table also display regression results for linear, probit and logit models.
The last row contains the value of the statistic (11) obtained for each case.

17GLS estimates have not been computed due to the sample size.
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Attending to the goodness-of-fit criteria using s, the OLS probit model re-
gression provides the best fit to the sample18. Overall, all the beta estimates
corresponding to OLS regressions are negative, except for the independent
term of the linear model, which leads to higher s statistic. Results concerning
to OLS regressions can be interpreted as follows: a negative beta implies an
increasing on default probabilities. In line with this, as expected, a decrease
in GDP rates may produce an increase on SG default rates. Surprisingly,
an increase in the CPI rate could diminish the rates of default, which might
result counter-intuitive.

Table 9 shows regression results for linear, probit and logit models using
IG rates as dependent variable. It is worth to notice that results are not
conclusive as 63% of the sample under study are zeros. GLS estimations
do not make sense in this context. In order to avoid numerical problems
in the estimation, we have added the quantity 0.00005 to the sample, as
suggested by Greene (2003). The first row displays the independent term
and explanatory variables. Each pair of the following rows contains firstly
the different values of betas obtained using two variables (GDP and CPI);
secondly, their values using only the GDP variable. Maximum likelihood
estimates (available upon request) for the probit and logit models are close
to those parameters obtained for respective OLS models. We have estimated
GDP variable alone with the intention of analyzing the explanatory power of
the GDP on IG rates. First to second rows show the model and procedure
used. The last column displays the value for the statistic s. At a certain
degree, results on Table 8 could support the inverse relationship between the
explanatory variables and the IG rates of default, as previously noted for the
SG case.

[INSERT TABLES 8 AND 9 AROUND HERE]

5.3 Interpretation of coefficients

As was pointed out by Elizalde (2005), due to the difficulty of interpreting
what the correlation term represents, estimating the correlation term in fac-
tor models is not an evident task. Looking at equation (10), the estimate
β describes the effect from the explanatory factor x through a non-linear
transformation of the firm’s asset value, which itself is unobserved, as it is

18Maximum Likelihood estimates (available upon request) for models probit and logit
are close to those parameters obtained for respective OLS models.
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also noticed by Elizalde (2005). As this fact complicates understanding the
proper correlation term, the author enumerates some measures used ad hoc
by practitioners, as equity return correlations, to conclude about the insuffi-
ciency (and scarcity) of papers that deals with this problem.

Our interpretation of coefficients in the model (7) goes in the direction of
the econometric explanation for the coefficients of the linear, logit and probit
models, that is, the influence of the exogenous variables on the endogenous
one. In other words, the (relative) impact of the explanatory variables on
the probability of default. Following Novales (1993), this interpretation of
estimates for the linear model must differ to that for the logit and probit
models.19 This is the main reason why we split our results in two tables,
Tables 10 and 11, that include - respectively - the estimation of the linear
and logit-probit models.

[INSERT TABLES 10 AND 11 AROUND HERE]

Regarding the estimates of the linear probability model, Table 10 reflects
the contribution of the two explanatory random variables to the probability of
default. The main conclusions are obtained from the default probabilities of
non-investment grade assets (SG), but can also be extended to the investment
grade (IG) ones. Looking at Table 10, it is interesting to observe the sign of
the coefficients, which is negative: the more we decrease the GDP or the CPI,
the more we increase the rates of default. Given the value of the coefficients,
the variables have the same contribution to the default probability. With
reference to the fit of the model to the data, under the null hypothesis that
the goodness-of-fit to the sample is good, we cannot reject that the linear
probability model could explain the results obtained.

Table 11 includes the ratio between estimates for SG and IG series for
probit and logit models, respectively. By and large, the conclusions are
the same for all the series under study. According to Novales (1993), the
ratio between the estimated betas measures the relative contribution of the
explanatory variables on the default probability. Results are consistent to
those obtained for the linear probability model: the negative sign of the
explanatory variables, which reflects an opposite effect between default ratios
and the macroeconomic variables. Moreover, the relative contribution of

19For example, the relationship between the explanatory and explained variables in the
probit model is non-linear while the linear probability model implies linearity between
dependent and independent variables.
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the explanatory variables remains equal, as was also derived from Table 10.
Finally, we do not reject the goodness-of-fit of the model using confidence
levels of 95% and 99%.

6 Conclusions

The current success of the credit derivatives market for tranched products
is one of the biggest ones seen within the financial industry. The standard
pricing model, widely used by the practitioners, is the Gaussian one-factor
model (Vasicek, 1991). However, some assumptions underlying this model
are probably too restrictive. These features concern, among others, to those
of homogeneity of asset classes involved, or the exposure to one sources of
systematic risk.

In a more realistic setting, Schonbücher (2003) or Lando (2004) pointed
out that a credit portfolio is composed by different asset classes or buckets,
attending to criteria as, for example, investment grade, non-investment grade
assets or industry. The exposure of a credit portfolio to a set of common
risk factors could be significant between groups, but should be homogeneous
within them. In line with this, the idea of two groups of assets treated
in different ways could become a more realistic assumption than that used
previously in the literature.

With the aim of contributing to the current literature, this article con-
siders a family of models that takes into account the existence of different
asset classes or regions of correlation. Thus, we analyze a model in the line
of the two assets-two Gaussian factor model of Schonbücher (2004). In this
paper we generalize the standard model by means of a two by two model
(two factors and two asset classes). We assume two driving factors (business
cycle and industry) with independent t-Student distributions, respectively,
and allow the model to distinguish between portfolio assets classes. One
of the main implications of considering a t-Student distribution is that we
assign a higher probability to high default events.

Our work contributes to the existing literature in the analysis of these
asset class models. To the best of our knowledge, no similar studies has
been reported yet in this direction. Regarding to distributional assump-
tions, we extend the standard gaussian model by considering the t-Student
distribution. In this way, we deal with a more general model with the addi-
tional advantage that includes the Gaussian model as a particular case. We
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also provide the econometric framework for assessing the parameters of the
posited model. Finally, an empirical application with Moody’s data has been
presented as an illustration of the methodology proposed.
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Figure 1: Total loss distribution of a 100-firms portfolio for different models.
Individual default probabilities are fixed at 1%. Correlation for the Stan-
dard gaussian and t-Student distribution (with 6 degrees of freedom) is 0.3.
Correlations for the Double Gaussian model are 0.1, 0.3.
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Figure 2: Default (yearly) rates for Investment and Non-investment grades.
Rates for investment data have been multiplied by ten with the pourpose of
comparing the data. Source: Moody’s.
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39



0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3

0.4
2000

3000

4000

5000

6000

7000

8000

Correlation Asset Class 2

Equity Tranche

S
pr

ea
d 

(B
as

ic
 p

oi
nt

s)

Correlation Asset Class 1

0

0.1

0.2

0.3

0.4

00.050.10.150.20.250.30.350.4

950

1000

1050

1100

1150

1200

1250

1300

Correlation Asset Class 2

Mezzanine Tranche

Correlation Asset Class 1

S
pr

ea
d 

(B
as

ic
 p

oi
nt

s)

0

0.1

0.2

0.3

0.4

0
0.1

0.2
0.3

0.4
0

50

100

150

200

250

Correlation Asset Class 2

Senior Tranche

Correlation Asset Class 1

S
pr

ea
d 

(B
as

ic
 p

oi
nt

s)

Figure 4: Spreads under different correlations for a equally weighted (50%-
50%) portfolio.
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Figure 5: Spreads under different correlations for a 25%-75% portfolio.
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Figure 6: Non-investment grade rates of default (SG) versus different ex-
planatory variables
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Figure 7: Investment grade rates of default (IG) versus different explanatory
variables
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