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Abstract

In this paper, we present a model to deal with the problem of matchingM objects or config-
urations of points. This is a generalization of the model proposed by Green and Mardia (2006).
We consider, as a direct and simple application, the case of three configurations with labelled
and with unlabelled points. In both cases, we consider data from a microarray experiment of
gorilla, bonobo and human cultured fibroblasts published by Karaman et al. (2003). We find
out the matchings and the best affine transformation between the projections of genes in a two
dimensional space, obtained by a Multidimensional Scaling technique.

Keywords: MCMC computation; Microarray analysis; Multidimensional Scaling; Spatial
Bayesian methods; Spatial Poisson Process; Von Mises distribution.
AMS 2000 subjet classifications. Primary 62-02; secondary 62E10, 62F15.

1 Introduction

In Shape Analysis a challenging problem is how to match two or more configurations with
labelled points or landmarks (see Dryden and Mardia (1998)) after filtering out some kind
of transformation. Nowadays, new problems are been considered where the points are not
labelled, so it is necessary to find out which points of each configuration are matched with. A
problem about matching two configurations, under Bayesian hierarchical modeling, is described
in Green and Mardia (2006). In this paper, we generalize that model by considering not only
two configurations, but M configurations under a full Bayesian approach. First, we focus on
the case where the points are labelled and check the accuracy of the model with a simulated
sample of three configurations; then we consider an application in Bioinformatics, where data
are collected from a microarray experiment of gorilla (Gorilla gorilla), bonobo (Pan paniscus)
and human (Homo sapiens) cultured fibroblasts, done by Karaman et al. (2003). We have used
them in order to compare a set of genes in several samples of these species. Finally, we apply
the model to some unlabelled genes of the three species.
In Section 2 we present the problem of matching M configurations, focusing on the case

of M = 3 by making assumptions of spherical normality. In Section 3 we apply the model to
labelled points of three configurations and we present an application in Bioinformatics. Last, in
Section 4 we describe the model in the case of unlabelled points and we consider its application
in Bioinformatics, by using an empirical Bayes step.
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2 The problem of matching M configurations of points

Let consider M ≥ 2 configurations of points located in Rd where d = 2. Each of them has ni
points (i = 1, . . .M), such that

xi = {xij, j = 1, . . . , ni} xij ∈ Rd i = 1, . . . ,M.

The points are arbitrarily labelled for identification. We try to determine which point of each
configurations of points matches with other points of the rest of configurations, finding the
geometrical transformations which relates them. There may be matchings from order two up
to orderM . The sets of points are regarded as noisy observations from a set of unknown points
{µl} ∈ Rd, where each µl can generate not more than one point of one configuration but more
than one point of different configurations. We do not know which points are generated from
each of these µl and the points from different configurations, generated from the same µl, are
considered as matched. This model is a straightforward generalization of Green and Mardia’s
(2006) model.
We denote the geometrical transformation between configurations x1 and xi by Ψi i =

2, . . . ,M, and we assume that configuration x1 is obtained from {µl} plus a random term. The
relation among subindexes of {µl} and points {xij} (i = 1, . . . ,M , j = 1 . . . , ni) is denoted by
a matrix

©
ξij
ª
, where ξij is the subindex of µl that generates the point j of the configuration

i, so that the point xij is generated by µξij .
The full model is

x1j = µξ1j + ε1j j = 1, . . . , n1
Ψ1(x2j) = µξ2j + ε2j j = 1, . . . , n2
. . .
Ψr−1(xrj) = µξrj + εrj j = 1, . . . , nr
. . .
ΨM−1(xMj) = µξMj

+ εMj j = 1, . . . , nM

(1)

where {εij} has a density function fi (i = 1, . . . ,M, j = 1, . . . , ni). We assume that for a fixed
i, ξi1 6= ξi2 6= . . . 6= ξini, and the random variables {εij} are independent among them and
independent of {µl} .

2.1 Spatial Poisson Process

Let assume that {µl} are distributed as a homogeneous Poisson process with λ rate in V ⊂ Rd,
and there are N observations in V. Each µl can generate independently: zero points, one point
of one configuration, two points of two different configurations (double matching) up to M
points, one from each configuration (M order matching). Hence {µl} can be classified inM +1
groups depending on the type of matching they can produce. We assume that the rate of
matching is independent of the type of configuration and can vary depending on the matching
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order. So, each µl belongs to one of the M + 1 possible groups:

µl generates with probability
One point of one configuration → p
Two points of two configurations → ρ2p

2

· · · · · · · · ·
M points, one of each configuration → ρMpM

Zero points → 1−PM
j=1 ρjp

j with ρ1 = 1

where ρj, j = 2, . . . ,M are the prior matching rates of j order.
In order to describe completely the model, we define the affinity and matching matrices.

Definition 1. The affinity matrix of k orderM(k), with M × k times. . . ×M dimensions, is defined
as a matrix whose elements are

h
M

(k)
i1...ik

i
, namely, the number of k order matchings among

configurations xi1 , xi2 . . . xik .

Thence, the number of k order matchings Lk is expressed as

Lk =
MX
i1=1

MX
i2>i1

· · ·
MX

ik>ik−1

M
(k)
i1...ik

.

Definition 2. For all i1 < i2 < . . . < ik−1 < ik such that M
(k)
i1...ik

6= 0, the matching matrix of
k order S(i1,...,ik), with ni1 × . . .× nik dimensions, is defined as a matrix whose elements are

S
(i1,...,ik)
j1...jk

=

⎧⎨⎩ 1 if ξi1j1 = ξi2j2 = · · · = ξikjk

0 otherwise
.

Now, we consider the prior joint distribution of the affinity matrices. Let assume that the
distribution of the k order affinity matrix, given Lk k order matchings, is uniform,

P (M(k)|Lk) =
1¡(Mk )+Lk−1
Lk

¢ ,
because the number of k order affinity matrices, given Lk matchings of k order, is a combination
with repetition of

¡
M
k

¢
configurations chosen in subsets of Lk.

Hence, assuming independence, the joint distribution of all matrices, given the number of
k order matchings, is

P (M(2),M(3), . . . ,M(M)|L2, L3, . . . , LM) =
MY
k=1

1¡(Mk )+Lk−1
Lk

¢ .
In the same way, we consider the prior joint distribution of the number of the matchings. In

the next scheme we show the frequencies of each class of µl with L2 double matchings, L3 triple
matchings, up to LM of M order matchings when N,n1, . . . , nM are known and n =

PM
i=1 ni.

3



Furthermore, under the previous assumptions, these M +1 counts will be independent Poisson
distributed variables.

µl generates Frequency Poisson rate
- One point of one configuration n− 2L2 − · · ·−MLM λvp
- Two points of two configurations L2 λvρ2p

2

· · · · · · · · ·
- M points, one of each configuration LM λvρMpM

- Zero points N − n− L2 − · · · λv(1−
−(M − 1)LM

PM
j=1 ρjp

j
´

Hence,

P (L2, L3, . . . , LM) ∝
e−λv(

M
i=1 ρip

i)(λv)n−
M
i=2(i−1)LipnρL22 ρL33 . . . ρLMM

(n−PM
i=2 iLi)!L2!L3! . . . LM !

∝ ( ρ2
λv
)L2 . . . (ρM

λv
)LM

(λv)L3+2L4+...+(M−2)LM (n−PM
i=2 iLi)!L2!L3! . . . LM !

,

where
PM

i=2 iLi ≤ n. Hence,

P (M(2),M(3), . . . ,M(M)) = P (M(2),M(3), . . . ,M(M)|L2, L3, . . . , LM)P (L2, L3, . . . , LM)

∝
MY
k=1

1¡(Mk )+Lk−1
Lk

¢ · ( ρ2
λv
)L2 . . . (ρM

λv
)LM

(λv)
M
k=3(k−2)Lk(n−PM

i=2 iLi)!L2!L3! . . . LM !

∝ ( ρ2
λv
)L2 . . . (ρM

λv
)LM

(λv)
M
k=3(k−2)Lk(n−PM

i=2 iLi)!
QM

k=2[
¡
M
k

¢
+ Lk − 1]!

For all k = 2, . . .M , by considering the affinity matrix of k order as known, we obtain by
Combinatorics that the prior joint distribution of all the matching matrices of k order is,

P (S(1,...,k), . . . ,S(M−(k−1),...,M)|M(k)) =
1Q

{(i1,...,ik)|M(k)
i1,...,ik

6=0}

¡ ni1

M
(k)
i1,...,ik

¢
. . .
¡ nik

M
(k)
i1,...,ik

¢ ³
M

(k)
i1,...,ik

!
´k−1 .

2.2 Likelihood of data

We will henceforth assume affine transformations among configurations. Then, (1) is simplified
as

x1j = µξ1j + ε1j j = 1, . . . , n1

A1x2j + τ 1 = µξ2j + ε2j j = 1, . . . , n2

. . . (2)

AM−1xMj + τM−1 = µξMj
+ εMj j = 1, . . . , nM

where {εij} are independent with fi density for all i = 1, . . . ,M and j = 1, . . . , ni.
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From (2), the density of xij, conditional on Ai−1, ξij, τ i−1 and {µi} (for all i = 1, . . . ,M
and j = 1, . . . , ni) is

f(xij) = fi(Ai−1xij + τ i−1 − µξij) |Ai−1| , (3)

denoting as A0 = I and τ 0 = 0.
The variables {µl} that generate non matched points are uniformly distributed over V. From

(3),

f(xij) =

Z
V

f(xij/µ)f(µ)dµ = |Ai−1| 1
v

Z
V

fi(Ai−1xij + τ i−1 − µ)dµ.

If we denote E0 as the set of unmatched points, their likelihood contribution is

MY
i=1

Y
{j,xij∈E0}

f(xij) =
MY
i=1

Y
{j,xij∈E0}

1

v
|Ai−1|

Z
V

fi(Ai−1xij + τ i−1 − µ)dµ

=

µ
1

v

¶n−
M

i=2
iLi MY

i=1

Y
{j,xij∈E0}

|Ai−1|
Z
V

fi(Ai−1xij + τ i−1 − µ)dµ.

In the case of locations {µl} that generate double matchings, for all (i1, i2) such thatM (2)
i1,i2

6=
0 and for all (j1, j2) such that S

(i1,i2)
j1j2

= 1,

f(xi1j1, xi2j2) =

Z
V

f(xi1j1 | µ)f(xi2j2 | µ)f(µ)dµ =
1

v
|Ai1−1| |Ai2−1|

Z
V

fi1(Ai1−1xi1j1 + τ i1−1 − µ)fi2(Ai2−1xi2j2 + τ i2−1 − µ)dµ.

Then, their likelihood contribution is

Y
{(i1,i2)|M(2)

i1,i2
6=0}

Y
{(j1,j2)|S(i1,i2)j1j2

=1}

f(xi1j1, xi2j2) =

µ
1

v

¶L2 Y
{(i1,i2)|

M
(2)
i1,i2

6=0}

Y
{(j1,j2)|

S
(i1,i2)
j1j2

=1}

|Ai1−1| |Ai2−1| ·

·
Z
V

fi1(Ai1−1xi1j1 + τ i1−1 − µ)fi2(Ai2−1xi2j2 + τ i2−1 − µ)dµ.

In general, the likelihood contribution of the points with matchings of k order, (k =
2, . . . ,M) is µ

1

v

¶Lk Y
{(i1,...,ik)|

M
(k)
i1,...,ik

6=0}

Y
{(j1,...,jk)|
S
(i1,i2)
j1...jk

=1}

|Ai1−1| . . . |Aik−1| ·

Z
V

fi1(Ai1−1xi1j1 + τ i1−1 − µ) . . . fik(Aik−1xikjk + τ ik−1 − µ)dµ.
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Previous expressions can be approximated if we consider V ⊂ Rd large enough and we
extend it to all Rd: µ

1

v

¶Lk Y
{(i1,···ik)|
M

(k)
i1...ik

6=0}

(|Ai1−1| · · · |Aik−1|)M
(k)
i1...ik ·

Y
{(j1...jk)|

S
(i1...ik)
j1...jk

=1}

gi1.i2,...,ik(Ai1−1xi1j1 + τ i1−1 −Ai2−1xi2j2 − τ i2−1,

. . . , Ai1−1xi1j1 + τ i1−1 −Aik−1xikjk − τ ik−1) (4)

where

gi1.i2,...,ik(z1, · · · , zk−1) =
Z
Rd

fi1(w)fi2(w − z2)fi3(w − z3) . . . fik(w − zk)dw

represents the joint distribution of (εi1j1−εi2j2 , εi1j1−εi3j3 , . . . , εi1j1−εikjk). Hence, the likelihood
of all points is the product of expressions (4) for every k = 2, . . . ,M .

2.3 Matching of M = 3 configurations of points under normality

We consider, as a practical application, the particular case ofM = 3 configurations, where {εij}
are normally distributed. The joint prior distribution of the affinity and matching matrices is

P (M(2),M(3),S(1,2),S(1,3),S(2,3),S(1,2,3)) ∝
( ρ2
λv
)L2( ρ3

λv
)L3(n1 − L3)!(n2 − L3)!(n3 − L3)!

(λv)L3(n− 2L2 − 3L3)!(2 + L2)!
Q

{(i1,i2)|M(2)
i1,i2

6=0}

¡ ni1

M
(2)
i1,i2

¢¡ ni2

M
(3)
i1,i2

¢ ³
M

(2)
i1,i2
!
´

The contribution to the global likelihood of unmatched points, double matchings points and
triple matchings points areµ

1

v

¶n−2L2−3L3
|A1|n2−M

(2)
23 −M(2)

21 −M(3)
123 |A2|n3−M

(2)
13 −M(2)

23 −M(3)
123µ

1

v

¶L2 Y
{(i1,i2)|

M
(2)
i1,i2

6=0}

(|Ai1−1| |Ai2−1|)M
(2)
i1,i2 ·

Y
{(j1,j2)|

S
(i1,i2)
j1j2

=1}

µ
1

σ
√
2

¶d

ϕd(
Ai1−1xi1j1 + τ i1−1 −Ai2−1xi2j2 − τ i2−1

σ
√
2

).

µ
1

v
|A1| |A2|

¶L3 Y
{(j1j2,j3)|
S
(1,2,3)
j1,j2,j3

=1}

µ
1

σ2
√
3

¶d

·

·ϕ2d
Ã
x1j1 −A1x2j2 − τ 1

σ
√
2

,

√
6

6σ
(x1j1 +A1x2j2 + τ 1 − 2A2x3j3 − 2τ 2)

!
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where ϕd(z) is the standard normal density in Rd.

3 Matching M = 3 labelled configurations of points in R2

In this section we consider that the points of the three configurations are labelled. Each
configuration has m points and we suppose that there are m triple matchings knowing how the
points are matched. The problem reduces to determine the parameters A1, A2, τ 1, τ 2 and σ2 of
the affine transformation among points. We restrict attention to rotations, orthogonal matrices
A1, A2, with A−11 = AT

1 , A
−1
2 = AT

2 and |A1| = |A2| = 1. For j = 1, . . .m, we denote as x1j, x2j
and x3j the points involved in m triple matchings, namely, ξ1j = ξ2j = ξ3j.
In this case, allM(2) are zero and

M
(3)
jkl =

⎧⎨⎩ m if j 6= k 6= l ∈ {1, 2, 3}

0 otherwise

S
(1,2,3)
jkl =

⎧⎨⎩ 1 if j = k = l

0 otherwise

Hence the global likelihood is

P (A1, A2, τ 1, τ 2, σ
2,x1,x2,x3) ∝ P (A1)P (A2)P (τ 1)P (τ 2)P (σ

2) ·µ
1

σ2
√
3

¶md

· exp
⎧⎨⎩−12

mX
j=1

°°°°°x1j −A1x2j − τ 1

σ
√
2

,

√
6

6σ
(x1j +A1x2j + τ 1 − 2A2x3j − 2τ 2

°°°°°
2
⎫⎬⎭

= P (A1)P (A2)P (τ 1)P (τ 2)P (σ
2)

µ
1

σ2
√
3

¶md

exp

½
− 1
σ2

Ã
mX
j=1

1

4
kx1j −A1x2j − τ 1k2+

+
1

3

mX
j=1

°°°°x1j +A1x2j + τ 1
2

−A2x3j − τ 2

°°°°2
!)

.

3.1 Posterior Distributions of the parameters

In this section we show the prior and posterior distributions of the parameters of the model.
Assume that the prior distribution is τ i ∼ Nd(µi, σ

2
i Id) (i = 1, 2) then, the posterior distri-

butions of τ 1 and τ 2 are

(τ 1 | · · · ) ∼ Nd

⎛⎜⎜⎝
µ1
σ21
+ 1

3σ2

mP
j=1

(x1j − 2A1x2j +A2x3j + τ 2)

1
σ21
+ 2m

3σ2

,
1

1
σ21
+ 2m

3σ2

Id

⎞⎟⎟⎠

(τ 2 | · · · ) ∼ Nd

⎛⎜⎜⎝
µ1
σ22
+ 1

3σ2

mP
j=1

(x1j +A1x2j + τ 1 − 2A2x3j)
1
σ22
+ 2m

3σ2

,
1

1
σ22
+ 2m

3σ2

Id

⎞⎟⎟⎠
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Assume that the prior distribution is σ−2 ∼ gamma(α, β), then the posterior distribution
of σ−2 is gamma(α∗, β∗) where

α∗ = α+md

β∗ = β +
1

4

(
mX
j=1

kx1j −A1x2j − τ 1k2 + 1
3

mX
j=1

kx1j +A1x2j + τ 1 − 2A2x3j − 2τ 2k2
)

We will henceforth focus on R2 and we assume that the prior distributions of A1 and A2 are
von Mises distributions Ai ∼ M(νi,ki), with νi and ki > 0 parameters (see, e.g. Mardia and
Jupp (2000)), that is,

P (A1) ∝ exp {tr (F 0
1A1)}

P (A2) ∝ exp {tr (F 0
2A2)}

where

F1 =
k1
2

µ
cos ν1 − sin ν1
sin ν1 cos ν1

¶
and F2 =

k2
2

µ
cos ν2 − sin ν2
sin ν2 cos ν2

¶
.

Alternatively the distributions can be expressed in terms of angles θi

P (θ1) ∝ exp{k1 cos ν1 cos θ1 + sin ν1 sin θ1}
P (θ2) ∝ exp{k2 cos ν2 cos θ2 + sin ν2 sin θ2}.

Then, if we denote

S =

µ
S11 S12
S21 S22

¶
=

1

3σ2

mX
j=1

(x1j − 2τ 1 +A2x3j + τ 2)x
0
2j

T =

µ
T11 T12
T21 T22

¶
=

1

3σ2

mX
j=1

(x1j +A1x2j + τ 1 − 2τ 2)x03j,

the posterior distributions of A1 and A2 are von Mises distributions where

F ∗1 = F1 + S

F ∗2 = F2 + T

or, alternatively, Ai ∼M(ν∗i ,k
∗
i ), i = 1, 2, where

k∗1 =
£
(k1 cos ν1 + S11 + S22)

2 + (k1 sin ν1 + S21 − S12)
2¤1/2

ν∗1 = a cos

∙
k1 cos ν1 + S11 + S22

k∗1

¸
k∗2 =

£
(k2 cos ν2 + T11 + T22)

2 + (k2 sin ν2 + T21 − T12)
2¤1/2

ν∗2 = a cos

∙
k2 cos ν2 + T11 + T22

k∗2

¸
.

Notice that, if sin
h
k1 cos ν1+S11+S22

k∗1

i
< 0 then ν∗1 = 2π − a cos

h
k1 cos ν1+S11+S22

k∗1

i
,and if

sin
h
k2 cos ν2+T11+T22

k∗2

i
< 0 then ν∗2 = 2π − a cos

h
k2 cos ν2+T11+T22

k∗2

i
.
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3.2 Simulated data

We consider, to check the procedure, a group of simulated data. We apply a Gibbs sampler
(with 60000 observations, 20000 to burn-in) to render samples from the posterior distributions
of the parameters σ, τ 1, τ 2, A1 and A2. We have chosen as estimates of A1 and A2, the rotation
matrices of the mean posterior angles. Results are shown in table 1.

σ = 1 σ = 8

τ1 = [0, 0] τ2 = [0, 0]

A1 =

µ
1 0
0 1

¶
, A2 =

µ
1 0
0 1

¶
θ1 = 0 θ2 = 0

Estimates
σ = 0.9557
τ1 = [0.0184, 0.0966]
τ2 = [−0.0976,−0.1008]
A1 =

µ
0.9999 −0.0044
0.0044 0.9999

¶
A2 =

µ
0.9998 −0.0188
0.0188 0.9998

¶

τ1 = [0, 0] τ2 = [0, 0]

A1 =

µ
1 0
0 1

¶
, A2 =

µ
1 0
0 1

¶
θ1 = 0 θ2 = 0

Estimates
σ = 7.9878
τ1 = [0.3919, 0.5455]
τ2 = [1.2254, 0.6294]

A1 =

µ
0.9818 0.1551
−0.1551 0.9818

¶
A2 =

µ
0.9834 −0.1473
0.1473 0.9834

¶

τ1 = [−10,−10] τ2 = [10, 5]

A1 =

µ
0.7071 −0.7071
0.7071 0.7071

¶
, A2 =

µ
0 1
−1 0

¶
θ1 = π/4 θ2 = 3π/2

Estimates
σ = 1.0741
τ1 = [−10.0600, 9.7949]
τ2 = [9.8684, 5.0166]

A1 =

µ
0.9999 −0.0044
0.00440 0.9999

¶
A2 =

µ
0.0092 0.9999
−0.9999 0.0092

¶

τ1 = [−10,−10] τ2 = [10, 5]

A1 =

µ
0.7071 −0.7071
0.7071 0.7071

¶
, A2 =

µ
0 1
−1 0

¶
θ1 = π/4 θ2 = 3π/2

Estimates
σ = 8.0049
τ1 = [−7.3327,−9.3902]
τ2 = [10.1808, 6.5261]

A1 =

µ
0.6384 −0.7667
0.7667 0.6384

¶
A2 =

µ
0.0318 0.9978
−0.9978 0.0318

¶
Table 1.

3.3 An application in Bioinformatics

We consider data from a microarray experiment (Affymetrix Genechip 5.0) with gorilla (Go-
rilla gorilla), bonobo (Pan paniscus) and human (Homo sapiens) cultured fibroblasts done by
Karaman et al. (2003). Data consist of expression scores for 12625 genes in 46 samples (23
humans, 11 bonobos and 12 gorillas). In order to study genes with relevant effects, we select
204 genes corresponding to those which expression scores were greater than 3000.
We consider Euclidean distances between pairs of genes in each species and build a map of

the genes in two dimensions for each species, by using an INDSCAL Analysis (see Borg and
Groenen (2005)) and we estimate the best affine transformations among points representing
genes. It is observed, when applying INDSCAL analysis, that there is apparently more similarity
between humans and bonobos.
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We estimate the best affine transformations between the resulting points representing the
genes of bonobos, gorillas and humans. To carry out posterior inference, we set up a Gibbs
sampling scheme following the general method introduced in (1) with 60000 observations (20000
to burn-in). We obtained these results.
Affine transformation between humans and bonobos:

A1 =

µ
0.9949 −0.1008
0.1008 0.9949

¶
τ 1 =

µ
0.0015
0.0013

¶
Rotation: 5.78o (0.10 radians). Translation: zero.
Affine transformation between humans and gorillas:

A2 =

µ
0.9148 0.4039
−0.4039 0.9148

¶
τ 2 =

µ
0.0014
0.0012

¶
Rotation: 23.82o (0.42 radians). Translation: zero.
Estimate of the variance: σ2 = 0.0446
We conclude that genes from the three species are fully related, showing that genes of

bonobos and humans are more closed related. It may be possible to build a future aid-system
to determine relations among different genes based on a reference distance among well known
genes.

4 Matching M = 3 unlabelled configurations of points in
R2

In this section we consider the case where there are three configurations of points in R2 with
ni = m points (i = 1, 2, 3). All points are matched with triple matchings, that is, L3 = m and
L2 = 0, but we do not know which points are matched. Thence, they are unlabelled or theirs
labels are arbitrary. The parameters of the model are A1, A2, τ 1, τ 2, σ2 and S(1,2,3). In this
case, all elements ofM(3) are zero, except M (3)

123 = m.
The joint distribution of parameters and observations is

P (A1, A2, τ 1, τ 2, σ
2, S(1,2,3),x1,x2,x3) ∝ P (A1)P (A2)P (σ

2)P (τ 1)P (τ 2) ·

·
µ

1

σ2
√
3

¶m

exp

½
− 1
σ2

⎛⎜⎜⎜⎜⎜⎝
mX

{(i,j,k)|
S
(1,2,3)
i,j,k =1}

1

4
kx1i −A1x2j − τ 1k2+

+
1

3

mX
{(i,j,k)|

S
(1,2,3)
i,j,k =1}

°°°°x1i +A1x2j + τ 1
2

−A2x3k − τ 2

°°°°2
⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

10



4.1 Posterior distribution of S(1,2,3)

We consider, as the prior distribution of S(1,2,3), an uniform distribution

P (S(1,2,3) |M (3)
123 = m) =

1

(m!)2
.

In order to simulate from the posterior distribution of S(1,2,3), we consider a Metropolis-
Hasting procedure with some possible transitions. We choose at random two points from the
configuration x1, e.g. x1i1 and x1i2, whose matchings with points of configurations x2 and x3
are, respectively, x2j1, x3k1 , and x2j2 , x3k2. For simplicity, these matchings will be denoted by
(i1, j1, k1) and (i2, j2, k2) and q(S, S∗) denotes the probability of changing from configuration S
to S∗. The chain is reversible and the probability of accepting a change is

min

½
1, r =

P (A1, A2, τ 1, τ 2, σ
2, S∗,x1,x2,x3)

P (A1, A2, τ 1, τ 2, σ2, S,x1,x2,x3)

¾
.

Possible transitions are

(i) With p∗1 probability we substitute matchings (i1, j1, k1) and (i2, j2, k2) by (i1, j2, k1) and
(i2, j1, k2). In this case,

r =

exp

½
− 1

σ2

µ
1
4
kx1ii −A1x2j2 − τ 1k2 + 1

3

°°°x1i1+A1x2j2+τ12
−A2x3k1 − τ 2

°°°2
exp

½
− 1

σ2

µ
1
4
kx1i1 −A1x2j1 − τ 1k2 + 1

3

°°°x1i1+A1x2j1+τ12
−A2x3k1 − τ 2

°°°2
+1
4
kx1i2 −A1x2j1 − τ 1k2 + 1

3

°°°x1i2+A1x2j1+τ12
−A2x3k2 − τ 2

°°°2¶¾
+1
4
kx1i2 −A1x2j2 − τ 1k2 + 1

3

°°°x1i2+A1x2j2+τ12
−A2x3k2 − τ 2

°°°2¶¾ .
(ii) With p∗2 probability we substitute matchings (i1, j1, k1) and (i2, j2, k2) by (i1, j1, k2) and

(i2, j2, k1). In this case,

r =

exp

½
− 1

σ2

µ
1
4
kx1i1 −A1x2j1 − τ 1k2 + 1

3

°°°x1i1+A1x2j1+τ12
−A2x3k2 − τ 2

°°°2
exp

½
− 1

σ2

µ
1
4
kx1i1 −A1x2j1 − τ 1k2 + 1

3

°°°x1i1+A1x2j1+τ12
−A2x3k1 − τ 2

°°°2
+1
4
kx1i2 −A1x2j2 − τ 1k2 + 1

3

°°°x1i2+A1x2j2+τ12
−A2x3k1 − τ 2

°°°2¶¾
+1
4
kx1i2 −A1x2j2 − τ 1k2 + 1

3

°°°x1i2+A1x2j2+τ12
−A2x3k2 − τ 2

°°°2¶¾ .
(iii) With 1−p∗1−p∗2 probability we substitute matchings (i1, j1, k1) and (i2, j2, k2) by (i1, j2, k2)
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and (i2, j1, k1). In this case,

r =

exp

½
− 1

σ2

µ
1
4
kx1i1 −A1x2j2 − τ 1k2 + 1

3

°°°x1i1+A1x2j2+τ12
−A2x3k2 − τ 2

°°°2
exp

½
− 1

σ2

µ
1
4
kx1i1 −A1x2j1 − τ 1k2 + 1

3

°°°x1i1+A1x2j1+τ12
−A2x3k1 − τ 2

°°°2
+1
4
kx1i2 −A1x2j1 − τ 1k2 + 1

3

°°°x1i2+A1x2j1+τ12
−A2x3k1 − τ 2

°°°2¶¾
+1
4
kx1i2 −A1x2j2 − τ 1k2 + 1

3

°°°x1i2+A1x2j2+τ12
−A2x3k2 − τ 2

°°°2¶¾ .
4.2 An application in Bioinformatics

We consider the same data from section 3.3 and we use an empirical Bayes procedure for
estimating the rotation matrices A1 and A2 from a known set of 38 labelled genes (those with
expression scores greater than 10000). After a Gibbs sampling scheme with 60000 observations
(20000 to burn-in) we obtain as estimates of the posterior means of the affine transformations
between humans-bonobos and humans-gorillas:

A1 =

µ
0.9781 0.2081
−0.2081 0.9781

¶
A2 =

µ
0.9906 −0.1366
0.1366 0.9906

¶
For angles of rotation matrices, we obtain for humans-bonobos −12.01o (6.0736 radians)

and for humans-gorillas: 7.84o (0.1370 radians).
Then, we select 23 genes with expression scores between 8000 y 10000 and let consider that

points are arbitrarily labelled. We estimate the matching matrix S(1,2,3), by selecting the m
most frequent not repeated matchings, and parameters τ 1, τ 2, σ2 by a MCMC scheme also with
60000 observations (20000 to burn-in). Results are in table 2 that shows how matchings have
been estimated correctly.

Humans genes (i) 23 1 2 3 4 9 5 7 6 22
Bonobos genes(j) 23 1 2 3 4 9 5 7 6 22
Gorillas genes (k) 23 1 2 3 4 9 5 7 6 22
Relative Frecuency 0.66 0.49 0.44 0.43 0.43 0.42 0.41 0.40 0.39 0.39

Humans genes (i) 10 21 14 15 16 8 11 18 19 17
Bonobos genes(j) 10 21 14 15 16 8 11 18 19 17
Gorillas genes (k) 10 21 14 15 16 8 11 18 19 17
Relative Frecuency 0.39 0.37 0.37 0.37 0.37 0.39 0.38 0.38 0.38 0.38

Humans genes (i) 20 12 13
Bonobos genes(j) 20 12 13
Gorillas genes (k) 20 12 13
Relative Frecuency 0.38 0.38 0.38

Table 2.
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Translations:

τ 1 =

µ
0.2312
0.2341

¶
τ 2 =

µ
0.2309
0.2356

¶
Estimate of the variance: σ2 = 1.0123.

5 Conclusions

We have proposed the matchings of M ≥ 2 configurations, with labelled and with unlabelled
points, by generalizing the model presented by Green and Mardia (2006). New class of matching
matrices has been defined in order to allow describing all the possible matchings up to order
M .
We have considered translation and rigid motion transformations, but a direct generalization

may be in terms of scale transformations and non linear transformation among configurations.
As an useful application, we have consider a problem of matching genes among different

species, by representing them in d = 2 dimensions by a Multidimensional Scaling technique,
with M = 3 species and labelled genes and with unlabelled genes. However, this model can be
used considering different configurations of genes and species and by associating distances to
relevant properties of genes compared among species. Moreover, this model can be useful in
order to find relations among species, by selecting some critical genes, or to assess diagnostic
forecasting by comparing positions of genes in different times of an illness.
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