
 

 
 

Working Paper 06-68 Departamento de Estadística 
Statistic and Econometric Series 18 Universidad Carlos III de Madrid 
December 2006 Calle Madrid, 126 
 28903 Getafe (Spain) 
 Fax (34-91) 6249849 
 
 
PROPERTIES OF TWO U.S. INFLATION MEASURES (1985-2005) ∗ 
 

Eva Vicente Martínez 1  
 

 

Abstract 
 
 

Analyses are presented of 84 quarterly observations 1/85-4/05 on two U.S. index 
numbers of nominal prices often employed to measure inflation.  Analyses are designed 
to answer two key questions of interest to macroeconomists.  Is inflation stationary 
(I(0)) or stochastically non-stationary (I(1))?  If it is I(1), is it scalar or multivariate?  
Both measures of inflation are found clearly to be I(1) and, for these measures, inflation 
is found clearly to be scalar.  The paper also illustrates univariate analysis procedures 
(and report standards) considered to be more effective and convincing than those found 
in the existing literature on inflation measures. 
 
 
 
Keywords: Inflation, Integration Order, Cointegration, United States Economy, 
Data-based Time Series Analysis.  
 
 
 
 

                                                           
∗ The author wishes to thank Arthur B. Treadway for his invaluable help with the English and for his 
unconditional collaboration. 
 
1 Departamento de Estadística, Universidad Carlos III de Madrid 
Tel.: 91-6249362; e-mail address: evicente@est-econ.uc3m.es 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

1 Introduction 
 

Time series analyses are presented of the 84 quarterly observations 1/85-4/05 on two 

U.S. index numbers of nominal prices often employed to measure inflation.  These analyses 

are designed to answer two key questions on recent U.S. inflation experience.  First, is 

inflation stationary ( )( )0I or is it stochastically non-stationary ( )( )1I ?  Second, if it is ( )1I , 

is inflation scalar or multivariate?  Both questions are of interest to macroeconomists, in their 

own right and for the design of research on the relationships between inflation and other 

variables.  Both measures of inflation analyzed are found very clearly to follow ( )1I  

processes and, as far as these two measures are concerned, inflation is found very clearly to 

be scalar.   

Besides these contributions to the study of U.S. inflation, the paper contributes an 

illustration of a set of practical univariate time-series analysis procedures (and standards for 

reporting), considered by the author to be substantially more effective and convincing than 

those found in the existing applied time-series econometrics literature on measures of 

inflation and the general level of nominal prices. 

 One of the variables studied is the implicit deflator for Gross Domestic Product 

(GDP), divided by 100, designated P .  It is the ratio of nominal GDP divided by real GDP, 

official data for which were downloaded from the web site of the Bureau of Economic 

Analysis (U.S. Commerce Dept.).  This variable is seasonally adjusted, since both numerator 

and denominator are officially seasonally adjusted.  The second variable is the Consumer 

Price Index for All Urban Consumers: All Items, originally monthly and not seasonally 

adjusted, numbers for which were downloaded from the Federal Reserve Economic Data web 

site, though the series is originally produced by the Bureau of Labor Statistics (U.S. Dept. of 

Labor).  This monthly series is aggregated to quarterly by taking the simple geometric mean 

of monthly values for each quarter, and is designated PC .  A detailed Statistical Data 
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Appendix is available on request from the author. 

 Each of P  and PC is an index number of nominal prices.  Each implies a measure of 

inflation, ln P∇  and ln PC∇  respectively, where “ln” represents the natural logarithm, and 

1 B∇ ≡ −  is the difference operator, B  the back-shift operator, such that 1t tBY Y −≡  and 

1t t tY Y Y −∇ ≡ −  for any time series Y  at time t . 

Inflation is a long-run concept, though both ln P∇  and ln PC∇  are measurements, 

that may or may not coincide with the appropriate long-run concept, depending on transient 

components.  However, the long-run statistical properties of ln P∇  and ln PC∇  necessarily 

coincide with those of the corresponding inflation concepts.  The first question formulated 

above can thus be restated as: Is ( )ln P I d∇ ∼  for 0d =  or for 1d = ? (the same question is 

formulated for ln PC∇ ).  Given that the data analyses clearly reveal that 1d =  for both 

inflation measures, the second question is framed as: Is ( )ln lnP PC I d∇ −∇ ∼  for 0d =  or 

for 1d = ?  The data analysis of ( )ln ln lnP PC P PC∇ ≡∇ −∇  reveals that 0d = , which 

means that a cointegration relation, with coefficients ( )1, 1− , is found.  That is, the 

stochastically non-stationary components of the two inflation measures are seen to be 

common, so that inflation, as measured by these two alternative statistics, is scalar, not 

bivariate.   

 It is remarkable that there is still apparently considerable debate among economists 

about the order of integration of inflation in the U.S., since the rate of inflation is one of the 

most frequently analyzed macroeconomic variables and the U.S. economy is the most 

researched economy in the world.  Nevertheless, prominent research economists do reveal a 

surprisingly wide variety of beliefs on this matter. 

 A common assumption in theoretical work in macroeconomics is that the rate of 

inflation follows an ( )0I  process; i.e. the effects of innovations in it are transitory.  For 
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example, Clarida et al. (1999) appear to make this assumption, since they propose a model in 

which the inflation rate is expressed as deviations from its long-run level; see p. 1665.  Such 

a long-run level does not exist unless inflation follows an ( )0I  process.  Furthermore, there 

are empirical studies, such as Clarida et al. (2000), in which it is explicitly assumed, without 

data analysis to justify it, that inflation follows an ( )0I  process.  The empirical results of the 

present paper strongly indicate that the ( )0I  specification for inflation in the contemporary 

U.S. economy is false, which calls into question all conclusions of either of the cited papers, 

as well as of many others not cited that use the same erroneous specification. 

 Nelson and Plosser (1982) had a major impact on the applied econometrics literature 

and originated a debate, still apparently open today, about the order of integration of 

macroeconomic time series, including the rate of inflation.  Many authors analyzed the same 

data as if it were somehow paradigmatic, but with widely differing results.  That data was 

very old even at the time, running from the late 19th century until 1970.  It is of questionable 

quality, at least for the years before 1929, when the official statistical system was much more 

primitive.  This data is also characterized by massive anomalous incidents associated with the 

Two World Wars, the Great Crash of 1929 and the Great Depression, and it was probably 

affected by price controls at times.  At least one author, Perron (1989), appears to find 

evidence in this data that the general level of nominal prices follows an ( )0I  process (around 

a linear deterministic trend), though this author appears later to have changed opinion.  

Several authors, e.g. Andreou and Spanos (2003), Nelson and Plosser (1982), Perron (1997), 

Rose (1988) and Zivot and Andrews (1992), appear to find evidence in this data that the 

general level of nominal prices follows an ( )1I  process, which implies that inflation follows 

an ( )0I  process.  And there is at least one author, Rudebusch (1992), who appears to find 

evidence in this same data to the effect that one cannot discriminate between the hypotheses 
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( )0I  and ( )1I  for the general level of nominal prices.  It is noteworthy that not one of the 

authors mentioned considered the possibility that the general level of nominal prices follows 

an ( )2I  process, which implies that inflation follows an ( )1I  process, the clear finding of 

this paper for recent data. 

 A few papers ask whether the inflation rate follows an ( )0I  or an ( )1I  process, 

rather than posing that question for the general level of nominal prices.  Both Culver and 

Papell (1997) and Lee and Wu (2001) analyze monthly data on the Consumer Price Index 

(CPI) for 13 countries, for periods beginning in 2/57 and ending in 9/94 and 4/99 

respectively.  Their conclusions coincide.  Both find in univariate analyses for the U.S. that 

the inflation rate follows an ( )1I  process, though they also present results from panel 

analyses indicating ( )0I .  Ng and Perron (2001) is a theoretical paper and only presents 

empirical results, for the GNP deflators of the G7 countries, to illustrate how easy it is to 

apply their new statistical methods.  They find 1d =  for the inflation rate calculated with the 

quarterly U.S. Gross National Product (GNP) deflator for 2/62-2/97, but they make no claim 

to relevance for their empirical results. 

Henry and Shields (2004) treat quarterly CPI data for 1/60-4/01.  This paper is mainly 

interested in the possible non-linearity of the processes underlying the data, but does not find 

non-linearity for the U.S.: it concludes that U.S. inflation follows an ( )1I  process.   

 There are authors, primarily interested in matters pertaining to the dependence of 

nominal interest rates on inflation, who have published empirical results on the order of 

integration of different measures of inflation.  Rose (1988) finds several inflation measures to 

follow ( )0I  processes, though each of Evans and Lewis (1995), Crowder and 

Hoffman (1996) and Crowder and Wohar (1999) finds inflation to follow an ( )1I  process. 
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The problem with all four papers is that the evidence offered on the order of integration of 

inflation is extremely slight, probably because this is not the central issue they are 

considering.  These articles will thus be ignored in the rest of this paper. 

 The present author, in Vicente (2005), analyzed both annual and quarterly data for 

both ln P  and ln PC , in the period 1959-1999 and in various sub-samples, finding very 

clearly that both inflation rates follow ( )1I  processes, both in the overall sample and in the 

sub-samples.  Clear changes in structure were detected between the period after that of the 

Federal Reserve’s so-called “New Operating Procedures”, which ended roughly with 3/82, 

and both the period before those procedures were begun (3/79), and the period when the 

procedures were in force.  The main change detected is a large reduction in variance in both 

variables after 3/82.  The present paper is an extension of that work, considering a period well 

after the end of the New Operating Procedures. 

 As far as the present author is aware, only the doctoral theses by Valbuena (2002) and  

Vicente (2005) have previously posed the second question, of whether inflation is scalar or 

multidimensional. Valbuena analyzes the implicit deflators for each of the thirteen aggregate 

components of expenditure and production, and for GDP, with annual data for the Spanish 

economy in 1964-1996, finding that these series follow ( )2I  processes with a very few 

exceptions.  She also analyzes the ratios of each component deflator to the GDP deflator and 

finds that these follow ( )1I  processes, thus finding that inflation is scalar in that case also.  

In Vicente (2005) annual and quarterly data for ( )ln P PC  are analyzed for the sample 

1959-1999 and various sub-samples, and ( )ln P PC  is shown to follow an ( )1I  process 

which, together with the finding that ln P  and ln PC  follow ( )2I  processes, implies that 

inflation is scalar. 

 The contents of the remaining sections of this paper are as follows.  Section 2 presents 
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the time-series analysis tools used in the present work and compares them critically with 

those characterizing the other empirical studies cited.  Sections 3, 4 and 5 present reports of 

the univariate analyses respectively of ln P , ln PC  and ( )ln P PC .  Section 6 concludes. 

2 Methods of time series analysis 

 The time-series analysis methods employed in this paper are an extended version of 

those introduced in the 1st edition of Box, Jenkins and Reinsel (1994) some 36 years ago.  

This section is meant to define them. 

Also in this section, the tools and methods used in other empirical studies of measures 

of the U.S. general level of nominal prices or rate of inflation, are analyzed critically with 

reference to the tools and methods employed in this paper.  The studies considered are: 

Andreou and Spanos (2003), Culver and Papell (1997), Henry and Shields (2004),  

Lee and Wu (2001), Nelson and Plosser (1982), Ng and Perron (2001), Perron (1989), 

Perron (1997), Rudebusch (1992) and Zivot and Andrews (1992).  They are representative of 

the empirical literature related to this research, recently published or frequently cited, and 

published in prestigious professional journals.  No comments on the tools and methods 

employed by Valbuena (2002) are made, because they are mostly the same as those of this 

paper. 

 The section is divided into subsections, 2.1 on representation and 2.2 on 

model-building. 

2.1 Representation 

 By representation is meant the general mathematical form of the parametric models 

within which one chooses a member to describe a particular time series. 

Let tY  stand for an arbitrary time series.  In this paper the particular cases are tP , tPC  

and t tP PC , as defined in section 1 and treated respectively in sections 3, 4 and 5. 

 The natural-base logarithm is used for each of the variables of this paper. Thus the 
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form lnt tz Y=  is considered in all three cases.  This specification is well-justified both by 

theoretical and empirical reasons and is common in the empirical literature on index numbers 

of nominal prices.  If chosen for tP  and tPC , it is implied for t tP PC . 

 The variable tz  is represented as the sum of a purely deterministic component ( )tξ   

and a purely stochastic component ( )tN , t t tz Nξ= + .  The deterministic term ( )tξ  is the 

sum of deterministic trend, seasonal and intervention components.   

The deterministic trend component, if any, takes the parametric form of a finite-order 

polynomial in the time index t .  The deterministic seasonal component, in the case of 

quarterly data, takes the parametric form ( ) ( ) ( )1 1 2cos 2 sin 2 1 tt tα π β π α+ + − , the first two 

terms representing frequency 1f = , the last term representing frequency 2f = . 

Each intervention term i  takes the general form ( ) i
i tBν ξ , where 

( ) ( ) ( )
i i

i i
i s rB B Bν ω δ=  for ( ) 0 1

i

i i

si i i i
s sB B Bω ω ω ω= − − −  and ( ) 11 i

i i

ri i i
r rB B Bδ δ δ= − − − ,  

where is  and ir  are non-negative integers and the omegas and deltas are real parameters.  The 

long-run gain of the linear transfer function ( )i Bν  is defined as ( )1ig ν≡ .  The i
tξ  in this 

paper may take the form of a unit impulse at time *t , 
*,I t

tξ , with unit value at *t t=  and zero 

values at all other times, or a unit step beginning at *t , 
*,S t

tξ , with unit values at all *t t≥  and 

zero values at all other times.  This general representation was introduced by Box and 

Tiao (1975).  The denominator operator in ( )i Bν  is not necessary in any of the cases found 

in this paper. 

 In almost all models discussed in this paper, the purely stochastic component tN  is 

assumed to follow the gaussian ARIMA(p,d,q) form, ( ) ( )d
p t q tB N B aφ θ∇ = , where p, d and 

q are non-negative integers, ( ) 11 p
p pB B Bφ φ φ= − − − , the AR(p) operator, is assumed to be 
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stationary, that is, all solutions to ( ) 0p Bφ =  have modulus strictly greater than one, 

( ) 11 q
q qB B Bθ θ θ= − − − , the MA(q) operator, is assumed to be invertible, that is, all 

solutions to ( ) 0q Bθ =  have modulus strictly greater than one, and iidta  (independently and 

identically distributed) ( )20, aN σ , where ta  is called the innovation at time t .  The phis and 

thetas are real parameters.  It is assumed that the AR(p) and MA(q) operators do not have 

common factors.  It is said that a time series tz  follows a stochastic process integrated of 

order d, ( )tz I d∼ , when the variable d
tN∇  follows a stationary, invertible stochastic process 

as defined here. 

 Note that the ARMA(p,q) model form is used in this paper, though most of the 

existing empirical literature employs pure AR(p) forms.  The ARMA form is preferred, 

because: (1) it allows a more parsimonious representation than the pure AR form for many 

time series that occur in practice, and it should never yield a less parsimonious form, and  

(2) over-differencing implies the presence of non-invertible MA(1) factors, so that the use of 

MA forms, together with AR, helps one detect over-differencing.   All papers cited in the 

second paragraph of this section ignore MA structure, except Culver and Papell (1997) and 

Henry and Shields (2004).  This is surprising, given that one of the main reasons for using 

MA(1) structure is that it helps clarify the order of integration, the central objective of all of 

these papers. 

 The time series P is officially seasonally adjusted but, as seen in section 3, contains a 

deterministic seasonal mean.  The time series PC is not officially seasonally adjusted, but the 

data analysis of section 4 detects a deterministic seasonal mean in an over-fitting diagnostic 

exercise.  In both cases, it is worthwhile to check for the possibility that the seasonal mean is 

stochastic rather than deterministic.  This is done only in otherwise apparently statistically 

adequate models.  At 1f = , remove the cosine and sine terms of the deterministic 
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specification, add the homogeneously non-stationary operator ( )21 B+  to the left side of the 

model and add an operator of the form ( )2
11 Bλ−  to the right side of the model, then estimate 

the resulting model and check for the non-invertibility ( )1 1λ = −  of this last MA operator.  At 

2f =  a similar procedure is employed.  The ( )1 t−  deterministic term is removed, the 

operator ( )1 B+  is added to the left side, the MA factor added ( )21 Bλ−  is checked for 

non-invertibility ( )2 1λ = − .  The relevant test statistics are discussed below.  The initial ideas 

for this approach to seasonal mean were presented in Gallego (1995) and Gallego and 

Treadway (1996). 

 The equation ( ) ( ) ( )d
p t t q tB z B aφ ξ θ∇ − =  characterizes the representation used in 

this paper.  Consider the representation typical of most of the econometric literature on unit 

roots, ( ) d
p t t tB z aφ ξ∇ = + , where all symbols are defined as before and MA structure is not 

allowed.  The critical error in specification, common to this literature, is that the deterministic 

component is added to the innovation ta  rather than being subtracted from the variable tz .  

This implies that the meaning for tz  of each deterministic term depends on the value of d and 

the order and parameters of the AR operator. 

Consider the case when the researcher includes a deterministic linear trend term, say 

tα β+ , in the autoregression.  Under 0d = , tz , which was presumably intended to be taken 

as stationary around this deterministic linear trend term, is actually taken to be stationary 

around a deterministic linear trend term of the form ( ) ( )1p pt Bα φ β φ+ , which is 

parametrically very complex, depending not only on the parameters α  and β , but also on all 

of the AR(p) parameters.  When 1d = , however, it is tz∇  that has this peculiar deterministic 

linear trend component and the deterministic trend component in tz  is quadratic unless 0β =  
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is imposed.  This is why the Dickey Fuller (1979), DF, and Augmented Dickey Fuller (1981), 

ADF, null hypothesis is always composite: 1d =  and 0β = .  Similar complexity and the 

need for composite hypotheses arise for intervention terms.  None of this useless complexity 

and need for composite hypotheses is present for the representation used in this paper. 

Furthermore, observe that the commonly used equation can be rewritten as 

( ) ( )d
t t p t pz B a Bξ φ φ∇ = + .  This specification requires that the same AR operator is to 

operate on the stochastic innovation and on each and every deterministic term as well, no 

matter what the value of d may be.  This amounts to the use of utterly arbitrary specification 

and parameter restrictions. 

The assumption of this representation seriously undermines all studies using the DF or 

ADF statistics when even the simplest deterministic terms are included.   

2.2 Model-building 

 The data analysis of this paper employs a conscious iterative process, beginning 

simple and gradually complicating the model to adequately describe the data in statistical 

terms, with as few parameters as possible.  This process involves five stages: (1) initial 

specification, based on the data, (2) efficient estimation by Exact Unconditional Maximum 

Likelihood, (3) statistical diagnosis, based on the data, (4) reformulation, when the model is 

found to be inadequate at stage 3, and (5) use of the model, for hypothesis testing e.g., when 

the model is found to be adequate at stage 3. 

In most of the existing applied time-series econometrics literature, including all of the 

papers cited at the beginning of this section, little attention seems to be paid to the data.  The 

model-building activity is not a process at all, and certainly not a process revealed in 

publication, but is limited to an exercise in estimation, with model-selection reduced to the 

application of a few formal statistical hypothesis tests.  This description is not entirely fair for 

the Andreou and Spanos (2003) paper, because these authors do employ a certain iterative 
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process in their attempt to achieve statistical adequacy, though it still seems that they pay 

insufficient attention to the data. 

The scarcity of background information on their data published by many of the 

authors, gives an idea of the slight importance conceded to the data they analyze.  Nelson and 

Plosser (1982) do not indicate the exact definition of almost half of the series they analyze.  

Later papers, Andreou and Spanos (2003), Perron (1989), Perron (1997), Rudebusch (1992) 

and Zivot and Andrews (1992), analyze the same data but do not clarify the definitions.  

Culver and Papell (1997) do not indicate whether the monthly data on  PC  that they analyze 

is seasonally adjusted or not.  There are even authors, such as Henry and Shields (2004), who 

do not mention the source of their data. 

 Both initial-specification and statistical-diagnosis operations presented in this paper 

make use of a single basic set of tools: the data graph, the graph of the autocorrelation 

function (acf), the graph of the partial autocorrelation function (pacf) and a small set of 

elementary statistics.  These tools are applied to the level, the first difference and perhaps the 

second difference of the time series under analysis, at the initial-specification stage, and are 

applied to the residuals, the estimated innovations, at the statistical-diagnosis stage. 

Let tw  stand for a generic variable and assume there are n observations on it (it might 

be tz , tz∇ , 2
tz∇   or the residuals, ˆta ).  In the case of a particular variable, its precise name is 

found at the top of the graphics module, which contains the data graph, acf and pacf graphs 

and elementary statistics for that variable.  Data graphs are presented standardized, that is, the 

variable presented is ( )t ww w σ− , where w  stands for the simple arithmetic mean and wσ  

stands for the standard deviation of the data.  Thus the zero on the vertical axis marks the 

mean and the marks, numbered or not, refer to units of the standard deviation.  Below each 

data graph, the two elementary statistics w  and  wσ  are presented, and in parenthesis after 



 12

the value of the mean appears the standard deviation of the mean w w nσ σ= . 

 The acf is calculated for 1, ,15k =  in this paper.  The acf coefficient at lag k, kr ,  is 

calculated as ( ) ( )( )2

1
1

n k

k w t t k
t

r n w w w wσ
−

+
=

= − −∑ .  The acf values are graphed together with 

broken lines at 2 n± , which serve as guides to relevance.  The Ljung and Box (1978) 

portmanteau statistic Q is presented with the appropriate degrees of freedom in parenthesis.  

 The pacf is calculated for the same set of lags as the acf, and is graphed with the same 

broken lines at  2 n± .  The first value of the pacf is equal to that of the acf.  For 1k > , the 

pacf value is calculated as the Least Squares regression coefficient of tw  on t kw −  in a 

regression with constant term and other regressors { }1 1, ,t t kw w− − + . 

 The analysis reports of sections 3-5 illustrate the use of these tools.  At the initial 

specification stage, one begins by considering the level of tz .  When the series clearly trends 

(only crosses the mean value roughly once in the sample), it may do so upwards, as occurs 

with ln P  and ln PC , or downwards, as occurs with ( )ln P PC .  Then one concludes that the 

series follows a non-stationary process, though one does not yet know if the non-stationarity 

is deterministic or stochastic in nature.  When the acf  is seen to die out, as the order of lag 

rises, only very slowly and either linearly or concave downward, this confirms the conclusion 

of non-stationarity.  In such cases, one proceeds to examine the case of tz∇ .  The only tools 

used here are the data graph and the acf.  One does not take a definitive decision as to the 

order of integration at all at this point, but takes a first step in a process by which, later on, 

such a decision may be rigorously obtained. 

One continues this process until one obtains a data graph that appears to be 

well-centered and an acf  that appears to arise from a stationary process, that is, the latter dies 

out rapidly, either with a clear cut-off point or being strongly damped, and has a 
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configuration that appears to reflect an ARMA(p,q) structure with low orders (p,q).  The 

basic ARMA forms of acf (and pacf) can be found in Box, Jenkins and Reinsel (1994).  

When one arrives at such evidence, without finding a need for intervention analysis along the 

way, then one proceeds to efficiently estimate the resulting ARIMA(p,d,q) model. 

 In many economic time series, as in the cases of this paper, the level of the series 

shows clear trend and hence one will initially use at least one difference.  It is also true that 

the second difference of most economic series is well-centered, i.e. shows strong affinity to a 

long-run mean value, usually zero.  However, there are many intermediate cases, as occur 

with ln P∇  and ln PC∇  in this paper.  In such intermediate cases, the data graph neither 

shows trend, crossing the mean line only roughly once in the sample, nor does it show a 

well-centered series, crossing the mean line very frequently.  The series is said to wander.  In 

such cases, one may choose to try to model the series as stationary and look for a 

non-stationary AR(1) factor or try to model the series with one more difference and look for a 

non-invertible MA(1) factor.  In really doubtful cases, one is best advised to consider both 

options, hoping that they will lead to the same conclusion.  Note that one will often have to 

use a mean parameter (constant in tξ ) in the potentially under-differenced case, but not in the 

potentially over-differenced case. 

 Seasonal variation in the local mean of the data can appear at any level of 

differencing.  It is seen in the data graph when the values at a certain season (quarter here) are 

always, or almost always, above (or below) the mean (the zero axis).  It is seen in the acf 

graph by positive values that do not seem to die out at the annual lags; they need not be large.  

When such evidence is found, one may proceed to initially model the seasonal mean either as 

deterministic or stochastic, testing the specification against the alternative at a later stage.  In 

this paper, the initial specification is deterministic and it is found to be adequate in all cases, 

once the stochastic alternative is considered.  This choice is made here, because there should 
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be no sign of seasonal mean in the variable P , since it is officially seasonally adjusted, and 

because seasonal mean is found in PC  only at the end of the iterative model-building 

process, in an over-fitting statistical diagnosis operation. 

One often detects anomalous incidents in the data as one carries out the process 

previous to efficient estimation.  If such incidents are very important, leading to probable 

distortions in the analysis tools, especially the acf, but also in the elementary statistics, then 

one may efficiently estimate a model with no ARMA structure, but with intervention terms 

representing the anomalies, before proceeding with ARMA specification.  The evaluation of 

such distortions is not detailed here, but basically amounts to calculating and evaluating the 

contribution of the data anomaly to the statistic expected to be distorted.  In other cases, 

where such anomalies appear to not be so important, one may carry out intervention analysis 

after efficiently estimating an ARMA model. 

Intervention analysis is useful, not only for controlling the distortion and influence 

potential of anomalous data, but also for discovering the exact form of the anomaly.  One 

should, once the form of the anomaly is clear, look for explanations for the anomaly in 

whatever outside sources one can find.  Such information is called extraneous information, 

because it does not derive from the sample data under analysis.  If, in the case of a given 

anomaly, one finds no such extraneous information, then the decision to use the intervention 

terms in a final model should be based on an evaluation of the influences of the anomaly, 

influences on the choice of the order of integration, and/or influences on the other parameters 

of the model.  At the very least, one must be aware of influences that are present and avoid 

taking decisions that depend on ignoring (not modeling) certain anomalous data. 

Graphical materials are used intensively in the research reported in this paper, starting 

at the initial-specification stage.  In the papers cited at the beginning of this section, graphical 

materials are almost completely ignored.  Only Zivot and Andrews (1992) and Henry and 
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Shields (2004) include data graphs of all series they analyze, and Zivot and Andrews (1992) 

only present data graphs of the levels of the series.  It is surprising that, with the exception of 

Henry and Shields (2004), in none of the studies cited are data graphs and acf/pacf  of both 

levels and first differences presented, when the studies themselves are intended to evaluate 

whether the series follow ( )1I processes or ( )0I  processes.  These studies systematically 

ignore the most elementary evidence. 

All efficient estimation of models in the present paper is performed with a computer 

program (FDRVUS) originally designed, coded and debugged by J. Alberto Mauricio, tested 

extensively in that original form by a team of researchers at the Universidad Complutense de 

Madrid and modified later by David Guerrero to simplify use and to free it from dependence 

on non-free code.  The C source code together with user’s manual and technical manual is 

available from the author.  The estimation criterion is Exact Unconditional Maximum 

Likelihood and the implementation combines procedures for evaluation of the exact 

unconditional maximum likelihood function for the univariate ARMA model by 

Melard (1984) with other procedures developed by Mauricio (1992, 1995).  This criterion is 

to be preferred to the conditional maximum likelihood criterion, especially when sample size 

is small, because: (1) the conditional criterion is but an approximation to the unconditional 

criterion and (2) the conditional criterion regards the initial p observations, of the variable 

taken as stationary for the estimation, as fixed values, so that residual values are not 

generated for these early dates in the sample, leaving the researcher open to the presence of 

undetected data anomalies in those early observations, anomalies that may well influence any 

of the inferences drawn.  All papers cited above use conditional efficient estimation methods. 

Statistical diagnosis of a model begins with writing the model down with the 

numerical values estimated for the parameters in the factored form of the operators, estimated 

standard errors in parenthesis below parameters, estimated correlations between parameters 
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presented when sufficiently large (greater than .7 in absolute value), estimated damping 

factor and period with their corresponding approximate estimated standard errors presented 

below any factors of second degree with imaginary roots, and the estimated standard error of 

the innovations.  One evaluates the possibility of irrelevant parameters by comparing their 

estimated values with their standard errors; Student t statistics can be employed.  The same 

factor must not appear in both the AR and MA operators; factoring operators allows one to 

quickly check for such parameter redundancy.  Over-parameterization may be indicated by 

high correlations between parameters.  The presence of an AR(2) factor with imaginary roots 

may suggest an over-fitting experiment by adding an MA(1) factor to the model.  All of these 

steps lead potentially to reformulations, but do not involve examination of the residuals. 

For a model to appear to be statistically adequate, none of the above checks should 

suggest possible reformulations not yet tried, and furthermore the residuals must appear to 

comply with the specification ( )2 iid 0,t aa N σ .  The residual data graph should show a 

well-centered series with not too many large residuals, not more than roughly 2.5% of the 

number above (below) the ( )ˆ ˆ2  2a aσ σ+ −  band, none very extreme in absolute value.  The 

residual mean should not be much larger in absolute value than its standard deviation, though 

the residual mean can be very distorted by one or a few large residuals or an asymmetry of 

large residuals, so that contributions should be calculated to try to discount such possibilities.  

The residual acf/pacf should not indicate any further ARMA structure to include; the 

low-order lags are the most important.  There is no reason to try to model isolated acf values 

at high lags.  The Ljung and Box (1978) portmanteau Q statistic should not be much larger 

than the degrees of freedom (order of highest lag used for acf less the number of ARMA 

parameters estimated).  If it is, that suggests misspecification, but, if it is not, that does not 

indicate the model is well specified, just that that particular test does not suggest 

misspecification.  Note that the Q depends on the terms of the acf and the acf depends on the 



 17

time series shown in the data graph.  Often a few extreme residuals will distort certain values 

of the acf at irrelevant lags and hence will distort the Q upwards as well.  When one has used 

intervention analysis to evaluate the influence of such extreme values, has found that they do 

not influence either the differencing decision or the parameters of the model and has found no 

extraneous information indicating that the extreme values are due to contamination of some 

kind, then one should not leave the intervention terms in the model, but may well have a 

“dirty” residual acf and a Q statistic suggesting misspecification, even though one has no 

misspecification at all. 

Diagnosis by over-fitting is a useful technique.  If one suspects, for whatever reason, 

that the model might be improved in a certain direction, then one tries the reformulation.  One 

should never add more than one or two parameters at a time in over-fitting.   

In sharp contrast to what is done in the present paper, in the articles cited above no 

graphical tools for diagnosis are used.  Even formal hypothesis tests of specification are not 

presented, with the exceptions of Andreou and Spanos (2003) and Henry and Shields (2004).  

For these reasons, the reader cannot determine whether these models are statistically adequate 

or not and, hence, cannot determine whether the conclusions based on hypothesis tests about 

the order of integration are reliable or not. 

Furthermore, with the exception of Rudebusch (1992), the cited articles do not even 

present all of the parameter estimates with their estimated standard errors, nor the correlations 

between parameters.  This makes it impossible for the reader to determine whether or not the 

models are over-parameterized, in which case the results of hypothesis tests on the order of 

integration are not reliable.   

Reformulation, if needed, arises from the nature of the deficiencies detected in the 

diagnosis of the latest efficiently estimated model.  It is easy to see how one reformulates 

when the problem is to remove redundant AR or MA factors.  When the residual acf/pacf 



 18

reveal AR or MA structure not yet included, then this further structure is specified according 

to what is seen in the acf/pacf and is incorporated multiplicatively with the existing AR and 

MA factors.  When the estimation situation is found to be ill-defined, that is, when large 

correlations are found between parameters, reformulation can take a number of forms, 

depending on how badly over-parameterized the model is.  Of course, the presence of data 

anomalies often motivates reformulations, either before ARMA structure has been specified 

or after.  In such cases it is important to take the data into consideration, and to take the 

ARMA structure already included into consideration, when interpreting the form of the 

anomaly in the level variable tz .  It is often easier to see the form in data graphs before 

ARMA structure has been used. 

One may perform informal, or even formal, hypothesis tests of different kinds 

throughout the iterative model-building process, but the tests of the key hypotheses, such as, 

e.g., tests to determine the order of integration, are carried out only toward the end of the 

process.  For a formal hypothesis test to be of real use, it must be employed under the 

appropriate conditions: (1) in a model that is parsimoniously parameterized, (2) that has been 

efficiently estimated, and (3) that has been found to be statistically adequate.  It is not 

possible for the reader to know whether these conditions are satisfied or not for the papers 

cited above, because they do not present the information needed for evaluating conditions (1) 

and (3). 

Furthermore, to take the results of a formal hypothesis test seriously, they must be 

clear-cut.  To clearly reject a null hypothesis, one needs the test statistic to be much larger 

than the critical value at 95% confidence, to not reject one needs it to be much smaller than 

the critical value at 90%, say.  There are, of course, cases that arise in practice, in which 

clear-cut results are not available, but one cannot rely heavily on them.  In this paper, critical 

values at both 90% and 95% confidence are cited in parenthesis along with each test statistic. 
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The test for the non-stationarity of an AR(1) factor used in this paper is by Shin and 

Fuller (1998), and is called the SF test.  The test for the non-invertibility of MA factors used 

in this paper is by Davis et al. (1995, 1996), and is called the DCD test.  Both are based on 

unconditional likelihood ratios and appear to be superior both in size and in power to the 

alternative tests currently available for these hypotheses.  The critical values used for the SF 

test are linear interpolations of those tabulated in Shin and Fuller (1998) for different sample 

sizes: 1.06 (90%) and 1.75 (95%).  The critical values tabulated by Davis et al. (1995) for an 

( )1MA , also used for testing ( )2 1λ = −  in the ( )21 Bλ−  MA factor used in quarterly 

seasonality work, are 1.00 (90%) and 1.94 (95%).  The critical values for testing 

non-invertibility ( )1 1λ = −  in the ( )2
11 Bλ−  MA factor used in quarterly seasonality work, are 

linear interpolations of those tabulated for an ( )1MA  in Davis et al. (1995) and those tabulated 

for the ( )4
1MA  in Davis et al. (1996): 1.07 (90%) and 2.02 (95%). 

When extraneous information is found that convincingly explains a certain data 

anomaly as some kind of contamination or error in the data, then the intervention terms that 

adequately represent the data anomaly are left in the model.   

When a data anomaly is not explained by extraneous information, then the empirical 

question arises of what influences it has.  The intervention parameters associated with the 

data anomaly are evaluated for two kinds of influence: (1) influence on the inference about 

the order of integration and (2) influence on the rest of the estimated parameters of the model.  

Such evaluation is carried out with an efficiently estimated, parsimoniously parameterized 

and apparently statistically adequate model.  The model is estimated with and without the 

intervention term.  An intervention parameter is considered to influence the decision about 

the order of integration when its exclusion from the model changes the decision.  An 

intervention parameter is considered to influence another estimated parameter when the latter 
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parameter estimate changes substantially when the intervention parameter is removed; this 

influence is considered to be substantial when the change in the other estimated parameter is 

by more than one estimated standard error, though this rule is not applied rigidly. 

With the exceptions of Perron (1989) and Henry and Shields (2004), the articles cited 

above do not present data graphs to look for possible anomalous incidents in the data.  In the 

papers by Nelson and Plosser (1982), Rudebusch (1992), Lee and Wu (2001) and Ng and 

Perron (2001), the presence of anomalous incidents in the data is not even mentioned, though 

the samples analyzed by Nelson and Plosser (1982) and Rudebusch (1992) include the Great 

Depression and two world wars, and the samples analyzed by Lee and Wu (2001) and Ng and 

Perron (2001) include the oil crises of 1973 and 1979 and the period in which the Federal 

Reserve applied the “New Operating Procedures”, all of which definitely are associated with 

major data anomalies in inflation measures.  One must wonder if these authors fail to mention 

any data anomalies, because they have not ever looked at the data graphs that would reveal 

them. 

In none of the papers cited is there any mention of extraneous information, nor are the 

influences of ignored data anomalies on the test results evaluated.  To ignore the presence of 

important anomalous incidents in the data of a time series can easily lead to utterly erroneous 

conclusions as to the degree of integration and even to the conclusion that the series follows a 

non-linear stochastic process when, in fact, the process is linear. 

3 Univariate analysis of GDP deflator (P) 

 The data graph of ln P  shows an upward trend with slowly varying slope.  The 

coefficients of the acf die out only slowly and linearly. 

If one were to attempt to represent this series as stationary around a deterministic 

trend, one would need to employ a deterministic trend component with linear or possibly 

higher-order polynomial terms.  One would seek an initial AR form, but the order of such an 
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AR form is highly doubtful, because there are large, though isolated, pacf coefficients up to 

high orders. 
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No definitive decision is yet taken on the order of differencing required.  But the 

evidence suggests that ln P  is probably stochastically non-stationary.  It is thus wise to 

examine the ln P∇  series. 
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 The data graph of ln P∇  wanders very noticeably, showing little affinity for a 

long-run mean value.  The acf is dominated by positive values that die out only very slowly.  
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This evidence suggests that even ln P∇  probably follows a stochastically non-stationary 

process.  One should examine the 2 ln P∇  series. 

The data graph of 2 ln P∇  appears to be well-centered, showing strong affinity for the 

long-run mean value of zero.  The acf/pacf suggest an MA(1) form.  These features indicate 

that 2 ln P∇  follows a stationary stochastic process, though it may be non-invertible. 
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 Note that there is evidence of a seasonal mean in 2 ln P∇ , though the time series is 

officially seasonally adjusted.  In the data graph, all first quarter values are positive, except 

for small negative values in 1986, 1998 and 2002.  In the acf, all three annual coefficients are 

outstandingly positive.  Note, also, that there are clear satellite values at lags 9, 11 and 13, 

which reinforce the MA(1) specification and the impression of the presence of seasonality, 

though there are no satellite values at lags 3, 5 or 7. 

 In the data graph, there are roughly nine values found at or beyond the 2σ±  bands, 

not too many in a set of 82 values.  None are very extreme. 

 The evidence of a seasonally varying mean in 2 ln P∇ , despite the fact that the 

variable P  is officially deseasonalized, requires attention.  The approach taken here is to 

initially assume that the seasonal mean is deterministic, complete a univariate analysis under 
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this assumption and then evaluate whether the seasonal mean is stochastic or deterministic.  

To begin with, a model is estimated with deterministic seasonal mean under the assumption 

that the remainder series ( )ln P1  follows a stationary, invertible process in the second 

difference.  Though not, of course, identical, the graphical and statistical materials for ln P1  

and ln∇ P1  are very similar to those for ln P  and ln P∇ . 
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 It appears that the seasonal mean has been more or less adequately treated.  

First-quarter values of 2 ln∇ P1  are not systematically of one sign.  There is no evidence of 

seasonal mean in the acf.  The evidence of MA(1) structure with positive parameter is very 

clear in the acf/pacf.  There are three values on or beyond the 2σ±  bands and only the one at 

3/04 seems possibly very extreme. 

 When the MA(1) structure is added, the estimated Model P2 follows. 



 24

  pacf

1284

0.5
0.25

0
-0.25
-0.5

  acf

1284

0.5
0.25

0
-0.25
-0.5

80726456484032241680

85       87       89       91       93       95       97       99       01       03       05   

4

2

0

-2

-4

AP2

Q ( 14 ) = 14.2         

W
__

(σ
^ _

W ) = 0.01 % (0.02 %)

σ
^

W = 0.16 %  

 

t
t t

2
t t

lnP .00050cos( t 2) .00048sin( t 2) .00021( 1) N
(.00015) (.00015) (.00007)

N (1 .60B)AP2

                                      

                        
                           
                    

= − π + π − − +

∇ = −

AP2

(.08)

ˆ .16%

                        

                                  σ =

 (3.2) 

Large Residuals     

3/88 2.1
1/00 2.1
1/02 2.2
2/04 2.4
3/04 2.4

                 
                 
              
                
             

σ
σ

− σ
σ

− σ

                
( ) {
( ) {

8 1/00 1/02

9 1/02 2/04

r .15 .11 a a : .06
r .18 .11 a a : .06

 , 
 , 

= − −
= − −

 

 This model appears adequate.  The residuals seem well-centered with zero mean.  

There are but five residuals greater than the 2σ±  bands, not excessive for 82 values.  No 

residuals are very extreme. 

The only anomalous incident that stands out a bit is a sequence of step-in-level effects 

in 1-3/04, but even this incident should not influence the parameter estimate for the MA(1), 

because the contributions of 1-2/04 and 2-3/04 are of opposite signs.  Neither acf nor pacf nor 

Q statistic suggests misspecification.  The only slightly large acf values, at lags 8 and 9, are 

seen to receive substantial contributions from just one interaction in each case.  The estimated 
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parameter values for the deterministic seasonal components are exactly equal to those 

obtained without the MA(1) parameter. 

 Model P2 specifies ln (2)P I∼ .  To check for over-differencing, the hypothesis 

0 1H : 1θ =  is tested.  The DCD statistic is 54.74, which is much larger than either of the 

critical values of (1.00, 1.94) for confidence levels (90%, 95%), thus rejecting the hypothesis.  

When an AR(1) factor is added, the parameter is not significantly different from zero and the 

DCD statistic is 11.26, confirming the rejection of the over-differencing hypothesis. 

When three step-in-level terms in 1-3/04 are added to Model P2, the residuals in the 

neighborhood of these dates indicate that any anomaly present is adequately represented, and 

no parameter of the model varies by more than one standard deviation (as estimated in P2), 

indicating that, as expected, this incident is not influential in the parameter estimates.  The 

DCD statistic for the test of 0 1H : 1θ =  is found to be 65.0, to be compared with the same 

critical values given above, so that the over-differencing hypothesis is strongly rejected, that 

is, the incident is not influential in the decision on the order of integration. 

There should be no sign of seasonal dependence in the local mean for an officially 

deseasonalized time series like P.  It is a sign of breakdown in the official statistical approach 

that one does see clear evidence of seasonal mean in P. 

 So far in this analysis, the assumption has been that the seasonal mean is 

deterministic.  However, the estimates of the deterministic seasonal parameters ( )1 1, 2,α β α  

differ somewhat in the present analysis of data for 1/85-4/05 from the values estimated in 

Vicente (2005) for the sample of quarterly data for 1/85-4/99 current at the time of that 

research.  The 1α  estimate changes from -.00042, in the earlier research and sample, to 

-.00050, in the present research and sample, not much of a change, considering the smallest 

of the two estimated standard errors (.00015).  The 1β  estimate changes from .00030 to 
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.00048, a change above the smallest of the two estimated standard errors (.00015), and the 2α  

estimate changes from -.00012 to -.00021, a change also above the smallest of the two 

estimated standard errors (.00006).  The changes are not very large, but it is well to recall that 

the present longer sample contains the first, except for data revisions, and only adds 24 

observations to the common 60.  The variation in these estimated coefficients suggests that 

the seasonal character of local mean might be stochastic rather than deterministic. 

Model P2 specifies the seasonal mean to be deterministic at both frequencies 1and 2.  

At each frequency, when the stochastic specification is applied and the model estimated, the 

corresponding MA parameter is estimated to be literally non-invertible.  This strongly 

confirms the deterministic seasonal mean specification. 

 Consider an alternative model specification, similar to the IMA(2,1) with 

deterministic seasonal mean of P2, but using an AR(1) factor in place of one of the 

differences and introducing a parameter µ  to allow for a possibly non-zero mean for the 

first-difference variable ln P∇  “corrected” for the deterministic seasonal mean.  Such a 

model allows one to test the null hypothesis of non-stationarity of this AR(1) factor and, 

hence, to check, from a slightly different point of view, the possibility that Model P2 is 

over-differenced.  Call the estimated version Model P3. 
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 This model is very similar to Model P2 in terms of all diagnostic criteria.  The SF test 

of 0 1H : 1φ =  yields a test statistic of .27, much smaller than either of the critical values 

(1.06, 1.75) for levels of confidence (90%, 95%), so that the null hypothesis cannot be 

rejected.  The conclusion ln (2)P I∼  is strongly confirmed. 

4 Univariate analysis of the Consumer Price Index (PC) 

 The data graph of ln PC  shows an upward trend with slowly varying slope.  The 

coefficients of the acf die out only slowly and linearly.   
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The rest of the comments made above on ln P  are equally appropriate in this case.  

Though no definitive decision is yet taken on the order of differencing required, the evidence 

suggests that the level is probably stochastically non-stationary.  It is thus wise to examine 

the series of the first difference. 
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 The data graph of ln PC∇  wanders very noticeably, showing little affinity for a 

long-run mean value.  The acf is dominated by positive values that die out only very slowly.  

This evidence suggests that even ln PC∇  probably follows a stochastically non-stationary 

process.  It seems wise to examine 2 ln PC∇  before proceeding to estimate any model. 

There is a noticeable reduction in variance of ln PC∇  in the period roughly from 1/91 

through 4/00.  The beginning of this incident was detected in Vicente (2005), Section 3.3.3, 

pages 135-137, though it was not clear in that earlier analysis that this variance reduction is 

not permanent.  An unsuccessful attempt to find an explanation for it was made; it is not 

apparently due to any change in methods used for constructing PC.  In the present study this 

incident of heteroskedasticity is not treated, because any adjustment for heteroskedasticity 

would involve a non-linear change in the scale with which PC is measured. 
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 The data graph of 2 ln PC∇  appears to be well-centered, showing strong affinity for 

the long-run mean value of zero.  The acf does not show signs suggestive of stochastic  

non-stationarity.  One can conclude that 2 ln PC∇  follows a stationary stochastic process, 

though it may be non-invertible.  There is no sign of seasonal mean in either the data graph or 

the acf. 
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 The data graph does not show either an excessively large number of extreme values or 

any very extreme values.  Thus, intervention analysis is not appropriate at this point.  The 

curious span of years, roughly 1991-2000, in which the variance of the series is much lower 

than either before or after, is evident in the data graph. 

 Both acf and pacf strongly suggest the presence of some MA structure, MA(2) or 

MA(3).  The first model estimated employs the MA(3) specification and is named Model 

PC1. 
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 Model PC1, presented in factored form, appears to be statistically adequate.  The 

residuals graph is well-centered, the residual mean does not differ from zero, neither acf, nor 

pacf, nor Q statistic indicates misspecification, and there are no very large residuals, nor is 

the number of large residuals very excessive.  The apparent heteroskedasticity mentioned 

above, and not treated here, is the only noticeable flaw.  The DCD statistic for the test of 

over-differencing is 5.50 with critical values (1.00, 1.94), indicating that over-differencing is 

strongly rejected.  When a stationary AR(1) factor is added, the DCD statistic falls to 4.16, 

but this still indicates a clear rejection of the over-differencing hypothesis. 

In Model PC1 there is no sign of seasonality.  There is no quarter with residual values 

systematically of one sign, nor does the residual acf show relevant values in the annual lags 4, 

8 and 12.  Nevertheless, an over-fitting diagnostic exercise is performed and a seasonal mean 
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structure is discovered.  The estimated Model is called PC2. 
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Model PC2 has all of the same diagnostic properties as Model PC1, though some 

deterministic seasonal mean structure is found.  The DCD test for over-differencing yields the 

value 6.08, to be compared with critical values (1.00, 1.94), so that the over-differencing 

hypothesis is roundly rejected.  When a stationary AR(1) factor is added to PC2, the DCD 

statistic falls to 5.30, but the over-differencing hypothesis is still clearly rejected.  A similar 

result (DCD = 14.44) is obtained in a model specified exactly as PC2 but with seven 
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intervention parameters designed to remove possible positive distortions at lag 1. 

 When the parameter 2α , which is not significantly different from zero, is removed, 

the resulting model is practically identical to PC2, but this restriction is not employed in what 

follows. 

 A further check for over-differencing in PC2 can be performed by estimating a similar 

model specification, with one of the differences replaced by an AR(1) factor and introducing 

a parameter µ  to allow for a possibly non-zero mean for ln PC∇ .  The test of 

non-stationarity of the AR(1) factor, using the SF test, is then applied.  In this case, the 

estimated model is practically exactly the same as PC2, but with an estimated AR(1) 

parameter of  .88 (.08) and an estimated mean parameter of .76% (.09%).  The SF statistic for 

the test of non-stationarity of the AR(1) factor has value .78, to be compared with the critical 

values (1.06, 1.75), so that non-stationarity clearly cannot be rejected.  It appears very evident 

that ( )ln 2PC I∼ . 

Checks for stochastic seasonal mean at both frequencies 1 and 2 show clearly that the 

seasonal mean is deterministic in this case. 

 An alternative initial specification is the ARIMA(2,2,1), to be compared to PC1.  The 

ARIMA(2,2,1) specification performs almost as well as the IMA(2,3) specification, but it 

suffers from several minor deficiencies: (1) the residual acf is not quite as clean and (2) there 

are clear signs that the estimation situation is not as well defined, that is, there are high 

correlations between the estimated AR parameters and the MA parameter.  A complete 

sequence of analyses based on the ARIMA(2,2,1) specification confirms the presence of a 

deterministic seasonal mean and all tests of over-differencing confirm the conclusion that 

( )ln 2PC I∼ . 
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5 Univariate analysis of P/PC 

 The univariate analysis of P PC  is of interest, since both numerator and denominator 

are index numbers of sets of nominal prices and the ratio is a real economic variable.  The 

identity ( )ln ln lnt t t tP PC P PC∇ ≡ ∇ −∇  reveals that the first difference of the log of the 

ratio is the differential between the two rates of change of numerator and denominator, 

themselves two alternative inflation measures.  Hence the rate of change of the ratio, 

( )ln P PC∇ , indicates the degree to which the two alternative inflation measures differ. 

 The analyses of the two previous sections establish clearly that ( )ln 1P I∇ ∼  and 

( )ln 1PC I∇ ∼ .  In the analyses of this section the main objective is to see if 

( ) ( )ln 1P PC I∇ ∼  or if ( ) ( )ln 0P PC I∇ ∼ .  In the latter case, CI(1,1) cointegration is 

found, and this means that it is sensible to speak of inflation as a scalar phenomenon.  In the 

former case, the two inflation measures are not cointegrated but jointly integrated, in which 

case inflation must be treated as (at least) a bivariate phenomenon. 

 On initiating the univariate analysis of the ratio, it is known that the log of each of 

numerator and denominator has a deterministic seasonal mean component.  Hence one 

anticipates the presence of a deterministic seasonal mean in the model for the ratio and it is 

useful to initially estimate a model with this deterministic seasonal mean included and then 

specify a model for the remainder. 
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 The first line of this model defines the last term, ln( )P PC 1 , the remainder of the 

level variable after removing the estimated deterministic seasonal mean terms.  The second 
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line specifies that this remainder is taken, for present estimation purposes, to follow a random 

walk with drift, the latter a parameter estimated at -.16%.  The parameter estimates in the first 

line are practically the same in an alternative estimation in which the second difference of the 

remainder is taken to follow an iid ( )20, aN σ  process.  Note further that, as expected, the 

seasonal coefficients estimated above for the log ratio are almost exactly equal to the 

difference between the corresponding coefficients estimated for ln P  in Model P2 and for 

ln PC  in Model PC2.  Note also that the estimated residual standard deviations in Model P2, 

Model PC2 and the above model respectively, are .16%, .33% and .28%; this strongly 

suggests that the analysis of the ratio will be dominated by characteristics of PC , because the 

innovation variance of this variable is about four times that of P . 

  pacf

1284

1
0.5

0
-0.5

-1

  acf

1284

1
0.5

0
-0.5

-1

80726456484032241680

85       87       89       91       93       95       97       99       01       03       05   

4

2

0

-2

-4

ln(P/PC)1

Q ( 15 ) = 786.5        

W
__

(σ
^ _

W ) = -510.57 % (0.45 %)

σ
^

W = 4.12 %  

The data graph of the level of the log ratio, “corrected” for seasonal mean, shows a 

clear downward trend with occasional interruptions.  The coefficients of the acf die out only 

very slowly and linearly.  Hence it appears likely that the log ratio follows a non-stationary 

stochastic process.  It is thus sensible to consult the first difference of the log ratio series. 
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 The first difference series appears to follow a stationary stochastic process: the data 

graph does not wander, but shows affinity for a constant long-run mean of around -.16%.  

The acf is also consistent with a stationary stochastic process, though it may be substantially 

distorted by extreme values: 3.9σ  at 2/86, 2.4σ−  and 2.9σ−  together at 3-4/90, and 3.0σ  

at 4/01.  Large values, isolated in time or not, tend to distort the variance measure upwards 

and hence to reduce all acf values in absolute value, obscuring whatever evidence of 

autocorrelation there might otherwise be.  Two large values of the same sign, as occur at 

3-4/90, tend to distort the first acf value upwards.  However, no matter how distorted the acf 

may be, the data graph does suggest strongly that this series follows a stationary process.  

Nevertheless, it may be useful to examine the second-difference series; both ln P  and ln PC  

have been seen to follow I(2) processes, so that the log ratio will also follow an I(2) process, 

unless there is cointegration, which is expected but should not be blindly assumed. 

 Note the very strong resemblance of the acf/pacf of 2 ln( )∇ P PC 1 to the case of 

2 ln PC∇  and the similarity of the data graph to the negative of that for this variable.  There 

are, of course, some quite extreme values in this series.  It is probable that the acf is flattened 

by the inflation of variance produced by these extreme values.  At lag 1 of the acf one might 
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expect negative distortion, due to interactions of large values at 2-3/86 and 2-3/90, but the 

first of these is probably largely compensated by the positive interaction at 1-2/86, so that the 

net distortion may be small.  At lag 2, the situation is somewhat clearer, there are strong 

negative interactions at 1-3/86 and 3/90-1/91, neither of which is compensated by other 

extreme positive interactions. 
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 For the same reasons, based on the acf/pacf, that an IMA(2,3) model is initially 

contemplated for PC, this form is at least a useful starting point in the case of P/PC.  The 

estimated version is Model P/PC2.  
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 The outstanding defect of this model is that there are several very extreme residuals, 

suggesting quite a bit of positive distortion at lag 1, which may well influence the first MA(1) 

parameter upwards.  The DCD statistic for testing for over-differencing is .08 with critical 

values (1.00, 1.94); the over-differencing hypothesis is clearly not rejected.  This leads, if one 

ignores the real possibility that this result is due to the influences of extreme values, to a 

model of the form IMA(1,2) with µ , designated Model P/PC3.  
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 This model is very similar to the previous one and has the same main defect, namely, 

that there are several very extreme residuals that may well distort the acf sufficiently to make 

one imagine the model is adequate when there may be ARMA structures hidden by these 

distortions.  In any case, if one ignores extreme values and their influences, the finding 

( )ln (1)P PC I∼  is clear, that is, cointegration is found.  If one adds an AR(1) factor to this 

model to allow for a further test of this hypothesis, the parameter turns out to be highly 

negative and the SF statistic rejects non-stationarity very clearly, with value 5.24 and critical 

values (1.06, 1.75).  It is, however, essential to investigate the influences of extreme values to 

find out if this conclusion is or is not robust to them.  For this purpose, it is useful to specify 

intervention terms in the absence of ARMA structure and this can be done as well with one or 

two differences. 

 To evaluate the distortions in the acf of ln( )∇ P PC 1  due to extreme values, a 

sequence of intervention models is formulated.  The incident in 1-2/86 is treated with S1/86 

and s = 1 and the incident in 3-4/01 is treated similarly with S3/01 and s = 1.  The incident in 

3-4/90 is far more complex, because, in the analysis process, further extreme values are 

revealed both before and after these dates, so that the incident turns out to require the 

introduction of S1/90 with s = 5, though both positive and negative effects are found at 

different dates in this period.  These three incidents are treated separately and in all 
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combinations, leading finally to Model P/PC4, in which all intervention terms are present. 
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 This model uses a large number of degrees of freedom to look for possible ARMA 

structure hidden by the anomalous incidents that it explicitly models.  An examination of the 

residuals in the neighborhoods of 1-2/86, 1/90-2/91 and 3-4/01 reveals that the intervention 
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formulations appear to be adequate. Of course, the residual variance is greatly reduced in this 

model, making incidents, such as that visible here in 4/02-4/03, appear to be anomalous when 

they are not at all anomalous by the standards of the model without intervention terms.  It is 

noteworthy that there is little evidence revealed of hidden ARMA structure in any of the 

diverse models estimated in this sequence with more and more intervention parameters.  It is 

also noteworthy that the incident in 1/90-2/91 appears to be transitory, because the Student t 

statistic for the test that the long-run gain is zero is -.0039/.0032 = -1.22 and the critical 

values for 69 degrees of freedom are (1.30, 1.67).  When this simplification is introduced, 

there are no changes in parameter estimates or in diagnostic results, though the reformed 

operator naturally differs.  

.80

S1/86 2 3 4 I1/90
t t tln( ) (.0037 .012B) ( .0039 .0029B .0032B .011B .0058B )

(.0012)(.001) (.0014)(.0018) (.0018)

                                         
P PC

                                         

−←→
= + ξ + − + − − − ξ

(.002) (.0014)
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 A careful examination of the residual data graph for Model P/PC4, which is very 

similar to that for Model P/PC5, reveals a large number of positive interactions that would 

explain the small positive value in the residual acf without reference to distortion.  This acf 

value thus reflects a small positive AR(1) parameter or a small negative MA(1) parameter.  

When an AR(1) parameter is added to Model P/PC5, one obtains Model P/PC6. 
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 The AR(1) parameter is significantly different from zero and its presence allows 

application of the SF test for under-differencing.  The SF statistic is 20.61 with critical values 

(1.06, 1.75), so that the hypothesis of under-differencing is clearly rejected.  The conclusion 



 42

that ( )ln (1)P PC I∼  is clearly confirmed; it is not due to the influences of extreme values. 

 At this point, one might well wonder if ( )ln (0)P PC I∼ .  That is, perhaps the 

non-stationarity of the log ratio is entirely deterministic and the two log nominal price index 

variables have the CI(2,2) cointegration feature rather than CI(2,1).  To check this, one can 

formulate a model specified exactly as Model P/PC6, but with stationary AR(2) structure, 

presumably with real roots, and with a linear deterministic trend component.  In such a model 

the SF test can be applied to the largest AR(1) factor to test the null hypothesis of I(1) versus 

the alternative of I(0).  When this is done, it turns out that 1 1
ˆ .9540 .9524φ = > φ = , where the 

latter value is the threshold for the SF statistic.  This means that the null hypothesis cannot be 

rejected, that is, the non-stationarity of the log ratio is found to be stochastic in nature and the 

CI(2,2) property is rejected in favor of CI(2,1). 

6 Concluding remarks 

 It does not appear to the author that a consensus exists today among economists to the 

effect that inflation follows an ( )1I  process in the U.S.  The empirical evidence on this order 

of integration, cited in the introduction, is very mixed and very flimsy.  Nevertheless, the 

empirical analyses presented in this paper, for a fairly long and recent stretch of time, and on 

the two measures most frequently employed for inflation, are very clear, indicating that such 

a consensus should reasonably be expected in the near future. 

 This does not mean that inflation must always follow an ( )1I  process, either in the 

U.S. or elsewhere.  It is not unthinkable that an effective monetary policy regime, based on 

feedback control and a constant, low and positive, target rate of inflation, could generate a 

stationary inflation time series.  It may well be implausible, for many reasons, that such a 

regime will arise in the near future, but the results of this paper should not be construed to say 

that there is an inviolable law of nature making the inflation rate stochastically 
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non-stationary. 

 Though the belief in the univariate nature of inflation has a long tradition in 

macroeconomics, and no macroeconomist would lightly see it undermined, this belief is 

largely unconscious, not founded so far on any substantial economic theory, as far as the 

present author is aware, and yet today it is a testable hypothesis.  This hypothesis is, 

furthermore, very easy to test, as this paper demonstrates.  Here it is tested and very clearly 

not rejected.  Under what conditions might it fail?  So far the only known failures are to be 

seen in Valbuena (2002) where they arise, for a very few cases, because the rate of change of 

a certain sectoral nominal-price-index series does follow a stationary processes. 

 The analysis of section 5 reveals not only that ( )ln ln 0P PC I∇ −∇ ∼ , but that the 

mean of this inflation differential is negative.  This means that consumer price inflation is 

well above GDP deflator inflation in the U.S. economy in this sample.  It would be of interest 

to know if the same result arises for the private consumption deflator from the national 

accounts, and whether this result is the same for all countries and periods of time or not. 

 The series P  is found to have a seasonal mean.  This is not very important 

quantitatively, but it does indicate a defect in the quarterly national account system, because 

this series is the ratio of two series that are supposedly officially adjusted for seasonality. 

 It is likewise very worrisome that the series PC  shows a large and unexplained 

reduction in variance roughly in 1991-2000.  This is equivalent to two non-linear changes in 

the measurement scale for this important economic variable, one at the beginning and one at 

the end of this period. 
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