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1 Introduction

Analysis of backwards induction in �nite extensive form games provides useful

insights for a wide range of economic problems. The basic idea of backwards

induction is that each player uses a best reply to the other players�strategies,

not only at the initial node of the tree, but also at any other information set.

An attempt to capture this type of rationality is due to Selten [14], who

de�ned the subgame perfect equilibrium concept. While subgame perfection

has some important applications, it has the drawback that does not always

eliminate irrational behavior at information sets reached with zero probability.

In order to solve this problem, Selten [15] introduced the more restrictive notion

of �trembling-hand�perfection.

The sequential equilibrium concept, due to Kreps and Wilson [9], requires

that every player maximizes her expected payo¤ at every information set, ac-

cording to some consistent beliefs. They also showed that �trembling-hand�per-

fection implies sequentiality, which in turn implies subgame perfection. Blume

and Zame [3] established that for each �xed extensive form, sequential equilib-

rium coincide with �trembling-hand�perfect equilibrium for generic payo¤s.

Although a weaker concept than �trembling-hand� perfection, sequential

equilibrium seems to be the direct generalization of the idea of backwards in-

duction to games of imperfect information. It satis�es in such games all the

properties that characterize subgame perfection (backwards induction) in games

of perfect information.1

However, because of di¢ culties encountered when characterizing the set of

sequential equilibria, the implications of using this more appealing concept as

compared to subgame perfection are seldom discussed in economic models in

which agents are supposed to act according to the backwards induction principle.

1Perfect and proper equilibrium do not satisfy all these properties, see Kohlberg and
Mertens [8] for details.
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In this paper we �nd the maximal set of �nite extensive forms for which se-

quential and subgame perfect equilibrium yield the same equilibrium strategies,

for every possible payo¤ function. This set can be characterized as follows: in

a given extensive form, if for any behavior strategy combination every informa-

tion set is reached with positive probability inside its minimal subform, then

subgame perfection implies sequential rationality for any possible payo¤s.

Whenever the extensive form does not have the structure above, payo¤s can

be assigned such that the set of subgame perfect equilibria does not coincide

with the set of sequential equilibria. However, it may still happen that the set

of equilibrium payo¤s of both concepts coincides for any possible assignment

of the payo¤ function. Thus, we also identify the maximal set of �nite exten-

sive forms for which subgame perfect and sequential equilibrium always yield

the same equilibrium payo¤s.2 This completes the description of the informa-

tion structures where applying sequential rationality does not make a relevant

di¤erence with respect to subgame perfection.

The paper is organized as follows: in Section 2 we brie�y introduce the main

notation and terminology of extensive form games. This closely follows Van

Damme [16]. Section 3 contains de�nitions. Results are formally stated and

proved in Section 4. In Section 5 we give some examples where our results can

be applied. Section 6 concludes.

2 Notation and Terminology

An n�player extensive form is a sextuple � =(T;�; P; U;C; p), where T is

the �nite set of nodes and � is a partial order on T , representing precedence.

Furthermore, (T;�) forms an arborescence with a unique root �. We use the
2We actually prove something stronger. For that set of extensive forms, subgame and

sequential equilibrium always induce the same set of equilibrium outcomes.
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notation x < y to say that node y comes after node x. The immediate predeces-

sor of x 6= � is P (x) = max fy; y < xg, and the set of immediate successors of x

is S(x) = fy : x 2 P (y)g. The set of endpoints of the tree is Z = fx : S(x) = ;g

and X = T nZ is the set of decision points. We write Z(x) = fy 2 Z : x < yg to

denote the set of terminal successors of x, and if A is an arbitrary set of nodes

we write Z(A) = fz 2 Z(x) : x 2 Ag.

The player partition, P , is a partition of X into sets P0; P1; :::; Pn, where Pi

is the set of decision points of player i and P0 stands for the set of nodes where

chance moves.

The information partition U is an n-tuple (U1; :::; Un), where Ui is a partition

of Pi into information sets of player i, such that (i) if u 2 Ui, x; y 2 u and x < z

for z 2 X, then we cannot have z < y, and (ii) if u 2 Ui, x; y 2 u, then

jS(x)j = jS(y)j. Therefore, if u is an information set and x 2 X, it makes sense

to write u < x. Also, if u 2 Ui, we often refer to player i as the owner of the

information set u.

If u 2 Ui, the set Cu is the set of choices available for i at u. A generic choice

c 2 Cu is a collection of juj nodes with one, and only one, element of S(x) for

each x 2 u. If player i chooses c 2 Cu at the information set u 2 Ui when she

is actually at x 2 u, then the next node reached by the game is the element of

S(x) contained in c. The entire collection C = fCu : u 2
Sn
i=1 Uig is called the

choice partition.

The probability assignment p speci�es for every x 2 P0 a completely mixed

probability distribution px on S(x).

We de�ne a �nite n-person extensive form game as a pair � = (�; r), where �

is an n-player extensive form and r, the payo¤ function, is an n-tuple (r1; :::; rn),

where ri is a real valued function with domain Z.

We assume throughout that the extensive form � meets perfect recall, i.e.

3



for all i 2 f1; :::; ng, u; v 2 Ui, c 2 Cu and x; y 2 v, we have c < x if and

only if c < y. Therefore, we can say that choice c comes before the information

set v (to be denoted c < v) and that the information set u comes before the

information set v (to be denoted u < v).

A behavior strategy bi of player i is a sequence of functions (bui )u2Ui such

that bui : Cu ! R+ and
P

c2Cu b
u
i (c) = 1;8u. The set Bi represents the set

of behavior strategies available to player i. A behavior strategy combination is

an element of B =
Qn
i=1Bi. As common in extensive form games, we restrict

attention to behavior strategies.3 From now on, we simply refer to them as

strategies.

If bi 2 Bi and c 2 Cu with u 2 Ui, then binc denotes the strategy bi changed

so that c is taken with probability one at u. If b 2 B and b0i 2 Bi then bnb0i is

the strategy combination (b1; :::; bi�1; b0i; bi+1; :::; bn). If c is a choice of player i

then bnc = bnb0i, where b0i = binc.

A strategy combination b 2 B induces a probability distribution Pb on the

set of terminal nodes Z. If A is an arbitrary set of nodes, we write Pb(A) for

Pb(Z(A)). If x 2 X, let Pbx denote the probability distribution on Z if the game

is started at x and the players play according to the strategy combination b.

A system of beliefs � is a function � : X nP0 ! [0; 1] such that
P

x2u �(x) =

1, 8u. Given a system of beliefs �, a strategy combination b and an information

set u, we de�ne the probability distribution Pb;�u on Z as Pb;�u =
P

x2u �(x)Pbx.

An assessment (b; �) is a strategy combination together with a system of beliefs.

If players play according to the strategy pro�le b, Ri(b) =
P

z2Z Pb(z)ri(z)

denotes player i�s expected payo¤ at the beginning of the game and Rix(b) =P
z2Z Pbx(z)ri(z) denotes player i�s expected payo¤ at node x. In a similar way,

Riu(b) =
P

z2Z Pb(z j u)ri(z) =
P

x2u Pb(x j u)Rix(b) is player i�s expected
3We can do this without loss of generality due to perfect recall and Kuhn�s theorem, see

Kuhn [10].
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payo¤ at the information set u with Pb(u) > 0. Furthermore, under the system

of beliefs �, R�iu(b) =
P

z2Z Pb;�u (z)ri(z) denotes player i�s expected payo¤ at

the information set u. Denote by R(b) the n-tuple (R1(b); R2(b); :::; Rn(b)).

The strategy bi is said to be a best reply against b if bi 2 argmaxb0i2Bi
Ri(bnb0i).

Likewise, the strategy bi is a best reply against b at the information set u 2 Ui

if it maximizes Riu(bnb0i).

The strategy bi is a best reply against (b; �) at the information set u 2 Ui

if bi 2 argmaxb0i2Bi
R�iu(bnb0i). If bi prescribes a best reply against (b; �) at

every information set u 2 Ui, we say that bi is a sequential best reply against

(b; �). The strategy combination b is a sequential best reply against (b; �) if it

prescribes a sequential best reply against (b; �) for every player.

Let T̂ � T be a subset of nodes such that (i) 9y 2 T̂ with y < x;8x 2

T̂ ; x 6= y, (ii) if x 2 T̂ then S(x) � T̂ ; and (iii) if x 2 T̂ and x 2 u then

u � T̂ . Then we say that �y = (T̂ ; �̂; P̂ ; Û ; Ĉ; p̂) is a subform of � starting at

y, where (�̂; P̂ ; Û ; Ĉ; p̂) are de�ned from � in T̂ by restriction. A subgame is

a pair �y = (�y; r̂), where r̂ is the restriction of r to the endpoints of �y. We

denote by by the restriction of b 2 B to the subform �y (to the subgame �y).

The restriction of a system of beliefs � to the subform �y (to the subgame �y)

is denoted by �y.

3 De�nitions

Let us �rst review the concept of Nash equilibrium.

De�nition 1 (Nash Equilibrium) A strategy combination b 2 B is a Nash

equilibrium of � if every player is playing a best reply against b.

We denote by NE(�) the set of Nash equilibria of �. If b is a Nash equilib-

rium, every player is playing a best reply for the entire game. However, this does
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not need to be true for every subgame. Subgame perfect equilibrium accounts

for this fact.

De�nition 2 (Subgame perfect equilibrium) A strategy combination b is

a subgame perfect equilibrium of � if, for every subgame �y of �, the restriction

by constitutes a Nash equilibrium of �y.

We denote by SPE(�) the set of subgame perfect equilibria of � and by

SPEP (�) = fR(b) : b 2 SPE(�)g the set of subgame perfect equilibrium pay-

o¤s.

Sequential rationality is a re�nement of subgame perfection. Every player

must maximize at every information set according to her beliefs about how the

game has evolved so far. If b is a completely mixed strategy pro�le, beliefs

are perfectly de�ned by Bayes� rule. Otherwise, such beliefs should meet a

consistency requirement.

De�nition 3 (Consistent assessment) An assessment (b; �) is consistent if

there exists a sequence f(bt; �t)gt, where bt is a completely mixed strategy com-

bination and �t(x) = Pbt(x j u) if x 2 u, such that

lim
t!1

(bt; �t) = (b; �). (1)

Therefore, a sequential equilibrium is not a strategy pro�le but a consistent

assessment.

De�nition 4 (Sequential equilibrium) A sequential equilibrium of � is a

consistent assessment (b; �) such that b is a sequential best reply against (b; �).

If � is an extensive game, we denote by SQE(�) the set of strategies b such

that (b; �) is a sequential equilibrium of �, for some �. Moreover, SQEP (�) =
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fR(b) : b 2 SQE(�)g denotes the set of sequential equilibrium payo¤s. Clearly,

SQE(�) � SPE(�) , for any game �.

We now introduce some new de�nitions that are needed for the results.

De�nition 5 (Minimal Subform of an Information Set) Given an infor-

mation set u, the minimal subform that contains u is the subform �y that con-

tains u and does not include any other proper subform that contains u.

We say that �y = (�y; r̂) is the minimal subgame that contains u if �y is

the minimal subform that contains u.

In a given extensive form there are information sets that are always reached

with positive probability. The next two de�nitions formalize this idea.

De�nition 6 (Surely Relevance) An information set u is surely relevant in

the extensive form � if jCuj > 1 implies that Pb(u) > 0;8b 2 B.

As will be seen in Proposition 1, the surely relevance property is strictly

related with the maximizing behavior of the player who moves at that informa-

tion set. If there is only one choice available at an information set, the player

is obviously maximizing. Hence, we also consider such an information set as

surely relevant.

See Figure 1 for a game form where all information sets are surely relevant.

De�nition 7 (Subform Surely Relevance) An information set u is subform

surely relevant in the extensive form � if it is surely relevant in its minimal sub-

form.

See �gures 1, 2 and 3 for some game forms where all information sets are

subform surely relevant. Conversely, see �gures from 4 to 9 for some game forms

with information sets that are not subform surely relevant.
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4 Results

The three �best reply� concepts introduced in Section 2 relate each other, as

it is shown in (i) and (ii) in the next lemma. The third assertion of the same

lemma shows that the maximizing behavior at an information set is independent

of the subgame of reference.

Lemma 1 Fix a game � = (�; r). The following assertions are true:

(i) Given a strategy combination b, if u 2 Ui is such that Pb(u) > 0 and bi

is a best reply against b, then bi is a best reply against b at the information set

u.

(ii) Given a consistent assessment (b; �), if u 2 Ui is such that Pb(u) > 0

and bi is a best reply against b at the information set u, then bi is a best reply

against (b; �) at the information set u.

(iii) If �y is the minimal subgame that contains u and (by; �y) is the restric-

tion of some assessment (b; �) to �y, then bi is a best reply against (b; �) at the

information set u in the game � if and only if by;i is a best reply against (by; �y)

at the information set u in the game �y.

Proof. Part (i) is a known result.4 Proofs for (ii) and (iii) are trivial.

The next proposition con�nes the set of extensive forms for which the se-

quential equilibrium solution concept actually re�nes subgame perfection.

Proposition 1 If � is an extensive form such that every information set is

subform surely relevant, then for any possible payo¤ vector r, the game � =

(�; r) is such that SPE(�) = SQE(�). If � is an extensive form such that

there exists an information set that is not subform surely relevant, then we can

�nd a payo¤ vector r such that for the game � = (�; r), SPE(�) 6= SQE(�).
4See Van Damme [16], Theorem 6.2.1.
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Proof. Let us prove the �rst part of the proposition. We only have to show that

SPE(�) � SQE(�). Consider b 2 SPE(�) and build a consistent assessment

(b; �).5 Construct the set ~U(b; �) =
Sn
i=1

n
u 2 Ui : bi =2 argmax~bi2Bi

R�iu(bn~bi)
o
;

we have to prove that it is empty. Suppose by contradiction that ~U(b; �) 6= ;,

and take u 2 ~U(b; �), obviously jCuj > 1. Let �y be the minimal subgame

that contains u. By Lemma 1, Pby(u) = 0. However, u must be subform surely

relevant. This provides the contradiction.

Let us now prove the second part of the proposition. Suppose u 2 Ui is

an information set that is not subform surely relevant and let c 2 Cu be an

arbitrary choice available at u. Assign the following payo¤s:

ri(z) = 0 8i if z 2 Z(c) (2)

ri(z) = 1 8i elsewhere.

Clearly any strategy bi = binc cannot be part of a sequential equilibrium

since playing a di¤erent choice at u gives player i strictly higher expected payo¤

at that information set.

We now have to show that there exists a subgame perfect equilibrium b such

that bi = binc. By assumption there exists b0 such that Pb
0

y (u) = 0 in the minimal

subgame �y that contains u. Consider the strategy combination b = b0nc, it is

also true that Pby(u) = 0. Note that by is a Nash equilibrium of �y since nobody

can obtain a payo¤ larger than one. By the same argument, b is inducing a

Nash equilibrium in every subgame, hence it is a subgame perfect equilibrium.

This completes the proof.

5A general method to de�ne consistent assessments (b; �) for any given b 2 B, in an
extensive form, is the following: take a sequence of completely mixed strategy combination
fbtgt ! b and for each t; construct �t(x) = Pbt (x j u) 2 [0; 1], 8x 2 u, for all information
sets u. Call k = jX n P0j. The set [0; 1]k is compact and since �t 2 [0; 1]k; 8t, there exists
a subsequence of ftg, call it ftjg, such that

�
�tj

	
tj
converges in [0; 1]k. De�ne beliefs as

� = lim
j!1

�tj .
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Figures 1, 2 and 3 contain some examples of extensive forms where the �rst

part of Proposition 1 applies. The extensive forms in �gures 4, 5 and 6 illustrate

the second part.

Notice that the payo¤ assignment in the previous proof provides a di¤er-

ence in equilibrium strategies but not in equilibrium payo¤s. The reason is that

this di¤erence in equilibrium payo¤s cannot always be achieved. In �gures 7, 8

and 9 there are examples of extensive forms with information sets that are not

subgame surely relevant and, however, the sets of sequential and subgame per-

fect equilibrium payo¤s always coincide. Proposition 2 provides a su¢ cient and

necessary condition for equilibrium payo¤s sets to be equal, for any conceivable

payo¤ function. Before that, an additional piece of notation is needed.

Given a node x 2 T , we call path to x the set of choices Path(x) =

fc 2
S
u Cu : c < xg. Let �y be the minimal subform that contains the informa-

tion set u. Construct the set B(u) =
�
b 2 B : Pby(u) > 0

	
. We say that player i

can avoid the information set u if there exists a strategy combination b 2 B(u),

and a choice c 2 Cv, with v 2 Ui, such that Pbncy (u) = 0.6 Therefore, associated

with any information set, we can construct a list (possibly empty) of players

who can avoid it. The following lemma is useful for the proof of Proposition 2.

Lemma 2 Let � be an extensive form such that every information may only be

avoided by its owner. Let (b; �) and (b0; �0) be two consistent assessments. If b

and b0 are such that Pby = Pb
0

y for every subform �y, then � = �0.

Proof. Let (b; �) and (b0; �0) be two consistent assessments such that Pby = Pb
0

y

for every subform �y. Note that b0 can be obtained from b by changing behavior

at information sets that are reached with zero probability within its minimal

subform. Hence, without loss of generality, let b and b0 di¤er only at one of such

6We are restricting to the minimal subform. This is embedded in the notation. For the sake
of clari�cation: assigning probability zero to an entire subgame is not the same as avoiding
an information set contained in that subgame.
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information sets, say u 2 Ui, and let �y be its minimal subform. The shift from

b to b0 may cause a change in beliefs only at information sets that come after u

and have the same minimal subform �y. Let v 2 Uj be one of those information

sets.

If j = i, perfect recall implies that there is no change in beliefs at the

information set v. If j 6= i there are two possible cases, either Pby(v) > 0 or

Pby(v) = 0. In the �rst case the beliefs at v are uniquely de�ned, therefore,

�(x) = �0(x);8x 2 v and moreover, �(x) = �0(x) = 0;8x 2 v such that u < x.

In the second case, since the information set v can only be avoided by player j

there exists a choice c 2 Cw of player j such that Pbncy (v) > 0, otherwise player i

would be able to avoid the information set u. Let b00 = bnc and b000 = b0nc, then

by the discussion of the �rst case, �00(x) = �000(x);8x 2 v, furthermore, perfect

recall implies �00(x) = �(x) and �000(x) = �0(x);8x 2 v, which in turn implies

�(x) = �0(x);8x 2 v.

Remark 1 If in an extensive form every information set may only be avoided

by its owner, then beliefs are always uniquely de�ned (consider b0 = b in Lemma

2).7 If we consider extensive forms such that only one choice is available at

information sets that can be avoided by a di¤erent player than its owner, then

beliefs are still uniquely de�ned whenever they are useful, that is, whenever an

actual choice is faced. However, this does not need to be true at information

sets where only one choice can be taken. This enlarged set of extensive forms is

the one under study in the next proposition.

Proposition 2 If � is an extensive form such that every information set that is

not subform surely relevant can only be avoided by its owner, then for any pos-

sible payo¤ vector r, the game � = (�; r) is such that SPEP (�) = SQEP (�).

7A complete characterization is the following: in an extensive form �, beliefs are always
uniquely de�ned if and only if juj > 1 implies that u may only be avoided by its owner.
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If � is an extensive form with an information set that is not subform surely rel-

evant and that can be avoided by a di¤erent player than its owner, then we can

�nd a payo¤ vector r such that for the game � = (�; r), SPEP (�) 6= SQEP (�).

Proof. Let us prove the �rst part of the proposition. We need to prove that

8b 2 SPE(�), R(b) 2 SQEP (�). Take an arbitrary b 2 SPE(�) and construct

some consistent beliefs �.

If the set ~U(b; �) =
Sn
i=1

n
u 2 Ui : bi =2 argmax~bi2Bi

R�iu(bn~bi)
o
is empty,

then b 2 SQE(�) and R(b) 2 SQEP (�). Otherwise, we need to �nd a sequential

equilibrium (b�; ��) such that R(b�) = R(b).

Step 1: Take an information set u 2 ~U(b; �), obviously jCuj > 1. Let i be

the player that moves at this information set, and let �y be the minimal subgame

that contains u: Notice that by Lemma 1, u should be such that Pby(u) = 0,

hence it is not subform surely relevant. By assumption, u can only be avoided

by player i.

Step 2: Let b0 be the strategy pro�le b modi�ed so that player i plays a best

reply against (b; �) at the information set u. Construct a consistent assessment

(b0; �0). Notice that Pb0 = Pb and, in particular, Pb0y = Pby. By Lemma 2, � and

�0 assign the same probability distribution to information sets where more than

one choice is available.

Step 3: We now prove that b0 2 SPE(�). For this we need b0y 2 NE(�y).

Given the strategy pro�le b0y in the subgame �y, player i cannot pro�tably

deviate because this would mean that she was also able to pro�tably deviate

when by was played in the subgame �y, which contradicts by 2 NE(�y).

Suppose now that there exists a player j 6= i who has a pro�table deviation

b00y;j from b0y;j in the subgame �y. The hypothesis on the extensive form �

implies Pbnb
00
y;j

y = Pb
0nb00y;j
y , which further implies that b00y;j should also have been

a pro�table deviation from by. However, this is impossible since by 2 NE(�y).
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Step 4: By step 2,
��� ~U(b0; �0)��� = ��� ~U(b; �)��� � 1. If ��� ~U(b0; �0)��� 6= ;, apply the

same type of transformation to b0. Suppose that the cardinality of ~U(b; �) is q,

then in the qth transformation we will obtain a consistent assessment (b(q); �(q))

such that b(q) 2 SPE(�), Pb = Pb(q) , and ~U(b(q); �(q)) = ;. Observe that, b(q) 2

SPE(�) and ~U(b(q); �(q)) = ; imply b(q) 2 SQE(�), and that Pb = Pb(q) implies

R(b) = R(b(q)). Therefore (b(q); �(q)) is the sequential equilibrium (b�; ��) we

were looking for.

Let us now prove the second part of the proposition. For notational conve-

nience, it is proved for games without proper subgames, however, the argument

extends immediately to the general case. Suppose that u is an information set

that is not subform surely relevant. Suppose also that it can be avoided by a

player, say player j, di¤erent from the player moving at it, say player i. Note

that there must exist an x 2 u and a choice c 2 Cv, where v 2 Uj , such that if

b = bnPath(x), then Pbnc(u) = 0 is true.

Let f 2 Cu be an arbitrary choice available to player i at u. Assign the

following payo¤s:

rj(z) = 0 if z 2 Z(c)

ri(z) = rj(z) = 0 if z 2 Z(f)

ri(z) = rj(z) = 1 if z 2 Z(u) n Z(f).

(3)

Let d 2 Path(x) with d 62 Cv, assign payo¤s to the terminal nodes, whenever

allowed by 3, in the following fashion:

rk(z) > rk(z
0) where z 2 Z(d) and z0 2 Z(Cw n fdg). (4)

Player k above is the player who has choice d available at the information

set w. Give zero to every player everywhere else.
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In words, player j moves with positive probability in the game. She has two

choices, either moving towards the information set u and letting player i decide,

or moving away from the information set u. If she moves away she gets zero

for sure. If she lets player i decide, player i can either make both get zero by

choosing f , or make both get one by choosing something else. Due to 4, no

player will disturb this description of the playing of the game.

This game has a Nash equilibrium in which player i moves f and player

j obtains a payo¤ equal to zero by moving c. However, in every sequential

equilibrium of this game, player i does not choose f and, as a consequence, player

j takes the action contained in Path(x) \ Cv. Therefore, in every sequential

equilibrium, players i and j obtain a payo¤ strictly larger than zero.8 This

completes the proof.

5 Examples

These results can be applied to many games considered in di¤erent branches

of the economic literature. It allows to identify in a straightforward way, the

�nite extensive form games of imperfect information for which subgame perfect

equilibria are still conforming with backwards induction, when following the

minimal interpretation of the principle given by Kohlberg [7].

Besley and Coate [2] proposed an economic model of representative democ-

racy. The political process is a three-stage game. In stage 1, each citizen decides

whether or not to become a candidate for public o¢ ce. At the second stage,

voting takes place over the list of candidates. At stage 3 the candidate with

the most votes chooses the policy. Besley and Coate solved this model using

subgame perfection and found multiple subgame perfect equilibria with very

di¤erent outcomes in terms of number of candidates. This may suggest that

8Equilibrium payo¤s are not necessarily equal to one due to eventual moves of nature.
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some re�nement might give sharper predictions. However, given the structure

of the game that they considered, it follows immediately from the results of

the previous section that all subgame perfect equilibria in their model are also

sequential. Thus, no additional insights would be obtained by requiring this

particular re�nement.

The information structure of Besley and Coate�s model is a particular case

of the more general framework o¤ered by Fudenberg and Levine [5]. They

characterized the information structure of �nite-horizon multistage games as

�almost� perfect, since each period players simultaneously choose actions, no

Nature moves are allowed and there is no uncertainty at the end of each stage. As

they noticed, sequential equilibrium does not re�ne subgame perfection in this

class of games. This claim can also be obtained as an implication of Proposition

1 in the present paper.

In their version of the Diamond-Dybvig [4] model, Adão and Temzelides

[1] discussed both the issue of potential banking instability as well as that of

the decentralization of the optimal deposit contract. They addressed the �rst

question in a model with a �social planner�bank. The bank o¤ers the e¢ cient

contract as a deposit contract in the initial period. In the �rst stage agents

sequentially choose whether to deposit in the bank or to remain in autarky.

In the second stage, those agents who were selected by Nature to be patient,

simultaneously choose whether to misrepresent their preferences and withdraw,

or report truthfully and wait. The reduced normal form of the game has two

symmetric Nash equilibria in pure strategies. The �rst one has all agents choos-

ing depositing in the bank and reporting faithfully, the second one has all agents

choosing autarky. The fact that both equilibria are sequential is captured by

their Proposition 2. As in the other examples, because of the game form they

used, our Proposition 1 also covers their claim.
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In the implementation theory framework, Moore and Repullo [11], present

the strength of subgame perfect implementation. If a choice function is imple-

mentable in subgame perfect equilibria by a given mechanism and the strategy

space is �nite, by analyzing the extensive form of the mechanism game, our

work perfectly demarcates whether this very mechanism also implements in se-

quential equilibria. Namely, if in the extensive form of the mechanism game all

information sets are subform surely relevant, then the mechanism also imple-

ments in sequential equilibria. If not every information set is subform surely

relevant, then there exist economies for which the mechanism does not double

implement in subgame perfect and sequential equilibria.

More examples can be found in Game Theory textbooks. Good references

are Fudenberg and Tirole [6], Myerson [12] and Osborne and Rubinstein [13].

Notice that whenever are presented extensive games where subgame perfect and

sequential equilibrium di¤er, there are information sets that are not subform

surely relevant in the game form of such extensive games. As examples consider

�gures 8.4 and 8.5 in Fudenberg and Tirole, �gures from 4.8 to 4.11 in Myerson

and �gures 225.1 and 230.1 in Osborne and Rubinstein.

6 Conclusion

For the class of extensive form games sharing the property that all information

sets are subform surely relevant, the set of sequential equilibrium strategies is

equal to the set of subgame perfect equilibrium strategies. However, for di¤erent

information structures the equality of these sets crucially depends on the payo¤s

of the players.

If we are only concerned with equilibrium payo¤s, we can have information

sets that are not subform surely relevant, as long as the player who can avoid

it is the same as its owner. In this case, the solution concepts of subgame
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perfection and sequential equilibrium yield the same set of equilibrium payo¤s,

for any possible assignment of the payo¤ function.
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