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1 Introduction

There is common consensus about the concept of crisis, that is, everyone detects a crisis when

she is going through one. However, the definitions for this phenomenon are different depending

on the features of the economy under study. For example a firm manager concerned about the

levels of output may consider that the firm is going through a crisis period if she detects a loss

of productivity for certain levels of labor and capital. On the other hand, if most of the firm’s

business is based on exports abroad the manager will be concerned with sharp appreciations

of the local currency against the foreign currency.

These examples raise the issue of finding a general definition of crisis that gathers the

different types of crisis regardless the cause. In this way, a näive and very general definition

of crisis in an economy may be given by a threshold that represents a tolerance level. The

questions that arise here are how determining this tolerance level and how an exceedance of

this threshold affects the tolerance level of other economies or related markets worldwide.

The latter question clearly points out that a crisis is something more than an isolated

phenomenon affecting independent markets (financial, credit, currency markets). A crisis in

one market is characterized by the collapse not only of that market but by the negative effects

produced on other markets. Therefore it seems natural to think of the transmission channels

that connect the markets. From an economic viewpoint this involves the analysis of different

mechanisms that affect the system: economic fundamentals, market specific shocks, the im-

pact of bad news, or phycological effects (herd behavior). The discussion surges here in the

direction and intensity of the dependence between the markets in turmoil periods. There is a

large amount of literature concerning these features of dependence. For example Forbes and

Rigobon (2001), or Corsetti, Pericoli, Sbracia (2002) where the concepts of interdependence

and contagion are analyzed in detail. Regarding the intensity of the dependence, contagion

implies that cross market linkages are stronger after a shock to one market, while interdepen-

dence implies no significant change in cross market relationships. Regarding the direction,

contagion implies that the collapse in one market produces the fall of the other market, whilst

interdependence implies that both markets collapse because both are influenced by the same

factors.

From an statistical viewpoint, the linkages between markets are usually measured by Pear-

son correlation. Baig and Goldfajn (1998) compare the correlation between two markets for a

pre-crisis and a post-crisis period determined by a shock. They find that there is an increase

in cross market correlation after a crisis and therefore there exists a contagion effect. This

conditional correlation, however, does not carry the adequate information about an increase in

dependence. Forbes and Rigobon (2001) propose an adjusted correlation measure that corrects
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the problem of conditioning to turmoil periods where cross market correlation is biased up-

wards because stock market volatility of the conditioning variable (market in crisis) is higher,

even if the linkages between the markets remain constant. They find that the cross depen-

dence between the markets is hardly altered after a shock, so there is interdependence but

not contagion. Corsetti, Pericoli and Sbracia (2002) find something in the middle, sometimes

contagion, sometimes interdependence. They consider that the absence of contagion found in

Forbes and Rigobon (2001) can be attributed to pitfalls in their testing procedure.

Correlation, therefore, can lead to misleading results or at least to different interpreta-

tions depending on the way of using it. This measure only presents a complete picture of

the dependence structure between the markets when their corresponding random variables

are jointly gaussian. Under this assumption cross correlations are sufficient to fully describe

the dependence structure between the random variables. In this setting multivariate GARCH

models are sufficient to describe the dynamics (co-movements) of the vector of random vari-

ables. There are many specifications of these models, however a natural specification is given

by the extension of the univariate GARCH, that is, the covariances and variances are linear

functions of the squares and cross products of the data. Engle and Kroner (1995) propose the

vec model that in the first order case is,

vec(Σt) = vec(Ω) + Avec(Xt−1X
′
t−1) + Bvec(Σt−1),

where A, B are m2 × m2 matrices with some restrictions, with m the number of random

variables. For m = 2, vec(Σt) = (σ2
1t, σ12t, σ21t, σ

2
2t), σit, i = 1, 2 are the conditional volatilities

and σ12t, σ21t the conditional covariances at time t. Engle and Kroner (1995) also introduce

BEKK models, that in the first order case can be written as

Σt = Ω + AXt−1X
′
t−1A

′ + BΣt−1B
′,

where A, B are m×m matrices. These models are really complex: the number of parameters

to be estimated for the vec model of order 1 is 2m4, and for the BEKK model is 2m2. In

addition, unless the observations are jointly gaussian the cross correlations are not able to fully

describe the pattern of multivariate dependence and therefore some dependence is misspecified.

Consider for example the asymmetric linkages, corresponding to the left and the right tail,

found between most of the financial assets returns. These stylized facts are far from being

explained by these models.

Engle (1999) proposes dynamic conditional correlation models (DCC) that extend constant

conditional correlation models (CCC) introduced by Bollerslev (1990). The vocation of DCC
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is to model the structure of dependence between a vector of random variables (m=2) by means

of the conditional correlation that is allowed to evolve over time. First the serial dependence

of each random variable is individually modelled (GARCH, Stochastic Volatility (SV)), and

then the cross dependence between the innovations is modelled by another univariate model

(exponential smoothing, GARCH, etc.)

Xi,t = εitσit, i = 1, 2,

σ2
i,t = ωi + αiX

2
i,t−1 + βiσ

2
i,t−1,



 and ρ2

t = ωo + αoε1,t−1ε2,t−1 + βoρ
2
t−1,

with ρt the conditional correlation, and ωi, αi, βi, i = o, 1, 2 the corresponding parameters of

the GARCH processes.

The martingale property is imposed on the vector of innovations, i.e. E[εit|=i,t−1] = 0,

i = 1, 2, with =i,t−1 the set of information available at t− 1 for each random variable.

These assumptions do not preclude the case E[εit|=1,t−1

⋃=2,t−1] 6= 0 (Granger causality,

Granger (1969)) and the type of specifications for the conditional correlation considered in

Engle (1999) are not sufficient to explain the cross linkages between the random variables.

Therefore more complex models are called for such that the innovations satisfy E[εit|=1,t−1 ∪
=2,t−1] = 0, i = 1, 2. However this assumption does not delivers us from different forms of

serial dependence in the innovation vector (ε1t, ε2t). Instead, we should analyze the whole

structure of dependence between the innovations. This is given by the copula function derived

from the bivariate distribution Ht(ε1t, ε2t), and by their conditional counterpart obtained from

Ht(ε1t, ε2t|=1,t−1 ∪ =2,t−1), see Patton (2001) or Granger, Terasvirta and Patton (2002).

The definition of copula is due to Sklar (1959). This function provides the complete struc-

ture of dependence between the random variables after taking into account the corresponding

marginal distributions. In particular, the model introduced in Engle (1999) may be considered

a gaussian copula where the dynamics of the dependence are given by the conditional corre-

lation. The set of available copulas is endless providing different alternatives suiting to the

problem at hand. Some examples are given by the gaussian copula used by Longin and Sol-

nik (2001) to describe the dependence in financial asset returns, Student’s t copulas (Mashal

and Zeevi, (2002)) that suit better to the tails of these sequences, Joe-Clayton copula in Joe

(1997) or its variation, the symmetrized Joe-Clayton copula introduced in Patton (2001) for

the dependence between exchange rates series.

It is also interesting to analyze the links between the vector of random variables in the

tail regions. Its joint distribution function in the tail region is derived from the multivariate

extreme value theory, see Resnick (1987). Applications of multivariate extreme value distri-

butions to examples concerning the tail regions appear in Ledford and Tawn (1996) or in de

Haan and de Ronde (1998). The analysis of the dependence in the extremes provides an inter-
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esting alternative to correlation for measuring the strength of the linkages between the random

variables as they become more extreme (differences between interdependence and contagion).

The vocation of this paper is modelling the dependence found between the random vari-

ables that represent different economic and financial markets. This dependence is divided

in two classes regarding the origin. First, the links due to economic fundamentals (rational

dependence) and second, the co-movements of the corresponding innovations (irrational depen-

dence). Our focus lies on the latter form of dependence and the concepts of interdependence

and contagion. In order to model this form of dependence (cross dependence in the innovations

sequences) we introduce an innovative copula function derived from the extreme value theory

that incorporates sufficient flexibility to describe different patterns of dependence, in particu-

lar asymmetric effects between the variables not reflected by standard copulas. Furthermore,

the concepts of interdependence and contagion are revisited and the definitions proposed in

the literature are adapted to be expressed as tail dependence measures, and in turn properties

of the copula functions involving the tails of the marginal distributions. Finally, the intention

of the authors is to apply this methodology to test the flight to quality phenomenon, that is,

outflows of capital from the stocks markets to the bonds markets when the first ones are facing

crises periods.

This paper is structured as follows. Section 2 introduces the copula function derived from

the multivariate extreme value theory. The next section proposes tail dependence measures as

an alternative to correlation; these measures are used to define contagion and interdependence.

The cases of asymptotic dependence and independence are also studied. Finally the section

studies the statistical aspects of the model, and provides a test for the existence of these

effects. In Section 4, this innovative copula function as well as the new dependence measures

are applied to analyze the dependence structure between bonds and assets (flight to quality

phenomenon). Section 5 presents the conclusions.

2 The model

Consider the model
X1,t = g1(X1,t−1, . . . , Xm,t−1) + ε1,t,

. . . . . . . . .

Xm,t = gm(X1,t−1, . . . , Xm,t−1) + εm,t,





(1)

and assume that (ε1,1, . . . , εm,1), . . . , (ε1,t, . . . , εm,t) are independent vectors, that is, the mul-

tivariate dependence between the innovations is given by Ht((ε1, . . . , εm)|=t−1), with =t−1 =

=X1,t−1 ∪ . . . ∪ =Xm,t−1. Note that the structure of dependence is time varying though the

marginal distributions of the observations are independent of time. Otherwise if the innova-
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tions satisfied the martingale property, the marginal distributions would not be free from the

time index, that is, the joint distribution function would take the form

Ht((ε1,t|=t−1, . . . , εm,t|=t−1)|=t−1),

with εi,t|=t−1, i = 1, . . . ,m the conditional random variables.

Both distribution functions, however, give rise to the type of conditional copulas introduced

in Patton (2001) where the dynamics of the joint distribution function is driven by a parameter

that is time varying. Instead, for appropriate functions g1, . . . , gm we propose a multivariate

distribution function H(ε1, . . . , εm) time invariant motivated by the dependence found between

the vector of maxima of the corresponding random variables.

2.1 The structure of dependence: The copula function

This section studies the dependence structure between m random variables via the copula

function. The concept of copula is due to Sklar (1959) and refers to the class of multivariate

distribution functions supported in the unit cube with uniform margins.

Definition 2.1. A function C : [0, 1]m → [0, 1] is a m-dimensional copula if it satisfies the

following properties:

• For all ui ∈ [0, 1], C(1, . . . , 1, ui, 1, . . . , 1) = ui.

• For all u ∈ [0, 1]m, C(u1, . . . , um) = 0 if at least one of the coordinates is zero.

• The volume of every box contained in [0, 1]m is non-negative, i.e., VC([u1, . . . , um] ×
[v1, . . . , vm]) is non-negative. For m = 2, VC([u1, u2]× [v1, v2]) = C(u2, v2)−C(u1, v2)−
C(u2, v1) + C(u1, v1) ≥ 0 for 0 ≤ ui, vi ≤ 1.

The copula C(u1, . . . , um) is the joint distribution function of the probability integral

transforms of each of the variables X1, . . . , Xm with respect to the marginal distributions

F1, . . . , Fm. It may be seen as the component of the multivariate distribution function of a

vector of random variables that captures the dependence structure.

Theorem 2.1. (Sklar’s theorem): Given a m-dimensional distribution function H with con-

tinuous marginal distributions F1, . . . , Fm, then there exists a unique copula C : [0, 1]m → [0, 1]

such that

H(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), ∀x1, . . . , xm ∈ R ∪ {∞}. (2)

Conversely, if C(u1, . . . , um) is a m-dimensional distribution function with uniform mar-

gins, and F1, . . . , Fm are continuous univariate distribution functions for the random variables
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X1, . . . , Xm, then the function H defined in (2) is a m-dimensional distribution function with

margins F1, . . . , Fm.

It is immediate to see that if we have a model for the joint distribution of the m random

variables and the marginal distributions of the Xi are continuous, the complete dependence

structure of the corresponding variables is known,

C(u1, . . . , um) = H(F−1
1 (u1), . . . , F−1

m (um)), (3)

with F−1
i (u) = inf{x ∈ R|Fi(x) ≥ u}, for all 0 ≤ u ≤ 1.

This measure of dependence extends the notions of linear correlation (Pearson) and rank

correlation (Spearman). More important, it overcomes the typical problems of these scalar

measures. Embrechts, McNeil and Straumann (1999) provides an excellent review about the

properties and problems of these dependence measures.

It is shown that under very general conditions on the marginal distribution functions the

dependence structure of any multivariate distribution is described by the copula function. In

particular this interesting result is found for the joint distribution of the maxima of a vector

of random variables. Moreover, there exists a copula function that drives the dependence in

the extremes whose expression is derived from the extreme value theory.

Consider Mn = (Mn1, . . . , Mnm) the vector of componentwise maxima, with components

Mni = max{X1i, . . . , Xni}, and the vector of sequences an = (an1, . . . , anm) with each ani > 0,

and bn = (bn1, . . . , bnm). Under some smoothness condition in the tail of Fi, Leadbetter,

Lindgren and Rootzén (1983) show that

lim
n→∞

Fn
i (anixi + bni) = Gi(xi), i = 1, . . . , m, (4)

where Gi(xi) is an extreme value distribution of one of the three possible types, Gumbel,

Weibull and Fréchet. The distribution Fi is said to belong to the maximum domain of attrac-

tion of Gi, see also Embrechts, Klüppelberg and Mikosch (1997). Denote the distribution of

the multivariate maximum by

Hn(an1x1 + bn1, . . . , anmxm + bnm) = P{a−1
ni (Mni − bni) ≤ xi, i = 1, . . . , m}, (5)

where H(x1, . . . , xm) = P{X1 ≤ x1, . . . , Xm ≤ xm}. The core result of the multivariate

extreme value theory is that (4) may be extended to

lim
n→∞

Hn(an1x1 + bn1, . . . , anmxm + bnm) = G(x1, . . . , xm), (6)
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with G a non degenerate multivariate extreme value distribution (mevdf ). The class of

these particular distributions is precisely the class of max-stable distributions (Resnick (1987),

proposition 5.9). These distributions are defined by this property

Gt(tx1, . . . , txm) = G(α1x1 + β1, . . . , αmxm + βm), (7)

for every t > 0, and some constants αi > 0 and βi.

The marginal distribution functions of G are the univariate extreme value distributions

Gi(xi). By Sklar’s theorem, (6) may be written as

lim
n→∞

Hn(an1x1 + bn1, . . . , anmxm + bnm) = C(G1(x1), . . . , Gm(xm)), (8)

with C a copula function.

It can be seen under some simple algebra that C also describes the dependence structure

of the largest observations. Our aim in the following lines is to derive a suitable analytical

expression for this copula function. In order to do this, the marginal distributions are trans-

formed to obtain identical and parameter free versions of these univariate distributions, in

particular Fréchet distributions of the type Ψα(z) = exp (−z−α) with α = 1.

Let Zi = 1/log 1
Fi(X) be such transformation, and denote P{Zi ≤ z} = F ∗i (z) with z =

1/log 1
Fi(anix+bni)

. This distribution satisfies these interesting properties: F ∗i (z) = Ψ1(z),

F ∗i (z) = Fi(anix + bni) and F ∗ni (nz) = Ψ1(z). Note that these conditions imply F ∗ni (nz) =

F ∗i (z) and

lim
n→∞

H∗n(nz1, . . . , nzm) = C(Ψ1(z1), . . . , Ψ1(zm)), (9)

with H∗(z1, . . . , zm) = H(an1x1 + bn1, . . . , anmxm + bnm). This condition holds for any vector

(z1, . . . , zm) in [zo1,∞)× . . .× [zom,∞), with (zo1, . . . , zom) a threshold vector. The function

C is called extreme copula because satisfies this property,

Ct(Ψ1(z1), . . . , Ψ1(zm)) = C(Ψt
1(z1), . . . , Ψt

1(zm)), t > 0, (10)

where the margins are extreme value distributions. The proof immediately follows from (7).

This condition entails an invariance property given by the logs of the corresponding distribu-

tions, that is,

t log C(Ψ1(tz1), . . . , Ψ1(tzm)) = log C(Ψ1(z1), . . . , Ψ1(zm)).
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Then, for n and (z1, . . . , zm) sufficiently high,

lim
n→∞

n (1−H∗(nz1, . . . , nzm)) = −log C(Ψ1(z1), . . . , Ψ1(zm)), (11)

and

lim
n→∞

H∗(nz1, . . . , nzm)
1 + log C(Ψ1(nz1), . . . , Ψ1(nzm))

= 1. (12)

Other interesting result derived from the invariance property is

P
{

Z1 ≤ nz1, . . . , Zm ≤ nzm|
m∪

i=1
Zi > nz0i

}
= P

{
Z1 ≤ z1, . . . , Zm ≤ zm|

m∪
i=1

Zi > z0i

}
.

The left term in (11) may be considered as a sequence of measures that converge to a constant

given the vector (z1, . . . , zm), see Resnick (1987) or de Haan and de Ronde (1998) for different

transformations of the marginal distributions. Expression (12) provides the joint distribution

function of the largest observations, that is, for n sufficiently high the denominator may be

approximated by the copula function C. Therefore

P {Z1 ≤ z1, . . . , Zm ≤ zm} = C(Ψ1(z1), . . . , Ψ1(zm)), (13)

for the vector (z1, . . . , zm) sufficiently high.

The latter expression is promising in the sense that C is a good approximation of the

dependence structure in the largest observations. However, the challenge of choosing a suitable

threshold vector that determines the region satisfying condition (11) still remains.

On the other hand the invariance property implies that the copula C must be of exponential

type. There are different characterizations of this distribution. A general expression for m = 2

is given in the form of the Pickands representation (Pickands, 1981), that is,

C(u1, u2) = expD(t)log(u1u2), (14)

where u1 = Ψ1(z1), u2 = Ψ1(z2), t = log(u1)
log(u1u2)

, and D(t) is a convex function on [0, 1] such

that max(t, 1− t) ≤ D(t) ≤ 1 for all 0 ≤ t ≤ 1. This family of distributions is included in the

class of Archimedean copulas (Nelsen 1999, chapter 4). The dependence in these copulas is

driven by a single variable t for m = 2. The Gumbel-Hougaard family is within this class of

distributions and satisfies the invariance property. It is represented by

CG(u1, u2; θ) = exp−[(−log u1)
θ+(−log u2)

θ ]1/θ

, θ ≥ 1. (15)
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This distribution function is usually known as Gumbel bivariate logistic copula. The main

problem that arises if we assume that C is modelled by a Gumbel distribution CG in (13)

is the choice of the threshold. Condition (11) may be violated for low thresholds where the

extreme value theory is not a reliable technique. Other drawback of modelling C as CG is the

asymmetry, the random variables modelled by the Gumbel copula are exchangeable and hence

it is not possible to quantify different contributions of the corresponding random variables. In

order to account for this asymmetric dependence we propose a version of CG able to describe

these effects. This function is denoted by C̃G(u1, u2; Θ), with Θ = {θ, γ, η}, and takes the

following expression

C̃G(u1, u2; Θ) = exp−D(u1,u2;γ,η)[(−log u1)
θ+(−log u2)

θ]1/θ

, (16)

with

D(u1, u2; γ, η) = expγ(1−u1)(1−u2)
η

, γ ≥ 0, η > 0. (17)

Theorem 2.2. The function C̃G : [0, 1]× [0, 1] → [0, 1] defined in (16) and (17) is a copula

function if the parameters in Θ satisfy that c̃G(u1, u2; Θ) > 0, ∀ (u1, u2) ∈ [0, 1] × [0, 1], with

c̃G(u1, u2; Θ) = δ2 eCG(u1,u2;Θ)
du1du2

the density function of the copula C̃G.

Proof.- Let us denote A(u1, u2; θ) = [(−log u1)θ + (−log u2)θ]1/θ. The conditions re-

lated to the contour of C̃G immediately follow from the contour properties of the functions

D(u1, u2; γ, η) and A(u1, u2; θ). The proof that C̃G is 2-increasing involves more algebra.

Consider VecG
([uo1, u11]× [uo2, u12]) = C̃G(u11, u12; Θ) − C̃G(u11, uo2; Θ) − C̃G(uo1, u12; Θ) +

C̃G(uo1, uo2; Θ), and define V ′(u1) = C̃G(u1, u12; Θ)− C̃G(u1, uo2; Θ). Then,

VecG
([uo1, u11]× [uo2, u12]) = V ′(u11) − V ′(uo1). Note that V ′(u1) ≥ 0, ∀ u1 ∈ [0, 1], with

uo2 < u12. This function can be written as

V ′(u1) = exp−D(u1,uo2;γ,η)A(u1,uo2;θ)
[
exp−(D(u1,u12;γ,η)A(u1,u12;θ)−D(u1,uo2;γ,η)A(u1,uo2;θ))−1

]
,

that is greater than 0 if and only if D(u1, u2; γ, η)A(u1, u2; θ) is decreasing in u2. The only

condition that remains to see is that V ′(u1) is nondecreasing. This condition will hold if

the function δ eCG(u1,u2;Θ)
du1

is nondecreasing in u2, that amounts to see if c̃G(u1, u2; Θ) > 0,

∀ (u1, u2) ∈ [0, 1]× [0, 1]. ¤

The choice of the threshold in (13) is overcome by adding the function D(u1, u2; γ, η). This

function by means of the pair (u1, u2) and the parameter γ measures the sensitivity of the

dependence structure to departures from the invariance property. In other words, either the

margins are further in the right tail (u1, u2 → 1) or γ ∼= 0 the copula function C̃G is closer

to CG and the invariance property holds. In this way the joint distribution function for the
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entire range of the random variables Z1, Z2 is

P {Z1 ≤ z1, Z2 ≤ z2} = C̃G(Ψ1(z1),Ψ1(z2)), (18)

where zi = 1/log 1
Fi(xi)

in this case. This distribution function is driven by the parameters

θ, γ, η. The constant γ assesses the extent of the invariance property. The parameter θ

describes the level of asymptotic tail dependence between the random variables. The case of

perfect independence is covered by θ = 1, γ = 0. Finally η measures the level of asymmetry

or exchangeability of the variables.

The following list enumerates the most outstanding advantages of our copula function C̃G.

1. This copula function is derived from the multivariate extreme value theory, in contrast

to ad-hoc choices to model the dependence structure.

2. The function D(u1, u12; γ, η) and in particular the parameter γ extend the results of the

multivariate extreme value theory about the distribution of the largest observations to

the entire range of the random variables.

3. C̃G is able to explain asymmetric effects of the variables for η 6= 1. It may be considered

as an alternative to the asymmetric logistic model in Tawn (1988).

4. This copula function is sufficiently flexible to describe different forms of dependence and

asymptotic dependence, as will be shown below.

3 Contagion: types and definitions

Linear measures of dependence are not sufficient to describe the dependence patterns between

a vector of random variables. The popular Pearson correlation has a number of pitfalls, see

Embrechts, McNeil and Straumann (1999). Some of them are that a a zero correlation does

not imply independence if the marginal distributions are not elliptical, and second, correla-

tion is not invariant under transformations of the random variables. Spearman correlation

(rank correlation) for example solves the latter, however, it also fails to give a measure of

independence far from the elliptical world.

In the bivariate setting natural measures of dependence different from the traditional corre-

lation are given by the dependence in the tails. Ledford and Tawn (1997) and Coles, Heffernan

and Tawn (1999) define the asymptotic tail dependence measure ℵ,

ℵ = lim
t→∞

P{Z2 > t|Z1 > t}. (19)

This measure takes the zero value if the random variables are asymptotically independent.

11



There are two classes of extreme value dependence, asymptotic dependence and asymptotic

independence. Both forms of dependence permit dependence for moderately large values of

the variables, however the likelihood of joint extreme events under asymptotic independence

converges to 0 as the events become more extreme. Loosely speaking, the probability of one

variable being extreme given the other is extreme is 0 in the limit. The copula C̃G supports

both types of asymptotic dependence. It can be seen that ℵ eCG
= 2 − 21/θ, that reflects

asymptotic independence for θ = 1 and asymptotic dependence otherwise.

The definition in (19) can be extended to the entire range of the random variables. Lehman

(1966) defined two random variables Z1, Z2 as positively quadrant dependent (PQD) if for all

(z1, z2) ∈ R2,

P{Z1 > z1, Z2 > z2} ≥ P{Z1 > z1}P{Z2 > z2}, (20)

or equivalently if

P{Z1 ≤ z1, Z2 ≤ z2} ≥ P{Z1 ≤ z1}P{Z2 ≤ z2}. (21)

In the same way negative quadrant dependence (NQD) is defined reversing the inequalities in

both expressions.

Definition 3.1. We say that two random variables are interdependent if they are PQD. In

consequence interdependence is characterized by joint movements in the same direction (co-

movements) of the corresponding random variables.

If Z1 and Z2 are NQD a large value in one random variable is corresponded by a value of the

same magnitude in the opposite direction for the other variable. Economically, interdependence

means that links in turmoil periods (tails of the distributions) are only consequence of the same

linkages between the markets found in still periods.

In the case that the random variables are continuous these definitions are a property of the

copula. From elementary probability theory

P{Z1 > z1, Z2 > z2} = C̃G(u1, u2)− (u1 + u2) + 1, (22)

with ui = Ψ1(zi), i = 1, 2.

Define the function g(u1, u2) as the difference between the probabilities in (20) in terms

of the copula function,

g(u1, u2) = C̃G(u1, u2)− u1u2. (23)

If this function is positive for all (u1, u2) ∈ [0, 1]× [0, 1] the former definitions for cross depen-

dence apply, that is, Z1 and Z2 are PQD.

The function g(u1, u2) itself is not sufficient to determine the strength of the links between

12



the variables. A stronger condition is required to measure the amount of dependence for dif-

ferent values of the random variables. This condition is tail monotonicity, that is, the function

(23) is either nonincreasing or nondecreasing in its arguments. In particular, increasing tail

monotonicity for the function P{Z1 > z1, Z2 > z2} − P{Z1 > z1}P{Z2 > z2} characterizes

the existence of contagion in the upper tails between the random variables. Thus, contagion in

this context can be defined as a significant increase in the intensity of the dependence between

the variables Z1, Z2 when these take on extreme values.

Definition 3.2. Suppose Z1, Z2 with common Fréchet distribution Ψ1 and consider z a thresh-

old that determines the extremes in the right tail of both random variables. Then, there exists

a contagion effect between Z1 and Z2 if g(u1, u2) is an increasing function for both random

variables, and for u1, u2 ≥ u with u = Ψ1(z).

On the other hand contagion in intensity for the lower tails is characterized by decreasing

tail monotonicity for the function P{Z1 ≤ z1, Z2 ≤ z2}−P{Z1 ≤ z1}P{Z2 ≤ z2}. In terms of

copulas the conditions in definition 3.2 for contagion amount to these properties,

h1(u1, u2) =
δC̃G(u1, u2)

du1
− u2 > 0, h2(u1, u2) =

δC̃G(u1, u2)
du2

− u1 > 0. (24)

The presence of tail monotonicity for the whole range of the random variables indicates

something stronger than contagion. These properties, called Right Tail Increasing (RTI ) and

Left Tail Decreasing (LTD) in Esary and Proschan (1972), imply that P{Z2 > z2|Z1 > z1} >

P{Z2 > z2} and P{Z2 ≤ z2|Z1 ≤ z1} > P{Z2 ≤ z2} respectively, for any pair (z1, z2), and

therefore are synonymous of contagion and interdependence. Note however that these phenom-

ena do not necessarily appear together. There can exist contagion in the extremes between two

random variables without being interdependent, and on the other hand, two interdependent

random variables can show weaker links (though stronger than being independent) in distress

periods than in calm periods.

The concepts of contagion and interdependence introduced so far regard the intensity of the

dependence, that is, the strength of the links between the variables as these go further into the

tails. However, other forms of contagion regarding the direction of the dependence are found,

in this setup the conditional probability of (19) is interpreted as a causality relationship.

Contagion in this context occurs when one variable is influencing the other, that is, a large

value in one variable is raising the likelihood of a large value in the other variable. Then the

relation between the variables must be asymmetric, otherwise there is only an increase in the

intensity of the dependence (contagion as defined in 3.2). Note however that a condition

of the type P{Z2 > z2|Z1 > z1} > P{Z2 > z2} is equivalent to (20). Moreover, the only
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difference of the former with a condition as P{Z1 > z1|Z2 > z2} > P{Z1 > z1} is given by

the marginal distributions. In the case of H∗(z1, z2) where the margins are identical Fréchet,

both conditional probabilities are identical.

Let us focus instead in the following conditions for contagion spill-over,

P{Z2 > z2|Z1 > z1} ≥ P{Z1 > z2|Z2 > z1}, (25)

for the upper tails, with z2 ≥ z1, and

P{Z2 ≤ z2|Z1 ≤ z1} ≥ P{Z1 ≤ z2|Z2 ≤ z1}, (26)

for the lower tails, where z2 ≤ z1. These conditions boil down to see if C̃G(u1, u2; Θ) >

C̃G(u2, u1; Θ). Consider z1 a threshold value that determines the extreme events, hence this

inequality implies that the likelihood of Z2 being extreme given that Z1 is extreme is larger than

the likelihood of Z1 being extreme with Z2 extreme. In other words, Z1 is causing Z2 reaches

extreme values. The particular case of equality in the latter expressions represents symmetry

of the variables and economically concerns directional interdependence (both economies are

affected by the external factors in the same way).

To formalize directional contagion define gdv(u) = C̃G(u, v)− C̃G(v, u) and introduce the

following definition,

Definition 3.3. Suppose Z1, Z2 with common Fréchet distribution Ψ1 and consider z a thresh-

old that determines the extremes of both random variables. Then, Z1 is influencing Z2 in the

extreme values (contagion effect) if gdv(u) is strictly positive for all v > u for the upper tail,

and for all v < u for the lower tail, with u = Ψ1(z).

This definition is analog for Z2 influencing Z1 but reversing the signs of the inequality. In

terms of the parameters of the copula C̃G, there is contagion from Z1 towards Z2 if η > 1, and

from Z2 towards Z1 if η < 1.

The definition may be strengthened by imposing a monotonicity condition on gdv(u). The

intensity of this type of contagion can be measured by means of this monotonicity condition.

In particular,

Definition 3.4. Suppose the conditions of definition 3.3, and Z1, Z2 such that there is

positive contagion from Z1 to Z2. Then, Z1 is strongly influencing Z2 in the extreme values

(strong contagion effect) if gdv(u) is an increasing function in v for all v > u.
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A characterization of this definition is

sc(u, v) =
δC̃G(u, v; Θ)

dv
− δC̃G(v, u; Θ)

dv
> 0. (27)

The economic interpretation behind lies on irrational increases in the probability that Z2

becomes extreme given that Z1 has reached extreme observations (remind that the variables

represent innovations).

3.1 Estimation of the Copula: Testing Contagion

In general, to estimate the set of dependence parameters Θ of any multivariate distribution

function two strategies may be employed. If the marginal distributions are known or can be

estimated by valid parametric models the likelihood function for the data is easily derived.

If the multivariate distribution function is H(x1, x2) = C(F1(x1), F2(x2);Θ) the likelihood

function is

£(Θ;x1, x2) =
n∑

i=1

log f1(xi,1) +
n∑

i=1

log f2(xi,2) +
n∑

i=1

log c(F1(xi,1), F2(xi,2); Θ), (28)

with fi the marginal density function of Fi, and c(F1(x1), F2(x2);Θ) the bivariate density of

the copula. The resulting estimates of the dependence parameters are margin-dependent, as

well as the parameters of the corresponding marginal distributions. On the other hand the

estimates of Θ are free of these effects for nonparametric estimates of the margins. Genest,

Ghoudi, and Rivest (1995) show that the estimates derived from a pseudo-likelihood estimation

are consistent and asymptotically normal. This method is implemented in two steps. First, the

estimates of the marginal distributions are estimated by the respective nonparametric empirical

distribution functions. In this way ui is obtained as ui = F̂i,n(x), with F̂i,n(x) = 1
n

n∑
i=1

1{Xi≤x},

and the log-likelihood for C is

£(Θ; u1, u2) =
n∑

i=1

log c(ui,1, ui,2; Θ). (29)

In our case, H∗(z1, z2) = C̃G(Ψ1(z1),Ψ1(z2);Θ), though the marginal distribution func-

tions are known, standard Fréchet, the underlying marginals F1, F2 are not, so it is preferable

to consider the nonparametric case. Note that ui = Ψ1(zi) boils down to ui = Fi,n(xi) by

construction of Zi. The log-likelihood is calculated as in (29). This function, however, does

not take an easy-to-handle expression in logs, and the score function does not adopt a closed

form. Instead numerical optimization methods are employed to maximize the likelihood.

An appealing property of the copula C̃G is its nested character. It is immediate to see
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that γ = 0 is the standard Gumbel distribution, that represents the class of bivariate extreme

value distributions. The case of asymptotic independence for the right tail is given by θ = 1

whilst perfect independence is described by θ = 1 and γ = 0. Finally, η measures the level of

asymmetry (exchangeability) of the variables. As a result, it is straightforward to implement

tests for the corresponding hypotheses about dependence by means of likelihood ratio tests.

The test statistic is

Λn = 2log

sup
Θ

n

Π
i=1

c̃G(ui,1, ui,2; Θ)

n

Π
i=1

c̃G(ui,1, ui,2; Θ0)
, (30)

with Θ0 the set of parameters under the null hypothesis. The asymptotic distribution of Λn

is chi squared-distributed with degrees of freedom equal to the difference of the dimensions

between Θ and Θ0.

The nested character of the copula makes immediate testing dependence as well as testing

the existence of contagion effects in the data. The corresponding hypotheses tests are H0 :

θ = 1, γ = 0 vs H1 : θ > 1 or γ > 0, and H0 : η = 1 vs H1 : η 6= 1 for γ > 0. Meanwhile the

intensity contagion and strong directional contagion boil down to study conditions (24) and

(27) respectively plugging the estimated parameters.

4 Application: Flight to quality versus Contagion

Financial crises are characterized by dramatic falls in the prices of asset returns for reference

markets. The fall in prices of these returns trigger a sequence of negative effects on the prices

of the rest of the assets traded in the market by different reasons: a remarkable weight of

the asset in the composition of the portfolios, bilateral trade, or a psychological or contagion

effect.

It seems logical to think that investors in order to avoid the pernicious effects of the crisis

flee towards safe markets: the bonds market. However, sometimes it is not clear the type of

market failing and originating the crisis since the overall economic structure collapses. In this

situation the refuge in the bonds market may not provide with the desired coverage against

losses. The phenomenon of fleeing from the stocks market to the bonds market is known as

flight to quality. Measuring this effect is useful in a number of ways: it reflects the links

between these markets, in cases of crisis it is useful to identify its sources (financial vs other

types), or the causality of the relationship, that is, if bear stock markets imply bull bond

markets, or there is some common economic factor producing the co-movements (e.g. low

interest rates).

In this section this phenomenon is tested for two different pairs of financial indexes: the

16



Dow Jones Corporate 02 Years Bond Index (DJBI02) vs the Dow Jones Industrial Average:

Dow 30 Industrial Stock Price Index (DJSI), and the the Dow Jones Corporate 30 Years Bond

(DJBI30) Index vs the Dow 30 Industrial Stock Price Index. These series are studied for

the period 02/01/1997− 24/09/2004. The Corporate Bonds Indexes data are taken from the

official Dow Jones Index website and the Stock Price Index from www.freelunch.com. Sample

observations corresponding to public holidays and missing data in either of the series are

deleted from both data sets to avoid the incorporation of spurious zero returns and aberrant

dependencies, leaving n=1942 observations. The observations considered for the analysis are

the logarithmic returns measured in percentage terms and denoted as rt,

rt = 100 (logPt − logPt−1),

with Pt the original prices at time t.

The methodology followed in this empirical work starts by filtering the data by univariate

models as sketched in (1) and analyzing the dependence patterns between the resultant

innovation vector (ε1, ε2) by means of the copula C̃G. This copula is sufficient for testing the

existence of contagion effects, co-movements, or opposite effects in the tails that are reflected

in the set of parameters Θ of the copula C̃G.

Tables 6.1, 6.2 show that DJBI02 index is well modelled by an AR(1)-GARCH(1,1) model

as follows,

X1,t = 0.00025 + 0.089X1,t−1 + σ1,tε1,t, with ε1,t i.i.d. (0, 1), and

σ2
1,t = 6.194 · 10−8 + 0.071ε2

1,t−1 + 0.903σ2
1,t−1.

The DJSI Index is modelled by the following pure GARCH(1,1) model (tables 6.3, 6.4),

X2,t = σ2,tε2,t, with ε2,t i.i.d. (0, 1), and σ2
2,t = 3.0012 · 10−6 + 0.096ε2

2,t−1 + 0.887σ2
2,t−1.

The bivariate sequence of innovations (ε1,t, ε2,t) is represented in figure 6.1. A first glance

to the picture provides some guidance towards the existence of a flight to quality effect between

the innovations of DJSI and the innovations corresponding to DJBI02. The analysis of cross

correlation (figure 6.2) confirms the existence of opposite shocks in the innovation sequence

as well as validates the univariate models proposed to satisfy the assumptions in (1).

The copula function C̃G introduced in this paper is estimated numerically. The parameter

estimates for this example are θ̂n = 1.031, η̂n = 1 and γ̂n = 0.175. This model fits well the

data for different sections of the copula for both margins as can be seen (see figure 6.3). The

following pictures are derived from C̃G estimated from the data. In this way, figures 6.4 and

6.5 show negative interdependence between the random variables in the left tail, that becomes

stronger in the middle of the bivariate distribution and turns positive in the right tail. Both

plots are identical indicating the absence of directional contagion, that is, asymmetric effects
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between the variables. This is also described in figure 6.6. On the other hand it is remarkable

the presence of intensity contagion in the left tail (figure 6.5). A deeper analysis of figures

6.4 and 6.5 shows opposite movements in the middle of their domain, that decrease when the

variables take larger absolute values. This phenomenon is more pronounced for the extreme

negative values that tend to move together, or at least not in opposite directions (contagion

without interdependence).

It is convenient not confusing the contagion phenomenon just illustrated that appears when

both variables simultaneously take on extreme events in the same tail with the flight to quality.

This phenomenon occurs when the extreme values occur in the opposite tails, in particular

when DJBI02 takes positive extreme values and DJSI negative extreme values. Figure 6.7

clearly describes the existence of this phenomenon in both tails, that may be interpreted as a

substitution effect between these financial sequences when either of the sequences are in crises

periods.

The analysis for the pair Dow Jones Corporate 30 Years Bond Index (DJBI30 ) and the

Dow Jones Stock Price Index (DJSI ) yields different results. DJBI30 is modelled by an

AR(1)-GARCH(1,1) model where DJSI also enters in the equation. The parameter estimates

are displayed in tables 6.5 and 6.6 and can be summarized as follows,

X1,t = 0.00037 + 0.063X1,t−1 + 0.048X2,t−1 + 0.028X2,t−2 + σ1,tε1,t, with ε1,t i.i.d. (0, 1),

and σ2
1,t = 1.375 · 10−6 + 0.056ε2

1,t−1 + 0.905σ2
1,t−1.

The pair (ε1,t, ε2,t) is represented in figure 6.8. The cross correlation function (figure

6.9) indicates the absence of linear correlation between any lag combination. This graph also

assesses the univariate model proposed to describe the dynamics of DJBI30. The parameter

estimates for C̃G in this case are θ̂n = 1.01, η̂n = 1 and γ̂n = 0.0003. This model suits

very well to the data (figure 6.10). The fitted copula shows that the random variables

are weakly interdependent (figure 6.11), that is, both innovation sequences, though close to

independence, move in the same direction. More formally, the likelihood ratio test introduced

in (30) calculated for H0 : θ = 1, γ = 0 vs H1 : θ > 1 or γ > 0 does not reject the hypothesis

of independence. Note from the value of γ the random variables are symmetric and therefore

there is not directional contagion. Furthermore, figure (6.12) describes absence of intensity

contagion in either of the tails reflecting a weakening in the links between the variables in the

tails. In the limit these random variables are asymptotically independent in both tails. Finally

the flight to quality phenomenon is not present for these two series as shown in figure 6.13.
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5 Conclusions

Contagion and interdependence are different concepts. In this paper contagion is related

to extreme or tail events. Via the theory of copulas, we are able to analyze and test the

existence of contagion, its intensity, as well as its causal direction. This is done by creating a

new copula, derived from the multivariate extreme theory, that is sufficiently flexible both to

describe different patterns of dependence, and model asymmetric effects between markets.

This copula has been applied to study the links between safe and risky markets represented

by the Dow Jones Corporate Bond Index (DJBI ) and the Dow Jones Stock Price Index (DJSI ).

From the point of view of economic fundamentals, the latter index is independent of DJBI,

while the bonds indexes, DJBI02 and DJBI30, have different behaviors depending on their

maturity. The price of DJBI02 is independent of the evolution of risky markets, actually the

conditional mean price is only driven by its own past price, while the conditional variance is

well modelled by a GARCH(1,1) model. On the other hand, DJBI30 is positively influenced

by the evolution of DJSI reflecting the health of the overall economy.

Regarding the irrational links between the markets reflected in the innovations sequences

and modelled by the copula function introduced in this paper, the conclusions are also different

for the corresponding pairs of financial series. The shocks between DJBI02 and DJSI are

negatively related. In particular, the flight to quality effect is present indicating a substitution

effect between both financial instruments when either of them are through distress periods.

It is also remarkable the existence of a contagion effect in the intensity of the dependence

in situations of crises in both markets, common negative shocks. On the other hand DJSI

and DJBI30 innovation sequences are almost independent. There is no contagion or flight to

quality effect.

The conclusion regarding the dependence of these financial series is that while DJBI02

can serve as refuge for investors fleeing from crises attributed to the stocks markets, DJBI30

reflects the health of the overall economy, including the stocks markets, and are used by a type

of investors not concerned with sharp fluctuations of prices in the stocks markets.
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6 Tables and Figures

Parameter Value Standard Error T Statistic

C 0.00023981 3.2242e− 005 7.4378

AR(1) 0.075112 0.023976 3.1327

AR(2) −0.0060864 0.023504 −0.2590

Regress(1) 0.0033575 0.0023594 1.4231

Regress(2) 0.001902 0.0023953 0.7940

Regress(3) −0.0032545 0.0027541 −1.1817

K 4.6857e− 008 1.0825e− 008 4.3286

GARCH(1) 0.92472 0.0088449 104.5485

ARCH(1) 0.055603 0.0053162 10.4591

Table 6.1. Parameter estimates for DJCB02 Index for the period 02/01/1997− 24/09/2004.

Parameter Value Standard Error T Statistic

C 0.000254010 3.1119e− 005 8.1626

AR(1) 0.089148 0.024137 3.6934

K 6.1945e− 008 1.4083e− 008 4.3985

GARCH(1) 0.90361 0.011627 77.7188

ARCH(1) 0.071044 0.0066707 10.6502

Table 6.2. Parameter estimates for DJCB02 Index for the period 02/01/1997− 24/09/2004.
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Parameter Value Standard Error T Statistic

C 0.00049681 0.00024775 2.0053

AR(1) −0.0078747 0.026044 −0.3024

AR(2) −0.011078 0.023067 −0.4803

Regress(1) 0.0060823 0.0409134 0.1487

Regress(2) 0.035009 0.043498 0.8048

Regress(3) −0.056755 0.038002 −1.4935

K 2.9658e− 006 8.5241e− 007 3.4793

GARCH(1) 0.88763 0.011124 79.7956

ARCH(1) 0.095891 0.0092913 10.3205

Table 6.3. Parameter estimates for DJSP Index for the period 02/01/1997− 24/09/2004.

Parameter Value Standard Error T Statistic

C 0.00049118 0.00024454 2.0086

K 3.0012e− 006 8.5464e− 007 3.5116

GARCH(1) 0.88719 0.010683 83.0474

ARCH(1) 0.096116 0.0084832 11.3302

Table 6.4. Parameter estimates for DJSP Index for the period 02/01/1997− 24/09/2004.
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Parameter Value Standard Error T Statistic

C 0.0003741 0.000129 2.9001

AR(1) 0.063049 0.023987 2.6284

AR(2) −0.0075111 0.023612 −0.3181

Regress(1) 0.04884 0.0097296 5.0197

Regress(2) 0.028364 0.01017 2.7891

Regress(3) 0.0058778 0.011312 0.5196

K 1.3042e− 006 4.3895e− 007 2.9712

GARCH(1) 0.90783 0.019353 46.9090

ARCH(1) 0.055566 0.0098548 5.6385

Table 6.5. Parameter estimates for DJCB30 Index for the period 02/01/1997− 24/09/2004.

Parameter Value Standard Error T Statistic

C 0.00037386 0.00012836 2.9127

AR(1) 0.063416 0.023811 2.6633

Regress(1) 0.048314 0.0097464 4.9572

Regress(2) 0.028526 0.010177 2.8031

K 1.3752e− 006 4.5783e− 007 3.0038

GARCH(1) 0.90551 0.020033 45.2007

ARCH(1) 0.055866 0.010029 5.5704

Table 6.6. Parameter estimates for DJCB30 Index for the period 02/01/1997− 24/09/2004.
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Figure 6.1. Bivariate plot of the innovations sequences of the Dow Jones Corporate 02

Years Bonds and the Dow Jones Stock Index. The observations span the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 6.2. Cross correlation for different lags of the bivariate innovation sequence, Dow

Jones Corporate 02 Years Bonds and Dow Jones Stock Index, spanning the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 6.3. Empirical (o−) and theoretical (+−) margins of the cumulative bivariate dis-

tribution function. The upper panel describes the vertical sections and the lower panel the

horizontal section. The left panels represent 0.05 quantile, the middle panels 0.50 quantile and

the right panels the 0.0.95 quantile.
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Figure 6.4. The upper panel depicts the function g(u, v) as defined in (23) plotted against

the innovations of DJSI. The lower panel g(u, v) plotted against the innovations of DJBI02.
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Figure 6.5. The upper panel depicts the function h1(u, v) as defined in (24) plotted against

the innovations of DJBI02 and the lower panel depicts h2(u, v) against the innovations of

DJSI. (+−) represents the 0.05 quantile, (o−) the 0.50 quantile and (¦−) the 0.95 quantile.
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Figure 6.6. The upper panel depicts gdv(u) = C̃G(u, v)− C̃G(v, u) for the lower tail (v ≤ u).

(+−) represents u = 0.50, (o−) represents u = 0.30 and (¦−) for u = 0.10. The lower panel

depicts gdv(u) for the upper tail (v > u). (+−) represents the u = 0.50, (o−) represents
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u = 0.70 and (¦−) for u = 0.90.
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Figure 6.7. The upper panel depicts the flight to quality from DJSI towards DJBI02. (+−)

represents u = 0.60, (o−) represents u = 0.80 and (¦−) for u = 0.95. The lower panel depicts

the flight to quality from DJBI02 towards DJSI. (+−) represents v = 0.60, (o−) represents

v = 0.80 and (¦−) for v = 0.95.
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Figure 6.8. Bivariate plot of the innovations sequences of the Dow Jones Corporate 30

Years Bonds and the Dow Jones Stock Index. The observations span the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 6.9. Cross correlation for different lags of the bivariate innovation sequence, Dow

Jones Corporate 30 Years Bonds and Dow Jones Stock Index, spanning the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 6.10. Empirical (o−) and theoretical (+−) margins of the cumulative bivariate dis-

tribution function. The upper panel describes the vertical sections and the lower panel the

horizontal section. The left panels represent 0.05 quantile, the middle panels 0.50 quantile and

the right panels the 0.0.95 quantile.
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Figure 6.11. The upper panel depicts the function g(u, v) as defined in (23) plotted against

the innovations of DJSI. The lower panel g(u, v) plotted against the innovations of DJBI30.
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Figure 6.12. The upper panel depicts the function h1(u, v) as defined in (24) plotted against

the innovations of DJBI30 and the lower panel depicts h2(u, v) against the innovations of

DJSI. (+−) represents the 0.05 quantile, (o−) the 0.50 quantile and (¦−) the 0.95 quantile.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

Figure 6.13. The upper panel depicts the flight to quality from DJSI towards DJBI30. (+−)

represents u = 0.60, (o−) for u = 0.80 and (¦−) for u = 0.95. The lower panel depicts the

flight to quality from DJBI02 towards DJSI. (+−) represents v = 0.60, (o−) for v = 0.80 and

(¦−) for v = 0.95.
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