
 
 
Working Paper 03-27  
Economics Series 07 
May 2003 
 
 

Departamento de Economía 
Universidad Carlos III de Madrid 

Calle Madrid, 126 
28903 Getafe (Spain) 

Fax (34) 91 624 98 75 
 

 

 

 

ON THE CONTINUITY OF EQUILIBRIUM AND CORE CORRESPONDENCES 
IN ECONOMIES WITH DIFFERENTIAL INFORMATION*  

 
 
 

Ezra Einy1, Ori Haimanko2, Diego Moreno3 and Benyamin Shitovitz4 
 
 
 
Abstract 
 

We study upper semi-continuity of the private core, the coarse core, and the Radner equilibrium 

correspondences for economies with differential information, with Boylan (1971) topology on 

agents' information fields. 

 
 
 
Keywords: Economies with differential information, Radner equilibrium, rational expectations, 
coarse core, private core, continuity. 
 
 
 
 
 
1 Einy, Departament of Economics, Ben Gurion University of the Negev, Beer Sheva, Israel 
84105. E-mail: einy@bgumail.bgu.ac.il  
2 Haimanko, Departament of Economics, Ben Gurion University of the Negev, Beer Sheva, 
Israel 84105. E-mail: orih@bgumail.bgu.ac.il  
3 Moreno, Departamento de Economía, Universidad Carlos III de Madrid, 28903 Getafe, Spain. 
E-mail: dmoreno@eco.uc3m.es;  
4 Shitovitz, Department of Economics, University of Haifa (Haifa, Israel 31905). E-mail: 
binya@econ.haifa.ac.il  
 

 
 
*Moreno acknowledges the support of the Ministerio de Ciencia y Tecnología, grant BEC2001-0973. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

We study the behavior of several notions of competitive equilibrium and core
in economies with differential information. Our aim is to check whether these
solution concepts respond continuously to changes in agents’ characteristics in
the underlying economy. This is a basic problem in general equilibrium theory,
that was studied by several authors in the context of economies with complete
information. For instance, Kannai (1970) considered continuity properties of the
core of a pure exchange economy, while Hildenbrand (1972) and Hildenbrand
and Mertens (1972) investigated the continuity of the equilibrium-set correspon-
dence. It turns out that both solution concepts are “upper semi-continuous”:
when the agents’ characteristics converge, together with a selection from the
solution of corresponding economies, then the limit of the selection belongs to
the solution of the limiting economy.
In an economy with differential information every agent is characterized by

his initial endowment of commodities (which is a random variable, whose value is
determined by the realization of the state of nature), his state-dependent utility
function, and his private information represented by a σ-field on the space of
states of nature (i.e., an agent can tell whether the realized state of nature is
contained in any given set from the field). In measuring “closeness” of these
economies, the only non-standard part lies in evaluating the “distance” between
agents’ information endowments. We do so by means of Boylan (1971) metric,
following Allen (1983) who was the first to apply topologies on information
fields in economies with differential information. (Allen proved continuity1 of
the consumer demand and the value of information with respect to Boylan
metric.)
We first consider a notion of competitive equilibrium for economies with

differential information introduced in Radner (1968, 1982), that imposes mea-
surability restrictions with respect to the private information on each agent’s
trades. We show that if the space of random commodity bundles is Lmp (where
m is the number of commodities, and 1 ≤ p < ∞) and the prices lie in its
dual, then the Radner equilibrium correspondence is upper semi-continuous,
see Theorem 1.
We do not consider another equilibrium concept, that of “rational expecta-

tions,” in the study of continuity of equilibrium correspondences. The reason
is simple: the rational expectations equilibrium correspondence cannot be up-
per semi-continuous since the information revealed to the agents by prices may
have severe discontinuities; e.g., a sequence of fully revealing price systems can
converge to a constant price system which reveals no information whatsoever.
In the literature there are several notions of core for economies with differ-

ential information (for a comprehensive survey see Forges, Minelli and Vohra
(2002)). Among them, two notions stand out in that they are nonempty under

1Cotter (1986, 1987) showed that continuity properties could be obtained with a weaker
topology. Stinchocombe (1990) derived further results for both topologies. Van Zandt (2002)
studied continuity of solutions to constrained maximization problems with respect to the
Cotter (1986) topology on the information fields.
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quite general conditions on the economy. These are Wilson (1978) coarse core,
where a blocking coalition considers its interim payoffs (following the revelation
of private information to agents) given a common knowledge event, and Yannelis
(1991) private core, where blocking is based on ex-ante payoffs, but measurabil-
ity of all allocations with respect to agents’ private information is required. The
relation between the private core and the Radner equilibrium correspondence
is analogous to that of the core and the Walrasian equilibrium correspondence
in a complete information economy — see Einy, Moreno and Shitovitz (2001) for
an equivalence result in economies with differential information and a contin-
uum of traders. Here we show that the private core correspondence may not
be upper semi-continuous even in simple economies (see Example 1). However,
the private core correspondence is upper semi-continuous for every converging
sequence of economies where agents’ information fields approach their limit-
ing information fields from above (which corresponds to the case of decreasing
information quality; see Theorem 2).
The private core correspondence is also upper semi-continuous when the lim-

iting economy is a complete information economy (see Theorem 3). This stands
in contrast to Theorem 1 of Krasa and Shafer (2001), that shows discontinuity
of this correspondence when the agents’ common prior2 over the set of states
of nature changes, in a way that the information becomes complete in the end.
Here we view the common prior as an invariable characteristic of the economy3

(together with the sets of agents, commodities, and states of nature), and not
as part of the agents’ characteristics. Accordingly, in all our results the infor-
mation fields of the agents (and their other characteristics) are allowed to vary,
while the common prior stays fixed. This is precisely what allows us to obtain
the positive result of Theorem 3.
Finally, we examine the coarse core correspondence, and find that it is also

fragile, as it may fail to be upper semi-continuous even when the private core
correspondence is (see Example 2).

2 The Model

We consider a pure exchange economy E with differential information. The
commodity space is Rm+ . The set of agents is N = {1, 2, ..., n}. The uncertainty
in the economy is described by a probability space (Ω,z, µ) , where Ω is the
space of states of nature, which we assume to be compact and metrizable, z is
a σ-field of subsets of Ω, and µ is the common prior of the agents - a countably
additive probability measure on (Ω,z) . The initial information of agent i ∈ N
is given by a σ-subfield zi of z; that is, for every A ∈ zi agent i knows whether
the realized state of nature is contained in A.

2To interpret the model of Krasa and Shafer (2001) in our setting, one has to view this
common prior as defined on the product of the set of states of nature and the signals receivable
by agents, rather than the set of states of nature alone (as we do here, with information fields
as a device of revealing information).

3Or, more precisely, of its information structure determined by the underlying economic
data.
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For any 1 ≤ p < ∞ we write Lmp for the Banach space of all z-measurable
functions4 x : Ω → Rm such that kxkp ≡

¡R
Ω
kx (ω)kp dµ (ω)¢ 1p < ∞ (here k·k

stands for the Euclidean norm on Rm). It is well known that Lmp ⊂ Lm1 and
that convergence in Lmp -norm implies convergence in Lm1 -norm.
Given S ⊆ N, an S-assignment in economy E is an S-tuple x = ¡

xi
¢
i∈S

of non-negative functions (commodity bundles) in which xi ∈ Lm1 for every
i ∈ S. An N -assignment is simply referred to as an assignment. There is a fixed
initial assignment of commodities in the economy, e = (e1, ..., en); ei is referred
to as the initial endowment of agent i. An S-allocation is an S-assignment
x =

¡
xi
¢
i∈S that

5 satisfies the feasibility constraint:X
i∈S

xi (ω) ≤
X
i∈S

ei (ω) for (µ-)almost every ω ∈ Ω. (1)

Given a subfield z0 of z, we use the extended notion of z0-measurability by
calling a function, which is equal µ-almost everywhere to anz0-measurable func-
tion, also z0-measurable. A private S-allocation is an S-allocation x =

¡
xi
¢
i∈S

such that xi is zi-measurable for every i ∈ S. An N -allocation (respectively,
private N -allocation) is called an allocation (respectively, private allocation).
The preferences of agent i over the commodity space are represented by a

state-dependent utility function, ui : Ω × Rm+ → R+, measurable with respect
to the product field z × B (where B is the σ-field of Borel sets in Rm+ ) and
continuous6. We will always assume that ui (ω, ·) is concave on Rm+ for every
ω ∈ Ω, and non-decreasing. If x = (x1, ..., xn) is an assignment, we denote

U i
¡
xi
¢
=

Z
Ω

ui
¡
ω, xi (ω)

¢
dµ, (2)

whenever the integral exists.
To sum up, an economy with differential information, E, is described by the

collection
¡
ei, ui,zi

¢n
i=1

.

A possible interpretation7 of the above economy is the following. It extends
over two periods of time. In the first period there is uncertainty about the
state of nature. In this period, agents make contracts on redistribution of their
initial endowments either before the state of nature is realized (ex-ante) or after
receiving their private information (interim). In the second period agents carry
out previously made agreements, and consumption takes place.
In order to define convergence of economies with differential information,

we use a pseudo-metric (introduced in Boylan (1971)) on the family z∗ of σ-
4Or, to be precise, their equivalence classes, where any two functions which are equal

µ-almost everywhere are identified.
5For any two vectors x = (x1, ..., xm) , y = (y1, ..., ym) ∈ Rm we write x ≥ y when xk ≥ yk

for every k = 1, ...,m, and x > y when x ≥ y and x 6= y.
6Continuity of u implies its z ×B-measurability when z is the σ-field of Borel sets in Ω.
7This paragraph is a quotation from Allen and Yannelis (2001), p. 265, slightly modified

to fit our setting.
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subfields of z, given by

d (z1,z2) = sup
A∈z1

inf
B∈z2

µ (A4B) + sup
B∈z2

inf
A∈z1

µ (A4B) ,

where A4B = (A\B) ∪ (B\A) is the “symmetric difference” of A and B. Con-
sider a sequence {Ek}∞k=1 of economies Ek =

¡
eik, u

i
k,zik

¢n
i=1

with differential
information. We say that {Ek}∞k=1 converges8 to an economy E =

¡
ei, ui,zi

¢n
i=1

if for every i ∈ N :
i)9 eik →Lm1

k→∞ e
i;

ii) uik →k→∞ ui uniformly on every compact subset of Ω×Rm+ ;
iii) zik →k→∞ zi in Boylan pseudo-metric.
Finally, if X is a random variable on (Ω,z, µ) and z0 is a σ-subfield of z,

denote by E (X | z0) the conditional expectation10 of X with respect to z0.

3 Continuity of Radner Equilibrium Correspon-
dence

Radner (1968, 1982) introduced a notion of competitive equilibrium for economies
with differential information. Here we study the continuity of Radner equilib-
rium correspondence.
In what follows we consider commodity bundles that are members of Lmp ,

for some given p ≥ 1. Let E = ¡
ei, ui,zi

¢n
i=1

be an economy with differential
information. A price system π is a non-negative function in the unit sphere of Lmq
(i.e., kπkq = 1), where q ∈ (1,∞] is such that 1p+ 1q = 1. It is elementary that any
price functional ϕ in the economy (which is a continuous linear functional in the
dual of Lmp , restricted to the cone of commodity bundles in L

m
p ) is representable

by a unique price system πϕ : for any commodity bundle x, ϕ (x) =
R
Ω πϕ ·xdµ.

Given a price system π, the budget set of i ∈ N is given by

Bi (π) =

½
x ∈ Lmp | x is non-negative and zi-measurable and

Z
Ω

π · xdµ ≤
Z
Ω

π · eidµ
¾
.

A Radner equilibrium of E is a pair (x,π) , where π is a price system and
x =(x1, ..., xn) is a private allocation such that for every i ∈ N xi maximizes
U i on Bi (π) . Denote by RE(E) the set of Radner equilibria in E.
The following theorem (whose proof, together with all other proofs, is given

in Section 6) establishes upper semi-continuity of the Radner equilibrium cor-
respondence.

8We use the language of “convergence of economies” only for the sake of convenience. As
was mentioned in the introduction, the convergence here is actually restricted to the agents’
characteristics.

9By “→Lmp
k→∞” we denote convergence in the L

m
p -norm.

10 Since E (X | z0) is usually defined as a class of functions, we will always take a selection
from it.
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Theorem 1. Let {Ek}∞k=1 be a sequence of economies Ek =
¡
eik, u

i
k,zik

¢n
i=1

with differential information that converge to E = ¡
ei, ui,zi

¢n
i=1
, where ei is

strictly positive for every i ∈ N . If {(xk,πk)}∞k=1 is a sequence such that
(xk,πk) ∈ RE(Ek) for every k, and for every i ∈ N, xik →

Lmp
k→∞ x

i, πk →Lmq
k→∞ π,

then (x,π) ∈ RE(E).

One may ask whether Lmq -norm convergence of price systems can be replaced
with weak* convergence11 , without affecting the result. The answer is negative,
as will be made clear in Example 1 of the next section. In this example we will
also show that confining attention only to Radner equilibrium allocations does
not yield an upper semi-continuous correspondence.

4 Continuity of the Private Core

In this section we study the continuity of the private core of an economy with
differential information, introduced in Yannelis (1991).
Let E = ¡

ei, ui,zi
¢n
i=1

be an economy with differential information. The
private core of E consists of all private allocations x = ¡

x1, ..., xn
¢
for which

there do not exist a non-empty coalition S ⊆ N and a private S-allocation
y =

¡
yi
¢
i∈S, such that

U i
¡
yi
¢
> U i

¡
xi
¢

(3)

for every i ∈ S.
As was said in the introduction, in complete information economies the core

correspondence is upper semi-continuous, see, e.g., Kanai (1970). Therefore, it
is natural to ask whether upper semi-continuity continues to hold for economies
with differential information. That is, if {xk}∞k=1 is a sequence of private core
allocations in a converging sequence of economies {Ek}∞k=1 , and {xk}∞k=1 con-
verges to x, does this imply that x is a private core allocation for the limiting
economy E? The following example shows that the answer may be negative for
all converging sequences {xk}∞k=1 , even in very simple economies.

Example 1. For every ε ∈ [0, 1) let Eε be an economy in which m = 1,
n = 2, e1k = e2k ≡ 1

2 , Ω = [0, 1] ∪ [2, 3], µ is the restriction of the Lebesgue
measure on the real line to Ω (normalized so as to satisfy µ (Ω) = 1), u1 (ω, x) =½
x, if ω ∈ [0, 1] ,
0, if ω ∈ [2, 3] ; , u

2 (ω, x) =

½
0, if ω ∈ [0, 1],
x, if ω ∈ [2, 3] . , z

1 is the finite field

generated by [0, 1] ∪ [2, 2 + ε], (2 + ε, 3], and z2 is the finite field generated by
[0, 1] , [2, 3]. Let xk =

¡
x1k, x

2
k

¢
be a private core allocation12 in the economy

11When 1 < p, the weak* convergence is of course equivalent to the weak convergence.
12Existence of a private core allocation in such an economy can be established by using

arguments of Glycopantis, Muir and Yannelis (2001) (where existence was established with
”no free disposal” condition). Alternatively, one can show nonemptiness of the private core
of Eε by checking that it contains the initial endowments allocation.
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E 1
2k
. Since xk is private, it has the form

xk =
³
a1 (k)χ[0,1]∪[2,2+ 1

2k ]
+ a2 (k)χ(2+ 1

2k ,3]
, b1 (k)χ[0,1] + b2 (k)χ[2,3]

´
(where χA stands for the indicator function of the set A); the equality holds
almost everywhere. The feasibility constraint (1) taken for ω ∈ [0, 1] and ω ∈
[2, 2 + 1

2k ] yields

a1 (k) + b1 (k) ≤ 1, and a1 (k) + b2 (k) ≤ 1. (4)

Note that

a1 (k) ≥ 1
2

(5)

since otherwise for S = {1} an S-allocation y = ¡e1k¢ would satisfy
U1
¡
y1
¢
> U1

¡
x1k
¢
,

contrary to xk being a private core allocation in the economy E 1
2k
(that is, xk

would not be individually rational). Individual rationality of xk also implies

b2 (k) ≥ 1
2
. (6)

From (5), (6), and (4) we deduce that

a1 (k) = b2 (k) =
1

2
.

Consider now a converging subsequence of {(a1 (k) , a2 (k) , b1 (k) , b2 (k))}∞k=1 .
It exists since 0 ≤ a1 (k) , a2 (k) , b1 (k) , b2 (k) ≤ 1 by the feasibility constraint,
and w.l.o.g. we will assume that the sequence itself converges. This implies
convergence of {xk}∞k=1 pointwise almost everywhere (and thus in Lm1 -norm, or
more generally any Lmp -norm for 1 ≤ p < ∞ due to the boundedness of the
sequence) to

x =
³
a1χ[0,1] + a2χ[2,3], b1χ[0,1] + b2χ[2,3]

´
,

with a1 = b2 = 1
2 . Also,

n
E 1
2k

o∞
k=1

converges to E0. However, x is not a private
core allocation of E0. Indeed, take S = N and y =

³
χ[0,1],χ[2,3]

´
. y is obviously

a private allocation in E0, and
U i
¡
yi
¢
> U i

¡
xi
¢

is satisfied for every i (that is, x is not Pareto-optimal).
Note that this example would still work if the utility functions were slightly

modified to become strictly concave and strictly increasing. The compact set Ω
could also be made connected without affecting our claim.
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Our final observation is that there is a sequence of Radner equilibria inn
E 1
2k

o∞
k=1

that does not converge to a Radner equilibrium in E0. Indeed, the
“no trade” scenario (e,πk) , where e consists of the initial endowments of the
agents and

πk =

(
(4k)

1
qχ[2,2+ 1

2k ]
, if q <∞,

χ[2,2+ 1
2k ]
, if q =∞ ,

is a Radner equilibrium in E 1
2k
, but {πk}∞k=1 clearly does not converge in the

Lmq -norm. It does converge weakly*, but to the zero function. This shows that
Theorem 1 cannot be strengthened by assuming that {πk}∞k=1 converges to π
weakly* (since π can be zero despite that kπkkq = 1 for every k).
In the limiting economy E0, every Radner equilibrium has the form (x,π) ,

where x =
³
χ[0,1],χ[2,3]

´
(almost everywhere) andZ

[0,1]

π (ω) dµ (ω) =

Z
[2,3]

π (ω) dµ (ω) .

This shows that the set of Radner equilibrium allocations REA is also not upper
semi-continuous: e ∈REA(E 1

2k
) for every k, but REA(E0) = {x} and x 6= e. ¥

In the above example the limiting information field is neither included, nor
includes, the information fields that converge to it. However, when this does
not occur, positive results on upper semi-continuity of the private core can be
obtained.

Theorem 2. Let {Ek}∞k=1 =
©¡
eik, u

i
k,zik

¢n
i=1

ª∞
k=1

be a sequence of economies
with differential information that converges13 to E = ¡ei, ui,zi¢n

i=1
, such that

zik ⊇ zi for all i ∈ N and k. If {xk}∞k=1 is such that xk =
¡
x1k, ..., x

n
k

¢
is a private

core allocation in Ek, and for every i ∈ N xik →Lm1
k→∞ x

i, then x =
¡
x1, ..., xn

¢
is

a private core allocation in E.

According to Theorem 2, if the information fields of agents shrink when
they approach the limiting information fields (which can be the case when,
e.g., the level of random noise increases), then the private core is upper semi-
continuous. Theorem 3 below may be viewed as a dual result, showing that the
private core is also upper semi-continuous when the information of agents rises
to the fullest possible extent, i.e., when the economies converge to a complete
information economy. It stands in contrast to the result of Krasa and Shafer

13Convergence of information fields in Boylan pseudo-metric (which is one of the aspects of
convergence of economies) is not, in fact, necessary for this theorem.
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(2001), showing generic discontinuity of the private core correspondence when
complete information is approached by changing the common prior of agents
(rather than by expanding their information fields).

Theorem 3. Let {Ek}∞k=1 =
©¡
eik, u

i
k,zik

¢n
i=1

ª∞
k=1

be a sequence of economies

with differential information that converges to E = ¡ei, ui,zi¢n
i=1
, wherezi = z

for every i ∈ N, z is the σ-field of all Borel sets in Ω, and each ei is a con-
tinuous and strictly positive function. Assume also that for every two disjoint
and closed subsets A and B of Ω there exist Aik ∈ zik for every i and k such
that A ⊆ Aik and Aik ∩B = ∅ for all sufficiently large k (that is, zik can sepa-
rate disjoint closed subsets for all sufficiently large k). Then, if {xk}∞k=1 is such
that xk =

¡
x1k, ..., x

n
k

¢
is a private core allocation in Ek and for every i ∈ N

xik →Lm1
k→∞ x

i, x =
¡
x1, ..., xn

¢
is a private core allocation in E.

5 The Coarse Core
Let E = ¡ei, ui,zi¢n

i=1
be an economy with differential information. The coarse

core of E consists of all allocations x = ¡x1, ..., xn¢ for which there do not exist
a non-empty coalition S ⊆ N, an event A ∈ Vi∈S zi with µ(A) > 0 (whereV
i∈S zi stands for the finest field included in all zi, i ∈ S, and represents the

common knowledge of agents in S), and an S-assignment y =
¡
yi
¢
i∈S, that

satisfy the following conditions:

(i)
P
i∈S y

i (ω) ≤Pi∈S e
i (ω) for almost every ω ∈ A;

(ii)14 E
¡
ui
¡·, yi (·)¢ | zi¢ (ω) > E

¡
ui
¡·, xi (·)¢ | zi¢ (ω) for almost every

ω ∈ A and i ∈ S.
According to (i), y is feasible for agents in S, given the event A and their

initial endowments. And (ii) means that agents in S can improve their condi-
tional expected utility when they redistribute their endowments according to
y, given that A occurred. The concept of coarse core (introduced by Wilson
(1978)) thus disallows existence of such S, A, and y.
Wilson (1978) proved that the coarse core is non-empty under standard

conditions on the economy, at least when the set of states of nature is finite. The
following example shows that the coarse core may not be upper semi-continuous,
even when the private core is15.

14Recall that E (X | z0) stands for the conditional expectation of X with respect to z0.
15 In this example, along the converging sequence of economies the information fields of

agents 1 and 2 are fixed, while the information fields of agents 3 and 4 approximate full
information. The proof of Theorem 3 can be used to show that the limit of any converging
sequence of private core allocations will be a private core allocation in the limiting economy
(commodity bundles y1 and y2, if used by a blocking coalition in E, will not even have to
be approximated by a continuous function in order to show that E

¡
y1 | zik

¢
and E

¡
y2 | zik

¢
approximate them uniformly).

9



Example 2. Consider a sequence of economies Ek =
¡
eik, u

i
k,zik

¢n
i=1

with
m = 2 and n = 4, where:

1) uik is state-independent, and u
i
k (x1, x2) = u (x1, x2) =

¡√
x1 +

√
x2
¢2
for

every i, k;
2) eik is state-independent, and e

1
k = e

3
k = (10, 110) , e

2
k = e

4
k = (110, 10) , for

every k;
3) the compact space of states Ω is the sequence {ωj}∞j=0, where ω0 = 0,

and ωj =
1
j for j ≥ 1;

4) µ is a measure on Ω according to which µ ({ω2j}) = µ ({ω2j+1}) > 0 for
every j ≥ 0;
5) z1k = z2k =

n
∅, {ω2j}∞j=0 , {ω2j+1}∞j=0 ,Ω

o
; that is, 1 and 2 can only tell

whether the realized state of nature has even or odd index;
6) z3k = z4k is the minimal σ-field in Ω that contains {ω0} , {ω1} , ..., {ωk} ,

and {ωj}∞j=k ; that is, 3 and 4 can actually know the state of nature, provided
its index is less than k.
It is clear that the sequence {Ek}∞k=1 converges to an economy E =

¡
ei, ui,zi

¢n
i=1
,

which differs from those in {Ek}∞k=1 only in one respect: z3 = z4 is the field of
all subsets of Ω.
Now consider an assignment x =

¡
x1, x2, x3, x4

¢
, where x1 (ω2j) = x2 (ω2j+1) =

(50, 50) and x1 (ω2j+1) = x2 (ω2j) = (70, 70) for every j ≥ 0, and x3 = x4 ≡
(60, 60) . It is obvious that x is an allocation for all economies in {Ek}∞k=1 , and
for E.
We show first that x is not a coarse core allocation for E . Indeed, S = {2, 3}

can improve the conditional expected utility of both 2 and 3 given that the state
of nature has an odd index. We simply take A = {ω2j+1}∞j=0 (which is clearly in
the common knowledge of 2 and 3 in E: A ∈ z2 ∧z3), and y = ¡yi¢

i∈S defined
by y2 (ω2j+1) ≡ (51, 51) , y3 (ω2j+1) ≡ (69, 69) . Then (i) and (ii) are satisfied,
and hence x is not a coarse core allocation for E.
Our next step is to show that x is a coarse core allocation for every Ek.

(This will imply that the coarse core correspondence indeed lacks upper semi-
continuity.) To this end suppose that there are k, S, A, and y that satisfy (i)
and (ii) in the economy Ek. It is easy to see that x is individually rational (given
each trader’s information), and so S must contain more than one trader.
Note that (ii) impliesZ

A

u
¡
yi (ω)

¢
dµ (ω) =

Z
A

E
¡
u
¡
yi (·)¢ | zi¢ (ω) dµ (ω)

>

Z
A

E
¡
u
¡
xi (·)¢ | zi¢ (ω) dµ (ω) = Z

A

u
¡
xi (ω)

¢
dµ (ω)

for every i ∈ S, since A is an element of every Fi. ThereforeX
i∈S

Z
A

u
¡
yi (ω)

¢
dµ (ω) >

X
i∈S

Z
A

u
¡
xi (ω)

¢
dµ (ω) . (7)

10



At the same time, from concavity and homogeneity of u and (i) it follows that:

X
i∈S

Z
A

u
¡
yi (ω)

¢
dµ (ω) ≤ u

ÃX
i∈S

Z
A

yi (ω) dµ (ω)

!

=

ÃsX
i∈S

Z
A

yi (ω)1 dµ (ω) +

sX
i∈S

Z
A

yi (ω)2 dµ (ω)

!2

≤
2
sP

i∈S
R
A
(yi (ω)1 + y

i (ω)2) dµ (ω)

2

2

= 2

Z
A

X
i∈S

¡
yi (ω)1 + y

i (ω)2
¢
dµ (ω)

≤ 2
Z
A

X
i∈S

¡
ei (ω)1 + e

i (ω)2
¢
dµ (ω) = 2

Z
A

120 |S| dµ (ω)

= 240 |S|µ(A).

Thus X
i∈S

Z
A

u
¡
yi (ω)

¢
dµ (ω) ≤ 240 |S|µ(A). (8)

If S = {1, 2} or S = {3, 4} , then for each ωPi∈S u
¡
xi (ω)

¢
= 480 = 240 |S| ,

and so (7) and (8) are inconsistent. Since |S| > 1 (as was mentioned), we are
left with the possibility that S∩{1, 2} 6= ∅ and S∩{3, 4} 6= ∅. Then A = Ω since
the common knowledge of all the agents in S (where A belongs) contains only
trivial information16, and µ (A) > 0. However, clearly

R
Ω
u
¡
xi (ω)

¢
dµ (ω) = 240

for every i ∈ N, and thereforeX
i∈S

Z
Ω

u
¡
xi (ω)

¢
dµ (ω) = 240 |S| .

Thus, (7) and (8) lead to a contradiction again. We conclude that there exist
no k, S, A, and y that satisfy (i) and (ii) in the economy Ek, and therefore x is
a coarse core allocation in every Ek.¥

16 I.e., the field {∅,Ω}.
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6 Proofs

Lemma 1. Let {zk}∞k=1 be a sequence of σ-subfields of z that converges to
z0 in Boylan pseudo-metric, and let {Xk}∞k=1 be a sequence of functions in
L1 (Ω,z, µ) that converges to X in L1-norm. If Xk is zk-measurable for every
k, then X is z0-measurable.

Proof. We will show that X = E (X | z0) almost everywhere. Since L1-
norm convergence implies convergence in measure, {Xk}∞k=1 converges to X in
measure. Thus, it suffices to show that {Xk}∞k=1 converges in measure also to
E (X | z0) .
From zk-measurability of Xk, Xk = E (X | zk) almost everywhere. Thus,

almost everywhere,

|Xk −E (X | z0)| = |E (Xk | zk)−E (X | z0)| (9)

≤ |E (Xk | zk)−E (X | zk)|+ |E (X | zk)−E (X | z0)| . (10)

For every k,Z
Ω

|E (Xk | zk)−E (X | zk)| dµ ≤
Z
Ω

E (|Xk −X| | zk) dµ

=

Z
Ω

|Xk (ω)−X (ω)|dµ (ω) = kXk −Xk1 .

Since kXk −Xk1 →k→∞ 0, also
R
Ω |E (Xk | zk)−E (X | zk)| dµ→k→∞ 0, and

hence the first summand in (10) converges to zero in measure. AndE (X | zk)→k→∞
E (X | z0) in measure by Theorem 4 in Boylan (1971). Consequently, by (9)-
(10), {Xk}∞k=1 indeed converges in measure to E (X | z0) .¥

Lemma 2. Let {uk}∞k=1 be a sequence of continuous functions on Ω×Rm+
such that for every ω ∈ Ω the function uk(ω, ·) is concave, non-negative, and
non-decreasing. Assume that {uk}∞k=1 converges to a function u uniformly on
every compact subset of Ω×Rm+ . If {xk}∞k=1 is a sequence in Lm1 that converges
to x in the Lm1 -norm, then

lim
k→∞

Z
Ω

uk(ω, xk (ω))dµ (ω) =

Z
Ω

u(ω, x (ω))dµ (ω) .

12



Proof. Due to the uniform convergence of {uk}∞k=1 , the sequence of Ck =
maxω∈Ω,kxk≤1 uk(ω, x) is bounded from above by some C > 0. Fix ε > 0. Since
{xk}∞k=1 converges to x in Lm1 -norm, {xk}∞k=1 is uniformly integrable (see Propo-
sition II.5.4 of Neveu (1965)) and x is integrable. Consequently, we can find
M > 1 with:

(i) sup
k

Z
{ω∈Ω|kxk(ω)k>M}

kxk (ω)kdµ (ω) < ε

9C
;

and

(ii)
Z
{ω∈Ω|kx(ω)k>M}

kx (ω)k dµ (ω) < ε

9C
.

Note that ¯̄̄̄Z
Ω

uk(ω, xk (ω))dµ (ω)−
Z
Ω

u(ω, x (ω))dµ (ω)

¯̄̄̄

≤
Z
Ω

|uk(ω, xk (ω))− u(ω, xk (ω))| dµ (ω)

+

Z
Ω

|u(ω, xk (ω))− u(ω, x (ω))| dµ (ω)

=

Z
Ω

|uk(ω, xk (ω))− u(ω, xk (ω))|χ{ω∈Ω|kxk(ω)k≤M}dµ (ω)

+

Z
{ω∈Ω|kxk(ω)k>M}

|uk(ω, xk (ω))− u(ω, xk (ω))| dµ (ω)

+

Z
Ω

|u(ω, xk (ω))− u(ω, x (ω))|χ{ω∈Ω|kxk(ω)k≤M and kx(ω)k≤M}dµ (ω)

+

Z
{ω∈Ω|kxk(ω)k>M or kx(ω)k>M}

|u(ω, xk (ω))− u(ω, x (ω))|dµ (ω)

≡ I1 + I2 + I3 + I4.
(Here χS stands for the characteristic function of the set S). We will show that
each Ij is less than ε for all sufficiently large k, and this will establish the claim.
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Before proceeding further, note that concavity and monotonicity of each uk(ω, ·)
imply that

uk(ω, x) ≤ Cmax{kxk , 1} (11)

for all k, ω ∈ Ω, and x ∈ Rl+.
The uniform convergence of {uk}∞k=1 to u onΩ×

©
x ∈ Rm+ | kxk ≤M

ª
immediately

yields limk→∞ I1 = 0, and thus

I1 < ε

for all sufficiently large k. Inequality (11) implies that

I2 ≤ 2C
Z
{ω∈Ω|kxk(ω)k>M}

kxk (ω)k dµ (ω) , (12)

and by our choice of M,

I2 < ε

for all k. Since xk converges to x0 in measure (as implied by the Lm1 -norm
convergence), and u(·, ·) is uniformly continuous on the compact set Ω × {x ∈
Rm+ | kxk ≤ M} (being a continuous function), |u(ω, xk (ω))− u(ω, x (ω))| ·
χ{ω∈Ω|kxk(ω)k≤M and kx(ω)k≤M} converges in measure to zero, and thus limk→∞ I3 =
0 by the generalized bounded convergence theorem. Once again,

I3 < ε

for all sufficiently large k. Finally,

I4 =

Z
{ω∈Ω|kxk(ω)k>M or kx(ω)k>M}

|u(ω, xk (ω))− u(ω, x (ω))|dµ (ω)

≤
Z
{ω∈Ω|kxk(ω)k>M}

|u(ω, xk (ω))− u(ω, x (ω))|dµ (ω)

+

Z
{ω∈Ω|kx(ω)k>M}

|u(ω, xk (ω))− u(ω, x (ω))| dµ (ω)

≤ C
Z
{ω∈Ω|kxk(ω)k>M}

(kxk (ω)k+max(kx (ω)k , 1))dµ (ω)

+C

Z
{ω∈Ω|kx(ω)k>M}

(max(kxk (ω)k , 1) + kx (ω)k)dµ (ω)

14



≤ C
Z
{ω∈Ω|kxk(ω)k>M}

(2 kxk (ω)k+ kx (ω)k)dµ (ω)

+C

Z
{ω∈Ω|kx(ω)k>M}

(kxk (ω)k+ 2 kx (ω)k)dµ (ω)

≤ C
Z
{ω∈Ω|kxk(ω)k>M}

(2 kxk (ω)k+ kx (ω)− xk (ω)k+ kxk (ω)k)dµ (ω)

+C

Z
{ω∈Ω|kx(ω)k>M}

(kxk (ω)− x (ω)k+ kx (ω)k+ 2 kx (ω)k)dµ (ω)

≤ 2C
Z
Ω

kxk (ω)− x0 (ω)kdµ (ω)

+3C

Z
{ω∈Ω|kxk(ω)k>M}

kxk (ω)kdµ (ω) + 3C
Z
{ω∈Ω|kx0(ω)k>M}

kx0 (ω)kdµ (ω)

≤ 2C
Z
Ω

kxk (ω)− x0 (ω)kdµ (ω) + 2ε
3
(by the choice of M).

The first summand in the above expression is less than ε
3 for all sufficiently large

k, which yields

I4 < ε.

¥

Proof of Theorem 1. We have to show that (x,π) is a Radner equilibrium
of E. Note first that x = (x1, ..., xn) is a private allocation in E . Indeed, each xi
is zi-measurable by Lemma 1. Moreover, each Lm1 -norm convergent

©
xik
ª∞
k=1

has a subsequence that converges pointwise almost everywhere, and thus x also
satisfies the feasibility constraint (1).
Next, for every i ∈ N¯̄̄̄Z
Ω

¡
πk · xik − π · xi¢dµ¯̄̄̄ ≤ Z

Ω

¯̄
πk ·

¡
xik − xi

¢¯̄
dµ+

Z
Ω

¯̄
(πk − π) · xi¯̄ dµ. (13)

By Hölder inequality,Z
Ω

¯̄
πk ·

¡
xik − xi

¢¯̄
dµ ≤ kπkkq

°°xik − xi°°p = °°xik − xi°°p
15



and Z
Ω

¯̄
(πk − π) · xi¯̄ dµ ≤ kπk − πkq

°°xi°°
p
.

However, limk→∞ kπk − πkq = limk→∞
°°xik − xi°°p = 0, and hence by (13)Z

Ω

πk · xikdµ→k→∞
Z
Ω

π · xidµ. (14)

It is also obvious that Z
Ω

πk · eidµ→k→∞
Z
Ω

π · eidµ. (15)

From (14), (15) it follows that xi ∈ Bi (π) for every i ∈ N .
It remains to show that for every i ∈ N, xi maximizes U i onBi (π) . Indeed, if

this were not true, there would exist i ∈ N and yi ∈ Bi (π) with U i(yi) > U i(xi).
Since (1− α)min(yi,M)→α&0,M→∞ yi in Lm1 -norm, U i((1− α)min(yi,M))→α&0,M→∞
U i(yi) by Lemma 2, and thus w.l.o.g. yi is bounded and satisfies17Z

Ω

π · yidµ <
Z
Ω

π · eidµ (16)

(otherwise it can be replaced by some (1− α)min(yi,M)).
Now define yik ≡ E

¡
yi | zik

¢
; it is zik-measurable. Since yik →k→∞ yi in

measure (by Theorem 4 of Boylan (1971)), yik →Lm1
k→∞ y

i because of the uniform
boundedness of yik and y

i, and it can be established similarly to (14) thatZ
Ω

πk · yikdµ→k→∞
Z
Ω

π · yidµ.

Together with (15) and (16) this implies that yik ∈ Bi (πk) for all sufficiently
large k. But U i(yi) > U i(xi), and xik →Lm1

k→∞ xi, yik →Lm1
k→∞ yi. By Lemma 2,

for all sufficiently large k

U ik(y
i
k) > U

i
k(x

i
k),

where U ik is defined by (2) for the utility function uk. This cannot be consistent
with yik ∈ Bi (πk) since (xk,πk) ∈ RE(Ek). We reached a contradiction, which
leads to the conclusion that (x,π) ∈ RE(E).¥

Proof of Theorem 2. As in the proof of Theorem 1, x = (x1, ..., xn) is a
private allocation in E. Assume, however, that x is not in the private core of E.

17We use the fact that
R
Ω π · ei > 0, which is due to strict positivity of ei, and positivity of

the non-vanishing π.
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Then there exist a non-empty coalition S and a private S-allocation y = (yi)i∈S
such that

U i
¡
yi
¢
> U i

¡
xi
¢

(17)

for every i ∈ S.
We will now modify y to obtain an S-allocation in Ek for a certain large k.

Let ε > 0 and denote by k (ε) some positive integer k for which

µ
¡
Aik,ε

¢
> 1− ε for every i ∈ S, (18)

where

Aik,ε =
©
ω ∈ Ω | °°eik (ω)− ei (ω)°° < ε

ª
.

Such k (ε) is clearly well defined for all ε > 0, since eik → ei in measure. For this
reason, we can also choose {k (ε)}ε>0 in a way that k (ε) is non-increasing in ε
and limε&0 k (ε) =∞. Clearly, for almost every ω ∈ Ω and every commodity jX

i∈S
yi (ω) · χAi

k(ε),ε
(ω) ≤

X
i∈S

eik(ε) (ω) + nε1,

where 1 = (1, ..., 1) ∈ Rm (this inequality follows from the fact that y satisfies
the feasibility constraint in E and the definition of Aik(ε),ε). Therefore, yk(ε) =
(yik(ε))i∈S, defined by

yik(ε) (ω)j ≡ max(yi (ω)j · χAik(ε),ε (ω)− nε, 0)

for every ω ∈ Ω and every commodity j, satisfies the feasibility constraint in
Ek(ε) : X

i∈S
yik(ε) (ω) ≤

X
i∈S

eik(ε) (ω) for almost every ω ∈ Ω. (19)

Note that each Aik,ε is zik-measurable (since both eik and ei are zik-measurable
due to the inclusion zik ⊇ zi), and so yik(ε) is z

i
k(ε)-measurable. From this

fact and (19) it follows that the sequence
n
yk( 1r )

o∞
r=1

is a sequence of private

S-allocations in economies
n
Ek( 1r )

o∞
r=1
, and (18) implies that for each i ∈ S½

yi
k( 1r )

¾∞
r=1

converges to yi in measure.

Since for each i ∈ S and r yi
k( 1r )

≤ yi, the sequence
½
yi
k( 1r )

¾∞
r=1

is bounded

from above by an integrable function. Therefore, its convergence in measure to
yi implies convergence in the Lm1 -norm as well. However, according to this and
Lemma 2, for every i ∈ S

lim
r→∞U

i
k( 1r )

³
yi
k( 1r )

´
= U i

¡
yi
¢
.

17



Also, since xik →Lm1
k→∞ x

i, for every i ∈ S

lim
r→∞U

i
k( 1r )

³
xi
k( 1r )

´
= U i

¡
xi
¢
.

Due to assumption (17), these two equalities yield existence of r for which

U i
k( 1r )

³
yi
k( 1r )

´
> U i

k( 1r )

³
xi
k( 1r )

´
for every i ∈ S. This contradicts the assumption that xk( 1r ) is a private core
allocation in Ek( 1r ).¥

Proof of Theorem 3. As in the proof of Theorem 2, if the limit allocation
x = (x1, ..., xn) is not in the private core of E, there exist a non-empty coalition
S and a private S-allocation y = (yi)i∈S such that

U i
¡
yi
¢
> U i

¡
xi
¢

(20)

for every i ∈ S. We can assume w.l.o.g. that each yi is bounded. (Otherwise it
can be replaced by min(yi,M), which converges to yi in Lm1 -norm as M →∞.
Indeed, according to Lemma 2, U i(min(yi,M)) →M→∞ U i(yi), and thus this
replacement will leave (20) intact for sufficiently large M. Clearly, the replace-
ment also leads to a private allocation.) We will show next that it can also be
assumed w.l.o.g. that each yi is continuous.
By Lusin theorem, for every ε > 0 and i ∈ S there exists a continuous

function yiε on Ω, such that µ
¡
Aiε
¢
< ε where Aiε =

©
ω | yi (ω) 6= yiε (ω)

ª
. Also

denote Bε =
n
ω | there exists j with Pi∈S y

i
ε (ω)j ≥

P
i∈S e

i (ω)j + ε
o
, B =©

ω |Pi∈S y
i
ε (ω) ≤

P
i∈S e

i (ω)
ª
. Since these subsets of a compact metric space

Ω are disjoint and closed (here we use continuity of both ei and yiε for every
i ∈ S), they can be separated, i.e., there is a continuous function c : Ω→ [0, 1]
such that c ≡ 1 on B and c ≡ 0 on Bε. Thus, eyε = (eyiε)i∈S given by

eyiε (ω)j ≡ max(c (ω) · yiε (ω)j − ε, 0)

for every i ∈ S, commodity j, and ω ∈ Ω, satisfies the feasibility constraint in
E : X

i∈S
eyiε (ω) ≤X

i∈S
ei (ω) for every ω ∈ Ω.

Since each eyiε is zi-measurable as a continuous function on Ω (recall that zi = z
is the σ-field of all Borel sets in Ω), eyε is in fact a private S-allocation that
consists of continuous functions. Moreover, for each i ∈ S and a commodity j

yiε (ω)j − ε ≤ eyiε (ω)j ≤ yiε (ω)j (21)
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for almost every ω ∈ Ti∈S ¡Aiε¢c , since y satisfies the feasibility constraintP
i∈S y

i (ω) ≤Pi∈S e
i (ω) for almost every ω ∈ Ω and hence µ ¡Ti∈S ¡Aiε¢c \B¢ =

0. Clearly µ
¡T

i∈S
¡
Aiε
¢c¢

> 1 − nε, and together with (21) this implies that
functions in eyε converge in measure to those in y as ε& 0. From the (obvious)
uniform boundedness18 of eyε and y it follows that the convergence is in the
Lm1 -norm as well. By Lemma 2 and (20),

U i
¡eyiε0¢ > U i ¡xi¢

for every i ∈ S and some sufficiently small ε0. Thus, by replacing y in (20) byeyε0 if necessary, we can w.l.o.g. assume that (20) holds for y that consists of
continuous functions.
For every k = 1, 2, ... and i ∈ S define zik = E(yi | zik); zik is clearly

zik-measurable and is (or can be chosen to be) bounded by the same constant
as yi. We will show that a subsequence of

©
zik
ª∞
k=1

converges to yi uniformly
(almost everywhere). For every commodity j and two positive integers K, l with
0 ≤ l ≤ K, consider a pair of closed subsets of Ω :

ClK (j) =

½
ω | l − 1

K
max
ω∈Ω

yij ≤ yi (ω)j ≤
l

K
max
ω∈Ω

yij

¾
and

eClK (j) = ½ω | l − 2K max
ω∈Ω

yij ≥ yi (ω)j or
l + 1

K
max
ω∈Ω

yij ≤ yi (ω)j
¾
.

Since zik can separate disjoint closed sets for all sufficiently large k, for every
K there exists k = k(K) independent of i and j such that zik(K) separates
ClK (j) from eClK (j) for every j and 1 ≤ l ≤ K; it can also be assumed that
limK→∞ k(K) = ∞. Thus for every j and 1 ≤ l ≤ K there is a set DlK (j) ∈
zik(K) such that½

ω | l − 1
K

max
ω∈Ω

yij ≤ yi (ω)j ≤
l

K
max
ω∈Ω

yij

¾
⊂ DlK (j)

(and hence D1K (j) ,D
2
K (j) , ...,D

K
K (j) cover Ω), and

DlK (j) ⊂
½
ω | l − 2

K
max
ω∈Ω

yij < y
i (ω)j <

l + 1

K
max
ω∈Ω

yij

¾
.

Consequently, for every j and 1 ≤ l ≤ K, and almost every ω ∈ DlK (j) ,
zik(K) (ω)j − yi (ω)j = E(yij | zik(K)) (ω)− yi (ω)j

(here we use the fact that DlK (j) ∈ zik(K))

= E(yij · χDl
K(j)

| zik(K)) (ω)− yi (ω)j
18Here we use the (w.l.o.g.) assumption that the commodity bundles in y are bounded

functions.
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≤ E( l + 1
K

max
ω∈Ω

yij · χDl
K(j)

| zik(K)) (ω)−
l − 2
K

max
ω∈Ω

yij

=
l + 1

K
max
ω∈Ω

yij −
l − 2
K

max
ω∈Ω

yij =
3

K
max
ω∈Ω

yij .

Similarly,

zik(K) (ω)j − yi (ω)j ≥ −
3

K
max
ω∈Ω

yij

for almost every ω ∈ DlK (j) . We conclude that¯̄̄
zik(K) (ω)j − yi (ω)j

¯̄̄
≤ 3

K
max
ω∈Ω

yij ≡ δK (j) for almost every ω ∈ Ω.

(This means that
n
zik(K)

o∞
K=1

converges to yi uniformly (almost everywhere).)

ThusX
i∈S

zik(K) (ω)j ≤
X
i∈S

yi (ω)j + nδk(K) (j) ≤
X
i∈S

ei (ω)j + nδk(K) (j) (22)

for almost every ω ∈ Ω.
Now denote

yik(K) (ω)j ≡ max(zik(K) (ω)j − nδK (j) , 0)

for every i ∈ S, commodity j, and ω ∈ Ω. It is clear that
n
yik(K)

o∞
K=1

converges

to yi uniformly, and that (from (22)) the feasibility constraintX
i∈S

yik(K) (ω)j ≤
X
i∈S

ei (ω)j

is satisfied for every j and almost every ω ∈ Ω. Each yik(K) is also zik(K)-
measurable, since so is zik(K). We conclude that

©
yk(K)

ª∞
K=1

, where yk(K) =³
yik(K)

´
i∈S
, is a sequence of private S-allocations in economies

©Ek(K)ª∞K=1 .
Uniform convergence of functions implies convergence in Lm1 -norm, and hence,
according to Lemma 2, for every i ∈ S

lim
K→∞

U ik(K)

³
yik(K)

´
= U i

¡
yi
¢
and lim

K→∞
U ik(K)

³
xik(K)

´
= U i

¡
xi
¢
.

Due to (20), there exists K such that

U ik(K)

³
yik(K)

´
> U ik(K)

³
xik(K)

´
for every i ∈ S. This contradicts the assumption that xk(K) is a private core
allocation in Ek(K). ¥
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