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Abstract 
In this paper a consistent estimator for the Binomial distribution in the presence of 

incidental parameters, or fixed effects, when the underlying probability is a logistic function is 
derived. The consistent estimator is obtained from the maximization of a conditional likelihood 
function in light of Andersen's work. Monte Carlo simulations show its superiority relative to the 
traditional maximum likelihood estimator with fixed effects also in small samples, particularly 
when the number of observations in each cross-section, T, is small. Finally, this new estimator is 
applied to an original dataset that allows the estimation of the probability of obtaining a patent. 
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1 Introduction

�Incidental parameters� is a terminology Þrst introduced by Neyman and Scott (1948). It

refers to those parameters that are not common to the distribution function of all observa-

tions in the data as opposed to structural parameters. The most frequent form of incidental

parameters in panel data models are �Þxed effects,� which have become a common instru-

ment to control for time-invariant omitted variables.1,2 The introduction of Þxed effects,

however, may cause inconsistent estimates of the slope structural parameters.3 It is this

source of asymptotic bias that is commonly known as �the incidental parameters bias� (see

Neyman and Scott, 1948, Andersen, 1973, Lancaster, 2000).

This paper has three main contributions to this literature. First, it derives a consistent,

asymptotically normal estimator of the structural parameters of a binomial distribution

when the probability of success is a logistic function with Þxed effects. This particular

binomial distribution is a generalization of the work by Andersen (1973) and Chamberlain

(1980) for the case of N ≥ 1 Bernoulli trials. Second, it provides evidence, by way of Monte
Carlo simulations, that the small sample performance of this new estimator is superior to

the conventional maximum likelihood estimators with Þxed effects (m.l.e.f.e). Notice that

the asymptotic properties of the new estimator do not render the Monte Carlo simulations

superßuous. On the contrary, the simulations are crucial because the new estimator entails

some information loss that had unknown consequences in its small sample performance

vis a vis the m.l.e.f.e.. The simulations are also crucial on giving an indication on the

minimum depth of the panel (e.g. number of periods T ) required to rend the incidental

parameter bias negligible. Third, the paper ends with an application of the new estimator

to an original data set drawn from the European Patent Office (EPO) database that, by

1Incidental parameters are also associated with the error-in-variables literature (see Aigner et al., 1984
and the references therein). For a nice review on the �incidental parameters� literature read Lancaster
(2000).

2Random effects are also a common way of controlling for unobservable heterogeneity. This technique,
however, requires independence between the unobservable heterogeneity terms and the other regressors. See,
for example, the discussion on the difference between Þxed effects and random effects in Lancaster (2000).

3Researchers are usually not interested in the Þxed effects estimates per se as their interpretation is
difficult, but rather on obtaining consistent estimates of slope parameters. Arellano (2000) alerts to the
fact that slope parameters alone have a very limited use. In the context of a logit model, for example, the
ratio β1

β2
is only informative about the relative impact of explanatory variables x1 and x2 on the probability

of success. On the other hand, a more interesting measure is the marginal impact of a given explanatory
variable on the probability of success of the average individual in the sample. The latter, however, begs for
an estimate of the Þxed effects or knowledge of their conditional distribution.
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combining information on the number of patent applications and patents granted at the

Þrm level, allows the estimation of the probability of obtaining a patent.

The derivation of a consistent estimator for our speciÞc distribution4 is based on the

maximization of a conditional (on the sufficient statistic) likelihood function that is free of

the incidental parameters. The paper proves the consistency and asymptotic normality of

the conditional maximum likelihood estimator (c.m.l.e) under certain conditions. The proofs

are based on Andersen (1970) although Pfanzagl (1993)5 derives less restrictive sufficient

conditions for consistency of conditional maximum likelihood estimators. The main reasons

for relying on Andersen�s approach are its greater simplicity and the fact that for the speciÞc

distribution analyzed here some of the restrictions that Pfanzagl points out are naturally

satisÞed.

Monte Carlo simulations allowed the comparison of the mean square error performances

of the c.m.l.e. and the m.l.e.f.e relative to the standard maximum likelihood estimator with a

common constant term (hereafter m.l.e.), in relatively small samples. Apart from showing

that the c.m.l.e. outperforms the standard m.l.e.f.e. in small samples, the simulations

revealed that the biggest gain from using c.m.l.e. is when the depth of the panel, T, and

the number of Bernoulli trials N is small. An additional advantage from using the c.m.l.e.

for very small T is that the estimation time is much shorter than that of m.l.e.f.e. due to

the big reduction in the number of parameters to be estimated.

The Monte Carlo simulations have also shed light on the minimum size of T that makes

the incidental parameter bias negligible. Previous studies on this topic are Monte Carlo

experiments of the logit model with Þxed effects from Wright and Douglas (1976) and the

probit model with Þxed effects from Heckman (1995). Wright and Douglas (1976) conclude

that T has to be around 20 periods for the standard maximum likelihood approach to give

results as good as alternative consistent estimators. Heckman, on the other hand, Þnds

that for T as small as 8 (and 100 individuals) the probit model with Þxed effects performs

reasonably well. For the binomial, the �minimum� T depends not only on the number of

individuals in the panel but crucially on the number of Bernoulli trials (i.e. the parameter

4Reid (2000) and specially Reid (1995) review the roles of conditional inference.
5Pfanzagl (1993) section 4 works out an example with the logistic distribution that is similar to the

example in Andersen (1973). He derives a sufficient condition on the sequence of incidental parameters to
guarantee consistency of the conditional maximum likelihood estimator.
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N on the binomial distribution B(p,N)). The simulations show, for example, that for T as

small as 5, N = 5 and a total of 100 observations, the c.m.l.e. reduces the Mean Square

Error (MSE) relative to the m.l.e. by only 1.8% more than the m.l.e.f.e. This difference

may be small enough to justify the use of the m.l.e.f.e when estimation time is an important

issue.6 For smaller N 0s, however, the �minimum� T has to be bigger. For N = 2 and T = 5,

for example, the c.m.l.e. reduces the Mean Square Error by 37% more than the m.l.e.f.e.

The �minimum� T for N = 2 is around 10 periods i.e. the double than for N = 5. The

intuition behind this result is that bigger N works as if there were more data points and,

therefore, more information in the data, leading to smaller biases in general.

Section 2 introduces the Binomial distribution with a logistic probability of success and

presents a simple example of inconsistency of the maximum likelihood estimator with Þxed

effects. Section 3 derives the conditional maximum likelihood estimator (c.m.l.e.). Section

4 presents the Monte Carlo simulations. Finally, Section 5 applies this estimation to the

patents dataset. The appendix provides proofs as well as a short description of the patent

data set.

2 The Standard MLE for the Binomial

The binomial distribution can be applied to numerous data sets. Machado (2001) for exam-

ple, uses the binomial distribution to model the treatment outcome of substance abusers.

Other examples are the production of homogenous products along an assembly line or the

number of patents applications that are granted. Suppose there are T periods of data for

each Þrm i, i = 1, ....I. Denote by Nit and Kit the number of patent applications and the

number of patents granted respectively from and to Þrm i in period t. The probability of

observing Kit patents granted out of Nit applications, for Kit = 0, ..., Nit, from Þrm i, in

period t, follows a binomial distribution with parameters Nit and pit. The probability of

obtaining a patent depends on Þrm�s characteristics, such as the investment in R&D, rep-

resented by the vector Xit. Assume that the probability of success pit is a logistic function

6The estimation time of the c.m.l.e. grows exponentially with T and exceeds the estimation time of the
m.l.e.f.e. for relatively small T. The estimation time also increases with the average number of successes in
the data set.
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of the data, as follows:

pit =
exp (X 0

itβ + τ i)

1 + exp (X 0
itβ + τ i)

, (1)

β is a vector of structural parameters while τ1, ...τ I are incidental parameters representing

time-invariant Þrm characteristics.

Under the hypothesis of independence across periods and Þrms the log likelihood func-

tion is:

log L =
IX
i=1

TX
t=1

log lit =
IX
i=1

TX
t=1

logCNitKit
+

IX
i=1

TX
t=1

£
Kit

¡
X 0
itβ + τ i

¢−Nit log ¡1 + exp ¡X 0
itβ + τ i

¢¢¤
(2)

where CNitKit
= Nit!

Kit!(Nit−Kit)!
.

The traditional maximum likelihood estimators with Þxed effects (m.l.e.f.e.) are the

values of β and τ1, ...τ I that solve the system of Þrst order conditions (F.O.C.):

(
∂ log L
∂τ i

= 0
∂ log L
∂β = 0

⇔


TP
t=1
Kit =

TP
t=1
Nit

exp(X0
itβ+τ i)

1+exp(X0
itβ+τ i)

IP
i=1

TP
t=1
KitXit =

IP
i=1

TP
t=1
NitXit

exp(X0
itβ+τ i)

1+exp(X0
itβ+τ i)

(3)

where the Þrst equation of (3) equates the total number of successes and the number of

expected successes, as in the case of estimating a single probability.

The m.l.e.f.e. is inconsistent. To prove it, consider the simplest case. Let T = 2,

Ni1 = 1, Ni2 = 2 ∀ i, and suppose Xit represents a time dummy, i.e. Xi1 = 1 and Xi2 = 0,
for all i, similar to Andersen�s example (Andersen, 1973). For these values of T , N 0s and

X 0s, the F.O.C. simplify to:
2P
t=1
Kit = 1

exp(β+τ i)
1+exp(β+τ i)

+ 2 exp(τ i)
1+exp(τ i)

IP
i=1
Ki1 =

IP
i=1

³
(exp τ i)

exp(β)
1+exp(β+τ i)

´ (4)

The possible values of eKi = 2P
t=1
Kit are {0, 1, 2, 3}. If eKi is 3 or 0, then τ i = +∞ and

τ i = −∞, respectively. If eKi = 1,the F.O.C. for τ i implies:
exp (τ i) =

−1 +p1 + 8 exp(β)
4 exp(β)

. (5)

and for eKi = 2, the solution is:
exp (τ i) =

exp(β) +
p
exp(2β) + 8 exp(β)

2 exp(β)
. (6)
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By replacing (5) and (6) in the second equation of (4), the F.O.C for β becomes:

IX
i=1

Ki1 = n1

Ã
−1 +p1 + 8 exp(β)
3 +

p
1 + 8 exp(β)

!
+n2

Ã
exp(β) +

p
exp(2β) + 8 exp(β)

2 + exp(β) +
p
exp(2β) + 8 exp(β)

!
+n3 (7)

where nK are the number of Þrms with eKi = K.
Example 1 In the limit as I →∞, the maximum likelihood estimator, i.e. the solution to

equation (7), is always inconsistent unless, just as in the logit case, the true parameter β0

equals zero. Moreover, the m.l.e. will underestimate the true parameter β0 whenever β0 < 0

and overestimates the true parameter whenever β0 > 0. Furthermore, it is possible to show

that the ratio is 1 <
bβ
β0
< 2, i.e the bias is strictly smaller than in the logit case.

Proof: See appendix.

3 A consistent Estimator for the Binomial Distribution

3.1 The conditional maximum likelihood estimator

Let Kit, where i = 1, ....I and t = 1, ...T, be a binomial random variable with the underlying

probability of success pit given by (1). Xit is a vector of regressors associated with the

vector of structural parameters β and τ i for i = 1, ...I are Þrm-speciÞc Þxed effects. DeÞne

K = (K1, ...KI), and N = (N1, ..., NI), where Ki = (Ki1, ...,KiT ) and Ni = (Ni1, ...,NiT ),

i = 1, ...I. Under the assumption that observations are independent across time, the joint

probability distribution for Þrm i is

fi(Ki|β, τ i,Ni) = CNi1Ki1
pKi1
i1 (1− pi1)Ni1−Ki1 ...CNiTKiT

pKiT
iT (1− piT )NiT−KiT (8)

which after replacing pit with (1) for t = 1, . . . T, becomes:

fi(Ki|β, τ i,Ni) = CNi1Ki1
· · ·CNiTKiT

eKi1X
0
i1β+...+KiTX

0
iT β

(1 + eX
0
i1β+τ i)Ni1 ...(1 + eX

0
iT β+τ i)NiT

e
τ i

TP
t=1

Kit
. (9)

The joint distribution function for all Þrms under the assumption of independence across

both time and Þrms, expression (10), is not free of the incidental parameters and, given the
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nonlinearities in the F.O.C., results in �incidental parameter bias.�

f (K|β, τ1, . . . τ I ,N1, . . . , NI) =
IY
i=1

µ
TQ
t=1
CNitKit

¶
e(Ki1X

0
i1β+...+KiTX

0
iT β)e

τ i
TP
t=1

Kit

(1 + eX
0
i1β+τ i)Ni1...(1 + eX

0
iT β+τ i)NiT

. (10)

Notice, however, that the expression (10) can be decomposed into two parts as Neyman�s

factorization (11):

f (K|β, τ1, . . . τ I , N) = u (K,β,N)
IY
i=1

vi

Ã
TX
t=1

Kit, τ i, β,N

!
. (11)

It follows, by deÞnition, that Ti =
TP
t=1
Kit, i = 1, ...I are joint sufficient statistics for

τ1, . . . , τ I . It turns out that the existence of a set of sufficient statistics allows the con-

struction of a joint conditional likelihood function that is independent of the incidental

parameter and, therefore, solves the �incidental parameter bias� problem.

Given the distribution function of the sufficient statistic Ti for Þrm i:

P (Ti = K̄i|β, τ i) =
X

z1+...+zT=K̄i

CNi1z1 ..C
NiT
zT
pz1i1 (1− pi1)Ni1−z1 ...pzTiT (1− piT )NiT−zT

=

P
z1+...+zT=K̄i

CNi1z1 ...C
NiT
zT
ez1X

0
i1β+...+zTX

0
iT βeτ i(z1+...+zT )

(1 + eX
0
i1β+τ i)Ni1 ...(1 + eX

0
iT β+τ i)NiT

. (12)

one can easily derive the conditional distribution of Ki given
TP
t=1
Kit:

φi(Ki|β,
TX
t=1

Kit = K̄i) =
fT (Ki|β, τ i, Ni)
P (Ti = K̄i|β, τ i) =

CNi1Ki1
...CNiTKiT

eKi1X
0
i1β+...+KiTX

0
iT βP

z1+...+zT=K̄i

CNi1z1 ...C
NiT
zT ez1X

0
i1β+...+zTX

0
iTβ
.

(13)

As claimed, φi does not depend on τ i and, therefore, is free of the �incidental parameter

bias�.7

The likelihood function under the assumption of independence across i0s is simply:

L(β|K,N, K̄1, ..K̄I) = φ =
IY
i=1

φi (14)

7For examples on other distribution functions see Lancaster (2000).
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Finally, deÞne the conditional maximum likelihood estimator (c.m.l.e.) as the vector β that

maximizes

logL(β|K,N, K̄1, ..K̄I) =
IX
i=1

log li =
IX
i=1

log
CNi1Ki1

...CNiTKiT
eKi1X

0
i1β+...+KiTX

0
iT βP

z1+...+zT=K̄i

CNi1z1 ...C
NiT
zT ez1X

0
i1β+...+zTX

0
iTβ
.

(15)

3.2 Consistency and asymptotic normality

Theorems 1 and 2 give sufficient conditions for consistency of the c.m.l.e. for the single and

the multiple parameter case, respectively.

Theorem 1 The single parameter case. Take a data set (Kit, Xit), t = 1, ...T and i =

1, ....I where Kit are independent draws of a Binomial distributions with a logistic probability

of the form of equation (1) and Xit are exogenous non-random independent variables. Then,

if the following conditions hold, there will exist a unique c.m.l.e. and it is consistent: 1) the

true structural paramater |β0| <∞, 2) the incidental parameters, τ i, belong to a compact set
Ω0, for all i , 3) there is at least one (i, j) (where i may equal j) such that K 0

iXi 6= max
z∈Zi

z0Xi

and K 0
jXj 6= min

z∈Zj
z0Xj where Zs is the set of all possible vectors z that satisfy

TP
t=1
zt = Ks

where zt is an integer such that 0 ≤ zt ≤ Nst for s = i, j.

Note 1: A necessary condition for 3) to be satisÞed is that for at least one i the variable Xi

is not constant for all t and the set Zi has at least three elements. A necessary condition

for Zi to have at least three elements is of course that Nit > 1 or T > 2.

Theorem 2 The multiparameter case. Take a data set (Kit, Xit), t = 1, ...T and i = 1, ....I

where Kit are independent draws of a Binomial distributions with a logistic probability of the

form of equation (1) and Xit are exogenous non-random independent vectors. Then, if the

following conditions hold, there will exist a unique c.m.l.e. and it is consistent: 1) the true

structural vector of paramaters
¯̄
β0q
¯̄
<∞, for all q = 1, ....m, 2) the incidental parameters,

τ i, belong to a compact set Ω0, for all i, 3) there is at least one (i, j) (where i may equal

j) such that K 0
iXiq 6= max

z∈Zi
z0Xiq and K 0

jXjq 6= min
z∈Zj

z0Xjq for each q = 1, ....m, where Zs is
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the set of all possitble vectors z that satisfy
TP
t=1
zt = Ks and zt ≤ Nst for s = i, j. 4) The

rank(X) = m.

Note 1 from theorem 1 also applies by changing Xit for Xiqt.

Proof. 8The conditions on the parameters β0 and τ
0
is are equivalent to requiring enough

variation in the dependent variable across and within Þrms i. For example, if β0 =∞ then

all Þrms would register a success rate of 100 percent, i.e. Ki =
TP
t=1
Nit for all i. The same

would happen with unbounded values of τ i. These, however, do not constitute a problem.

The reason being that all Þrms with sufficient statistics equal to either 0 or
TP
t=1
Nit are

dropped from the estimation since their conditional probability distribution contains no

information on β0.
9 See proof in the Appendix.

Let β ∈ <m and B2(β, τ ) be the matrix of elements b2jp (β, τ):

b2jp (β, τ) = Eβ,τ

½µ
∂ logφ(K|β,T )

∂βj

¶µ
∂ logφ(K|β,T )

∂βp

¶¾
for p, q = 1, ....m (16)

Denote by B2I =
IP
i=1
B2 (β0, τ i) . Since B

2
I is a positive semideÞnite matrix there is a BI such

that B2I = B
0
IBI .

Theorem 3 If the conditions in theorem 1 for m = 1 (or 2 for m > 1) hold then the

c.m.l.e bβI is asymptotically normal distributed with mean β0 and variance-covariance ma-
trix B−2I , i.e.

³bβI − β0´B0
I converges in distribution to a m-dimensional standard normal

distribution.

10Proof: See appendix.

8Note that theorems 1 and 2 lay out sufficient conditions for the uniqueness and consistency of the c.m.l.e.
These are not, however, necessary. Chamberlain�s conditional logit case for T = 2 (Chamberlain, 1980) is an
example where condition 3 is never satisÞed. In that case one needs to have enough variation in the sample
in order to obtain an interior solution for the F.O.C..

9Pfanzagl (1993) for instance does not require that τ i�s belong to a compact set. In the setting of the
binomial distribution with the logistic probability, however, the requirement that τ i�s belong to a compact
set is not restrictive because if for some j, |τ j | =∞ then this observation does not contribute to the inference
of the structural parameter(s) (or in Pfanzagl terminology, its sufficient statistic is contracting).
10Chamberlain (1980) footnote 6 discusses the fact that the conditional maximum likelihood estimator

for the logistic distribution does not attain the Cramer-Rao lower bound. This is not surprising since the
sufficient statistic is not ancillary. Mantel and Godambe (1993) say that when the sufficient statistic is
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4 Monte Carlo Simulations

The Monte Carlo simulations intend to: 1) compare the estimation results obtained with

the standard maximum likelihood estimator with Þxed effects (m.l.e.f.e.) and the results

obtained with the conditional maximum likelihood estimator (c.m.l.e.) for small samples;

and 2) examine how big T must be for the �incidental parameter bias� to become negligi-

ble. One may think that because the c.m.l.e. is consistent 1) is a superßuous exercise. The

comparison of the two estimators for small samples, however, is not obvious because the

conditioning on a sufficient statistics entails some efficiency loss. Efficiency is only guar-

anteed if the sufficient statistic for τ i is also ancillary for β, in which case, by deÞnition,

the conditioning does not involve any loss of information about the structural parameter.11

The sufficient statistic T is not ancillary for β, as can be seen from (12).

4.1 The data generating process

Two sets of experiments are shown. In the Þrst set, the number of Bernoulli trials Nit =

N = 5, for all t and i, while in the second set N 0
its are set equal to 2. In both sets, the Þxed

effects, τ i, are correlated with the single regressor X through the relationship:

Xit = τ i + εit (17)

where εit ∼ N (0, 1) . At each simulation a different τ i is drawn from an iid N (0, 1), and

given τ i, a new Xit is randomly drawn from N (τ i, 1).12 The true value of the structural

parameter β is 0.5. The probability of success pit is given by the logistic function:

pit =
exp (τ i + 0.5Xit)

1 + exp (τ i + 0.5Xit)
. (18)

In both sets of experiments, the total number of observations I × T is Þrst kept Þxed
while the length of the panel T varies. Keeping I×T Þxed allows to distinguish the impact
ancillary then the conditional score is a globally optimal estimating function. In that paper they derive
optimal estimating functions belonging to the set of linear functions in the presence of incidental parameters
for cases where the sufficient statistic is not ancillary. The derivation of the optimal linear estimating
functions is, however, beyond the scope of this paper.
11A statistic E is ancillary for the structural parameter β, if the distribution of E is independent of β. For

proof that ancillary is a sufficient condition to attain efficiency, see Theorem 3.4. in Andersen (1973).
12Note that the data generating process is quite general and can be interpreted as a random effect model

in the sense that the τ 0s are not Þxed but are drawn from a distribution.
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of changes in T from changes in I × T on the estimated bβ. Changing T is also important
because the bias from leaving the Þxed effects out of the estimation changes with T .13

The results are normalized by comparing the bias and the Mean Square Error (MSE)

obtained from the estimation with Þxed effects (m.l.e.f.e. and c.m.l.e.) with the bias and

MSE obtained with the m.l.e.. This normalization enables the comparison of the results

when T changes. The idea is to see what fraction of the MSE obtained with the m.l.e. is

eliminated by using the c.m.l.e. instead of the standard m.l.e.f.e., as well as to see how this

fraction changes with T .

The simulations are repeated for the number of cross sectional units (I) Þxed while T

varies. The purpose of this experiment is to measure the value of an additional year/month/week

of data.

4.2 Results

All tables show the average value of the structural parameter β estimates over 4000 simula-

tions and the standard deviation across those simulations, σbβ =
Ã

1
4000

4000P
j=1

³bβj − bβ´2!1/2where
bβ = 1

4000

4000P
j=1

bβj. The results from table 1 show that, for the range of T considered, the bias

and the standard deviation of the c.m.l.e. are always smaller than those for the m.l.e.f.e.

for both N = 5 and N = 2 when the number of observations is kept constant at 100.14

The table also shows that the difference between the two estimators decreases as T grows.

13Note that in the case of a linear model yit = τ i + βXit + uit the asymptotic bias on bβ from estimating
the model yit = τ + βXit + uit does not depend on T :P

i

P
t τ iXitP

i

P
tX

2
it

=
T
P

i τ
2
i +

P
i

P
t τ iεit

T
P

i τ
2
i +

P
i

P
t ε

2
it + 2

P
i

P
t τ iεit

=

(
P
i τ

2
i )

I +
P
i

P
t τiεit
I¡P

i τ
2
i

I

¢
+
¡P

i

P
t ε

2
it

IT

¢
+
¡2Pi

P
t τiεit

IT

¢ I→∞−→ σ2τ
σ2τ + σ2ε

The best intuition for this result is the fact that the Þxed effects can be easily eliminated by subtracting the
sample averages:

yit − yi = β (Xit −Xi) + uit − ui,
where yi,Xi, and ui are the sample averages for individual i.
14For T ≥ 10 the estimation time for the c.m.l.e. becomes excessive even when using sub-routines written

in C language. Therefore, the c.m.l.e. results are only partially reported for T = 10 and N = 5 (185
simulations) and no results are reported for T > 10. The partial results for T = 10 and N = 5 show a
somewhat bigger standard deviation for the c.m.l.e. in comparison with the m.l.e.f.e. which may be due to
the reduced number of simulations.
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Furthermore, with the exception of N = 2, T = 2, the m.l.e.f.e. is always preferable to the

standard m.l.e. without Þxed effects.

[INSERT TABLE 1 HERE]

Table 2 shows the Mean Square Error corresponding to the results in table 1 and the

reduction in the MSE that the standard m.l.e.f.e and the c.m.l.e. bring with respect to

m.l.e.. First, notice that the MSE of both c.m.l.e. and m.l.e.f.e. decreases with T . Second,

the MSE of the c.m.l.e. is always smaller than the MSE for the m.l.e.f.e.15, and the difference

between the two decreases with T . For T as small as 5 and N = 5, the reduction in the MSE

of the c.m.l.e. and m.l.e.f.e. are almost equivalent, 88.82% and 87.28%, respectively. For

T = 5 and N = 2 the difference between c.m.l.e. and m.l.e.f.e. is larger. The Monte Carlo

runs have also shown that the estimation time of the c.m.l.e. increases exponentially with

T although it is lower than the m.l.e.f.e.�s for very low T. Taken as a whole, the standard

m.l.e.f.e. is a reasonable alternative to the c.m.l.e for relatively large values of T and N as

it delivers similar results faster.

Lastly, the Þrst column of table 2 reveals that the MSE for the m.l.e. increases with T

for relative small values of T . It is plausible that the constant term has a bigger standard

variation when the number of τ is is smaller, i.e. when T is large. In other words, the

constant term eτ is capturing something related to the mean of the Þxed effects and since
the τ is are normally distributed, the variance of eτ decreases with I (increases in T ). This
effect dominates at least up to T = 10 for N = 5 and up to T = 20 for N = 2.

[INSERT TABLE 2 HERE]

The next two tables show simulation results when I is Þxed and T varies. The biggest

gain of the c.m.l.e. vis-a-vis the m.l.e.f.e. is again when T is relatively small. In all cases,

the c.m.l.e. is preferable to the m.l.e.f.e.. Again, with the exception of N = 2 and T = 2,

the m.l.e.f.e. is preferable to the standard m.l.e. without Þxed effects.

[INSERT TABLE 3 HERE]

15Again the exception for T = 10 and N = 5 is likely due to the reduced number of simulations conducted.
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[INSERT TABLE 4 HERE]

Comparing both sets of experiments, it is clear that when N decreases, the MSE per-

formance of the c.m.l.e. and the m.l.e.f.e decreases while that of the m.l.e. increases. The

advantage of the c.m.l.e. over the m.l.e.f.e., however, increases when N decreases. Lastly,

for smaller N , the minimum number of periods needed to render the �incidental parameter

bias� acceptable increases.16

5 Application to Patents Data

The innovation literature has, in the past, relied on datasets that either contained informa-

tion on patents granted or on patent applications. It was not possible then, to model and

estimate the probability of obtaining a patent. The subsample from the European Patents

Office (EPO) explored in this section is innovative since it includes data on both patents

granted and patent applications at the Þrm level.17

The purpose of this section is mainly to provide an example where to apply the c.m.l.e.

estimator rather than a serious attempt at modelling the issue. A more serious model would

require modelling not only the probability of success but also the number of applications as

a function of R&D expenditures. This example only deals with the former. The number of

applications is assumed to be exogenous.

The variables Nit and Kit were deÞned in Section 2. Table 5 presents results for sev-

eral different speciÞcations of the matrix of regressors Xit.18 It shows that, in general,

contemporaneous R&D expenditures have a positive impact although only in three out of

six speciÞcations it is statistically signiÞcantly different from zero. On the other hand,

lagged values of this variable contribute negatively (often statistically signiÞcantly) to the

probability of success. When the number of lags increases, the strongest negative effects

16The increase in the �minimum� T as N falls was to be expected as it approaches the logit case where
the results by Wright and Douglas (1976) apply.
17Hausman, Hall and Griliches (1984) (HHG) on the relationship between patents granted and R&D

expenditures is the main reference for this section. For more details on the application to patents data and
the EPO subsample used here and its similarities with HHG sample, refer to the working paper version of
this paper (Machado, 2001).
18R&D expenditures are divided by 1000 and normalized to have mean zero and standard deviation equal

to 1.
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concentrate on the medium lag and then fade away at the extremes.19 It is likely that

the higher R&D expenditures contribute to an inßation of applications that are rejected

by the EPO.20 ,21 Finally, two ad-hoc measures of the sum of the R&D expenditures over

the sample period were constructed using a discount rate of 15%. The coefficients on these

variables are signiÞcantly negative. The coefficients on the year dummies in columns 5-7

of table 5 show that years 1988-1991 are statistically different from year 1992. The trend

coefficient is always negative and for most cases signiÞcantly different from zero.

[INSERT TABLE 5 HERE]

After obtaining the estimates for the structural parameters, the estimates for the Þxed

effects can be obtained by maximizing a likelihood function using (12) and replacing β with

its c.m.l.e..22

[INSERT TABLE 6 HERE]

Table 6 recreates the Monte Carlo comparisons of last section for two of the speciÞcations

in Table 5 and two different values of T . First, observe that the differences between m.l.e.f.e.

and the c.m.l.e. are much smaller than the ones found in the Monte Carlo simulations due to

the much bigger values of N � the average number of applications in the EPO�s subsample

is around 50.23 Second, notice that the difference between the c.m.l.e. and the m.l.e.f.e

decreases with T .
19Hausman et al. (1984) have also found an inverted u-shape relationship between the values of their

coefficients and the lag structure of R&D which, they thought was evidence of truncation in the R&D lag
structure. They corrected the truncation by introducing Þxed effects which, caused the coefficients on lagged
R&D to become very small and difficult to identify. Likewise, in table 5, although lagged coefficients are
sometimes large they seem not to be well identiÞed due to correlation between the different R&D variables.
20Simple regressions of ln(Nit + 1) and ln(Kit + 1) on a trend and R&D expenditures of different lags

show that the increase in R&D expenditures brings a bigger increase on the number of applications than on
the number of patents accepted. It is likely that bigger Þrms can save on application costs to the point that
is worth while applying for patents with lower probability of being accepted and, therefore, end up with a
relative larger number of applications.
21Another explanation may be the endogeneity of the number of applications. All equations in Table 5

were reestimated with Nit as an additional regressor. Its coefficient estimate was between 0.0064 and 0.0088
and always very statistically signiÞcantly different from zero. Nevertheless, its inclusion did not affect any
of the other coefficients.
22The �R2� corresponding to table 5 is computed comparing the real number of successes in the data and

the expected number of successes from the estimated model, i.e. E(Kit) = d(pit) ∗ Nit where d(pit) is the
estimated logistic probability of success using both the c.m.l.e. bβ and the derived estimated Þxed effects.
23The sample was restricted to Þrms with a total number of applications smaller than 400 in order to

reduce the estimation time.
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6 Conclusion

This paper derives a consistent and asymptotically normal estimator (c.m.l.e.) for the

structural parameters of the binomial distribution when the probability of success is a

logistic function with �incidental parameters.� The c.m.l.e. is obtained by conditioning the

likelihood function on sufficient statistics for the incidental parameters.

Results from Monte Carlo simulations show that c.m.l.e. is also superior in terms of

Means Square Error (MSE) to the traditional maximum likelihood estimator with Þxed

effects (m.l.e.f.e) in relative small samples. This result was not obvious since the sufficient

statistics are not ancillary. The bias, the variance, and the MSE of the m.l.e.f.e and the

c.m.l.e. are shown to decrease with T as well as with the number of Bernoulli trials N in the

Binomial distribution. Moreover, the advantage of the c.m.l.e. over the m.l.e.f.e. decreases

with N and T . From the comparison of the MSEs it seems that for T as low as 5 (and

N = 5) the values obtained with the two estimators are rather close. On the other hand,

for N = 2 the value of T has to be at least 10 in order to render the difference between the

two estimators negligible.

Lastly, the c.m.l.e was applied to a new and original dataset that allowed the estimation

of the probability of obtaining a patent. The results obtained with the c.m.l.e and with the

m.l.e.f.e were very similar due to the big average number of patent applications (around

50).

7 Appendix

7.1 Proof of Example 1:

Rewrite (7) as:

n1+n2+n3 = n1− 4n1

3 +
p
1 + 8 exp(β)

+n2− 2n2

2 + exp(β) +
p
exp(2β) + 8 exp(β)

+n3 (19)

where ns is the number of Þrms that had s successes and at least one occurred in the Þrst

period. By using the deÞnition nK = nK + n∗K , K = 1, 2, rewrite (19) as:

n∗2 + n
∗
1 −

4n1

3 +
p
1 + 8 exp(β)

− 2n2

2 + exp(β) +
p
exp(2β) + 8 exp(β)

= 0 (20)
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Denote by β0 the true parameter. The following table gives the joint probability of all

possible events for a given Þrm i:

K Ki1 = 0 Ki1 = 1

Ki2 = 0
1

(1+exp(β0+τ i))(1+exp(τ i))
2

exp(β0+τ i)

(1+exp(β0+τ i))(1+exp(τ i))
2

Ki2 = 1
2 exp(τ i)

(1+exp(β0+τ i))(1+exp(τ i))
2

2 exp(β0+2τ i)

(1+exp(β0+τ i))(1+exp(τ i))
2

Ki2 = 2
exp(2τ i)

(1+exp(β0+τ i))(1+exp(τ i))
2

exp(β0+3τ i)

(1+exp(β0+τ i))(1+exp(τ i))
2

Using the law of large numbers:

n∗1
I
−→ lim

I→∞
1

I

IX
i=1

Pr (Ki1 = 0 ∩Ki2 = 1) = lim
I→∞

1

I

IX
i=1

2 exp (τ i)

(1 + exp (β0 + τ i)) (1 + exp (τ i))
2 = A1

(21)

n∗2
I
−→ lim

I→∞
1

I

IX
i=1

Pr (Ki1 = 0 ∩Ki2 = 2) = lim
I→∞

1

I

IX
i=1

exp (2τ i)

(1 + exp (β0 + τ i)) (1 + exp (τ i))
2 = A2

(22)

n1
I
−→ lim

I→∞
1

I

IX
i=1

(Pr (Ki1 = 0 ∩Ki2 = 1) + Pr (Ki1 = 1 ∩Ki2 = 0)) = exp (β0)
A1
2
+A1

(23)

n2
I
−→ lim

I→∞
1

I

IX
i=1

(Pr (Ki1 = 1 ∩Ki2 = 1) + Pr (Ki1 = 0 ∩Ki2 = 2)) = 2 exp (β0)A2 +A2
(24)

Putting everything together (20) converges to:

A1

−2 exp(β0)− 1 +
q
1 + 8 exp(bβ)

3 +
q
1 + 8 exp(bβ)


| {z }

P1

+A2

exp(bβ) +
q
exp(2bβ) + 8 exp(bβ)− 4 exp(β0)

2 + exp(bβ) +qexp(2bβ) + 8 exp(bβ)


| {z }
P2

= 0

(25)

It can easily be proved that bβ = β0 is never a solution to the equation (25) unless β0 = 0.
Suppose the opposite is true, i.e. bβ = β0 6= 0, then the sign of P1 and P2, given by their
numerators, coincide always, which implies that the expression (25) can never be zero:

P1 ≷ 0⇔−2 exp(β0)− 1 +
p
1 + 8 exp(β0) ≷ 0⇔ β0 ≶ 0 (26)

P2 ≷ 0⇔−3 exp(β0) +
p
exp(2β0) + 8 exp(β0) ≷ 0⇔ β0 ≶ 0 (27)

If β0 = 0 then bβ = β0 = 0 is the unique solution.24 The MLE is, therefore, inconsistent

unless the true parameter is β0 = 0. Furthermore, because both P1 and P2 are increasing

24Notice that if β0 = 0, P1 and P2 are always strictly positive for bβ > 0 and strictly negative for bβ < 0.
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in bβ the MLE underestimates the true β0 whenever β0 < 0 and overestimates β0 whenever
β0 > 0. In fact, it is straightforward to show that the bias obtained in this example is

1 <
bβ
β0
< 2, which is smaller than the bias obtained in the logit case

bβ
β0
= 2 (Andersen,

1973, Chamberlain, 1980).

7.2 Proofs of the c.m.l.e. asymptotic properties

7.2.1 Consistency

Andersen (1970) postulates three sufficient conditions for consistency of a conditional max-

imum likelihood estimator (assumptions A1−A3 below). In order to prove the consistency
of the c.m.l.e. it suffices, therefore, to show that under the conditions stated on theorem 1

and 2 the conditional likelihood function satisÞes the three assumptions.

Call T the vector of sufficient statistics for the incidental parameters τ1, ...τ I . Andersen
starts by assuming that T is independent of β. This assumption is satisÞed as it is shown

in Section 3. Denote by t a realization of the vector T . β0 is the true value of the structural
parameter. Assume that all (relevant) τ 0is ∈ Ω0 and denote by Θ the range space of β.

Denote by Pβ0,τ the probability measure of K for the true parameters β0 and τ .

Assumption (A1): logφ(K|β, t) is a differentiable function of β and there exists a set
B of values t with Pβ0,τ (T ∈ B) > 0 for all τ and an open cube Θ0 containing the

true parameter β0, such that for any t ∈ B the functions φ(K|β, t) and φ(K|β0, t) are not
identical for any pair β ∈ Θ0, β0 ∈ Θ0.

A2 includes a slight modiÞcation to Andersen�s (1970) assumption 1.2 and 2.2. but, as

it can be easily conÞrmed, his consistency proof carries through with this modiÞcation. To

be precise, Andersen�s 1.2. and 2.2. hold for every I while A2 has to hold only for I ≥ m,
i.e. for I big enough.

Therefore, the only way the equation P1+ P2 = 0 is when both terms are equal to zero, which happens forbβ = 0. Proof: the sign of P1 in the case where β0 = 0 depends on
−3 +

q
1 + 8 exp(bβ) ≷ 0⇔ 1 + 8 exp(bβ) ≷ 9⇔ bβ ≷ 0 (28)

the sign of P2 depends on the following:

exp(bβ) +qexp(2bβ) + 8 exp(bβ)− 4 ≷ 0⇔ 16 exp(bβ) ≷ 16⇔ bβ ≷ 0 (29)
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Assumption (A2): The maximum-likelihood equation

IX
i=1

∂ logφi(Ki|β, ti)
∂β

= 0 (30)

has for all I ≥m and almost all values of (t1, t2, . . . , tI) a unique solution bβ = ³bβ1, ..., bβm´ ∈
Θ.

Assumption (A3): Assume that

∞X
i=1

σ2(δ, τ i)

i2
<∞ (31)

for all δ in an open interval enclosing 0 where25

σ2(δ, τ i) = varβ0,τ (logφi(Ki|β0 + δ,Ti)− logφi(Ki|β0,Ti)). (32)

The validity of assumptions A1−A2 is shown in 1) below and the validity of A3 is shown
in 2).

1.) Assumption A1 requires that the conditional density φ is not essentially equal for

different β0s in a neighborhood of the true parameter value β0.26 Steps 1.1. and 1.2. prove

that under the conditions of theorems 1 and 2, logφ is strictly concave for the single and

the multiparameter case, respectively. The strict concavity property insures the validity of

A1 and A2.

1.1.) Strict concavity, the single parameter case.

Write the individual conditional likelihood function for some individual i as a function

of the single parameter β as:

li =
Aie

ciβP
z∈Zi

Aizecizβ
=

wiP
z∈Zi

wiz
(33)

25Notice that Andersen (1970) provides a stronger and simpler alternative to assumption A3 which simply
requires that all τ 0is belong to a compact set Ω0 and the continuity of function σ

2(δ, τ i). This alternative
version is also veriÞed in our case under the conditions of theorems 1 and 2. The proof is simple. Since
both φi and logφi are continuous in τ i for all τ i ∈ Ω0 and K is a discrete variable, then these variances are
weighted sums of continuous functions and, therefore, also continuous.
26Under certain conditions, however, φ can attain the same value irrespective of β. This is the case when

K can be perfectly inferred from T , i.e. when Ti =
TP
t=1

Nit or Ti = 0 for every i. Observations with these

characteristics are left out of the estimation. The other circumstance in which φ is constant in β is when
the variables in X are constant.
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where Ai =
TQ
t=1
CNitKit

, ci =
TP
t=1
KitXit and Aiz =

TQ
t=1
CNitzt , ciz =

TP
t=1
ztXit with z = (z1, ...zT ) ∈

Zi. Zi represents the set of combinations of integers z1, ..., zT that satisfy
TP
t=1
zt =

TP
t=1
Kit

and 0 ≤ zt ≤ Nit, ∀t. li lies in the interval [0, 1]. Note that if |β0| = ∞, l0is would be
constant and equal to 1 for all β and all i, therefore, invalidating A1.

Now consider the case of the joint conditional likelihood L. In the limit L will converge

to:

L =
IY
i

li =
IY
i

1P
z∈Zi

wiz
wi

β→+∞−→
½
1 if ci = maxz∈Zi ciz for all i
0 otherwise

¾
(34)

and

L =
IY
i

li
β→−∞−→

½
1 if ci = minz∈Zi ciz for all i
0 otherwise

¾
(35)

Hence, a sufficient condition for the existence of at least one maximum (or a necessary

condition for a single maximum) is that there is at least one i and j, where i and j may be

equal, for which ci 6= minz∈Z ciz and cj 6= maxz∈Zi cjz.27 Next it will be proved that:

∂2 logL

∂β2
=

IX
i=1

∂2 log li

∂β2
< 0 (36)

i.e. the function logL is strictly concave and, therefore, if there is a maximum, it is unique.

Consider then the case of the individual conditional likelihood function (33) for individ-

ual i. Taking logs and differentiating with respect to β one obtains:

∂ log li
∂β

= ci −

P
z∈Zi

Aizcize
cizβP

z∈Zi
Aizecizβ

(37)

The second derivative of log li with respect to β is:

∂2 log li

∂β2
= −

Ã P
z∈Zi

Aizc
2
ize

cizβ

!Ã P
z∈Zi

Aize
cizβ

!
−
Ã P
z∈Zi

Aizcize
cizβ

!2
Ã P
z∈Zi

Aizecizβ

!2 . (38)

27Note that this condition is satisÞed by assumption 3) in theorem 1 and, therefore L has a maximum for
Þnite β.
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The sign of (38) depends on the sign of its numerator which after some calculus simpliÞes

to an expression that is always non-positive:

−1
2

X
z∈Zi

X
y∈Zi

(ciz − ciy)2AizAiyecizβeciyβ ≤ 0 (39)

So far it was proven that ∂2 logL
∂β2

≤ 0. For strict concavity of the function logL it is

enough to have ∂2 log li
∂β2

strictly negative for at least one i. Next, conditions under which

(39) (and, therefore, also ∂2 log li
∂β2

) is strictly negative are derived. For (39) to be strictly

negative it is clear that it cannot be the case that ciz = ciy ⇔ z0Xi = y0Xi for all z, y 6= z
∈ Zi. Three necessary conditions to exclude these cases are 1) that the variable Xit is not
a constant. 2) that the set Zi is not singleton (which holds for Ki 6= {0,PtNit}). And
3) Nit > 0 for at least two values of t where the Xit differ. But are these also sufficient

conditions? The proof follows.28

Assume w.l.o.g. that Xi1 6= Xi2, it has to be shown that there exist two vectors z, y ∈ Zi
such that ciz 6= ciy. To prove that, assume for now that a vector z0 = (z1, z2, ....zT ) ∈ Zi
with z1 < Ni1 and z2 > 0 exists. Then take y0 = (z1+1, z2−1, ....zT ) such that only the Þrst
two components differ from z. It is clear that if z ∈ Zi then y must also be an element of Zi.
It follows that ciz−ciy = z0Xi−y0Xi = Xi2−Xi1 6= 0. To complete the proof it is necessary
to show that z ∈ Zi. Proceeding by contradiction, suppose such a vector does not exist.
Then, it must be that all vectors belonging to Zi are of one (or all) of the following types:

a = (a1 < Ni1, a2 = 0, ...aT ), b = (b1 = Ni1, b2 = 0, ...bT ), or d = (d1 = N1, d2 > 0, ...dT ).

Take a vector such as a. Because Ki > 0 (by condition 2) above) and Ni1,Ni2 > 0 (by

condition 3) above) it must be that ∃ t0 6= 2 (but could equal 1) such that a vector z can
be constructed with zt0 = at0 − 1 and z2 = 1. It turns out that the new constructed vector
z also belongs to Zi which is a contradiction since z1 < Ni1 and z2 > 0. Now take a vector

of type b. Given that Ni1,Ni2 > 0 then z can be constructed such that z1 = b1 − 1 and
z2 = 1, z is, therefore, also a member of Zi which is again a contradiction. Lastly, take a

vector such as d, since Ki <
X
t

Nit (by assumption 2) above) and Nit > 0 for at least two

t0s then ∃ t1 6= 1 (which could be 2) such that a vector z with z1 = d1− 1 and zt1 = dt1 +1
can be constructed. Again, it is clear that z ∈ Zi which is a contradiction. Note that
assumption 3) in theorem 1 guarantees not only that there is at least one maximum but

28 I am indebted to an anonymous referee for the shape of this proof.
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also that conditions 1), 2), and 3) above hold for at least one i. ¥

It was proved that under the conditions of theorem 1, assumption A1−A2 are valid for
the single parameter case.

1.2.) Strict concavity, the multiparameter case

In the multiparameter case β ∈ <m and ci is a vector where the qth element is
TP
t=1
KitXitq. Just like in the single parameter case, the log li function is monotone in βq

if ciq ∈ {minz∈Zi ciqz,maxz∈Zi ciqz} . So a sufficient condition to have at least one maximum
is that there exists at least one (i, j) where j may equal i such that ciq 6= minz∈Zi ciqz, and
cjq 6= maxz∈Zi cjqz for all q = 1, ....m. Assuming that this condition holds, i.e. that there
is at least one maximum, the proof of strict concavity of the function logL will consist in

showing that under the assumptions of theorem 2, in particular rank(X) = m, the Hessian

matrix is deÞnite negative. The hessian matrix is given by the expression below:

∂2 logL

∂β∂β0
=
X
i

∂2 log li
∂β∂β0

= −1
2

X
i

P
z∈Zi

P
y∈Zi

¡
X 0
i (z − y) (z − y)0Xi

¢
AizAiye

cizβeciyβÃ P
z∈Zi

Aizecizβ

!2 (40)

and one can easily see that the individual hessians are negative semideÞnite. Now, pick, for

each i, a combination of vectors z, y belonging to Zi such that y = (z1+1, z2−1, ...zT ). As it
was proven for the single parameter case one can always Þnd such a combination in any set

Zi. Notice that although the particular vectors z, y are different for every i, its difference is

common to all i, i.e. z − y = (1,−1, 0, ...0). This means that summation over the elements
of Zi can be split into two terms. The Þrst term consists of a combination z, y such that

z − y = (1,−1, 0, ...0) for each i and the second term consists of all other elements of Zi.

Denoting by biwv = AiwAive
ciwβecivβÃ P

z∈Zi
Aizecizβ

!2 one can write the hessian (40) as:

∂2 logL

∂β∂β0
= −1

2

X
i

X 0
i (z − y) (z − y)0Xibizy −

1

2

X
i

X
w∈Zi

X
v∈Zi

¡
X 0
i (w − v) (w− v)0Xi

¢
biwv

(41)

Note that the Þrst term in (41) is equivalent to:

−1
2
X 0 eZ eZ 0X (42)
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where eZ0 is a I × (I × T ) matrix with elements:
(z − y)0pb1zy 0 0 0

0 (z − y)0pb2zy 0 0
... 0

. . .
...

0 0 0 (z − y)0pbIzy

 (43)

It is clear that rank( eZ) = I, which implies rank( eZ eZ 0) = I. On the other hand, the

rank(X) = m by assumption. It follows that for m ≤ I the matrix X 0 eZ eZ0X is deÞnite

positive, i.e. (42) deÞnite negative. The condition that m ≤ I29 means, in other words,

that the number of structural parameters should not exceed the number of individuals

in the sample. In reality, most panel datasets where one may want to apply the c.m.l.e.

probably have m ≤ I. Nevertheless, since Theorem 2 refers to the asymptotic behavior

when I −→∞, this condition is always met for large enough I and Þxed m.

The second term in (41) −12
P
i

P
w∈Ziv

P
y∈Zi

¡
X 0
i (w − v) (w − v)0Xi

¢
biwv is obviously neg-

ative semideÞnite. Since the hessian is the sum of a negative deÞnite matrix and a negative

semi-deÞnite matrix, it is negative deÞnite. This proves strict concavity in the multiparam-

eter case.

2.) Proof that assumption A3 is satisÞed. Notice that σ2(δ, τ i) satisÞes the following

inequality:

σ2(δ, τ i) = varβ0,τ i(logφi(Ki|β0 + δ, Ti)− logφi(Ki|β0, Ti)) <
< 4max

©
varβ0,τ i(logφi(Ki|β0 + δ, Ti)), varβ0,τ i(logφi(Ki|β0, Ti))

ª
(45)

Furthermore, under the conditions of theorem 1 (or 2), one knows from (13) that the

function φ is well deÞned:

0 < φi(Ki|β0,Ti = K̄i) < 1⇒−∞ < logφi(Ki|β0, Ti) < 0. (46)

SinceKi is a discrete random variable, varβ0,τ i(logφi(Ki|β0+δ,Ti)) and varβ0,τ i(logφi(Ki|β0, Ti))
29Alternatively, it is easy to see that the rank of the individual hessians Hi is at least 1. Since rank(H) ≤P
i rank(Hi) ∈ [I,min{mI, 12

P
i(#Zi ×#Zi −#Zi)}], I ≥ m is a necessary condition for full rank (and

therefore negative deÞniteness) of the hessian matrix H regardless of the dimension of the sets Z0is. For
example in the logit case #Zi = 2 (for all relevant I 0s) this means that:

rank(H) ≤
X
i

rank(Hi) = I (44)

so that I ≥ m is a necessary condition for strict concavity in the logit case.
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are Þnite sums. Therefore, the following can be established:

σ2(δ, τ i) <∞, for all i (47)

IX
i=1

σ2(δ, τ i)

i2
< max

i
{σ2(δ, τ i)}

IX
i=1

1

i2
(48)

and since from condition 2) in both theorem 1 and 2 the sequence of τ 0is is bounded, it can

be established that:

⇒
∞X
i=1

σ2(δ, τ i)

i2
< lim
I→∞

(
max
i
{σ2(δ, τ i)}

IX
i=1

1

i2

)
< max
i→∞

2{σ2(δ, τ i)} <∞. (49)

7.2.2 Asymptotic Normality

Andersen�s proof of asymptotic normality relies also on a set of sufficient conditions. In

addition to assumptions A1 -A3, Andersen requires the validity of assumption A4 and A5

that follow.

Assumption (A4): The set of Þrst, second and third partial derivatives of logφ(K|β, T (K))
with respect to β1, . . . , βm exist for all β in an open cube Θ0 enclosing β0, and for all τ and

β ∈ Θ0 the following holds:30

Eβ,τ

µ
∂ logφ(K|β, T )

∂βj

¶
= 0, j = 1, . . . ,m (50)

and

Eβ,τ

µ
∂2 logφ(K|β, T ))

∂βj∂βp

¶
= −b2jp (β, τ) , j, p = 1, . . . ,m. (51)

There further exist positive integrable functions hpq (K) such that for all β ∈ Θ0¯̄̄̄
∂3 logφ (K|β, T (K))

∂βj∂βp∂βq

¯̄̄̄
≤ hpq (K) , j, p, q = 1, . . . ,m. (52)

such that Eθ0,τ [hpq (K)] and varβ0,τ [hpq (K)] are for all p and q (p, q = 1, . . . ,m) continuous

functions of τ.

Assumption (A5): For all K, f(K|β, τ) is continuous in τ, and for all p, j = 1, ....m,

varβ0,τ

h
∂2 logφ(K|β0,T )

∂βj∂βp

i
, and b2jp (β0, τ) are continuous functions of τ. In addition, B

2 (β0, τ)

with elements b2jp (β0, τ) , p, j = 1, . . . ,m is non-singular for all τ .

30The single parameter case is a special case for m = 1.
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Proof Assumption A4 is valid under the assumptions of theorems 1 and 2:

Equations (50) and (51) are the usual regularity conditions which are trivially satisÞed

because K is a Þnite, discrete random variable. The third cross derivatives ∂3 logL
∂βj∂βp∂βq

are integrable because they are functions of a Þnite random vector K. Denote, by Θ the

smallest compact set that contains Θ0. Since
¯̄̄
∂3 logL

∂βj∂βp∂βq

¯̄̄
is a continuous function of β then

one knows that there is at least one maximum of this continuous function in this compact

set. Therefore, there exists a positive function hpq:¯̄̄̄
∂3 logL

∂βj∂βp∂βq

¯̄̄̄
β∈Θ0

≤ max
β∈Θ

¯̄̄̄
∂3 logL

∂βj∂βp∂βq

¯̄̄̄
= hpq (K) (53)

where hpq is an integrable function because K is a Þnite random variable. Eβ0,τ [hpq (K)]

and varβ0,τ [hpq (K)] are continuous functions of τ because they are Þnite sums of continuous

functions

Proof Assumption A5 is valid under the assumptions of theorem 1 and 2:

f(K|β, τ) =
Y
i

CNi1Ki1
· · ·CNiTKiT

eKi1X
0
i1β+...+KiTX

0
iTβ

(1 + eX
0
i1β+τ i)Ni1 ...(1 + eX

0
iT β+τ i)NiT

eτ i(Ki1+...+KiT ) (54)

is obviously a continuous function of τ for all K. varβ0,τ
h
∂2 logφ(K|β0,T )

∂βj∂βp

i
and b2jp (β0, τ) ,

are continuous and Þnite because they are Þnite sums of continuous functions for |β0| <∞,
τ i ∈ Ω0 and the identiÞability condition on X.

Regarding the matrix B2, notice that B2 (β0, τ) =covβ0,τ
³
∂ logφ(K|β0,T )

∂βj

´
because the

regularity conditions are satisÞed (assumption A4). This implies that B2 (β0, τ) is semi-

positive deÞnite or
¯̄
B2 (β0, τ)

¯̄ ≥ 0. The necessary and sufficient conditions for B2 to be

positive deÞnite are the same as the ones discussed in step 1.2 of the consistency proof

above and, therefore, they are satisÞed under the conditions of theorem 2.

7.3 Data Appendix - the European Patent Office data

The sample of Þrms, their sector of activity, and their R&D expenditures from 1980 to

1992 was kindly made available by Michele Cincera and is closely related to the sample

used in Cincera (1997). Data on the number of patent applications and patents granted by

Þrm was added for the years 1980 to 1992 from the EPO ESPACE Bulletin Vol. 1997/006
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CD-ROM.31 The 188 American Þrms that compose our clean data set operate in different

activity sectors. The most represented sector is the computer industry with 17.02 percent

of the observations and the least represented sector is Metals with only 0.53 percent of the

observations.

The number of patent applications reveals an increasing trend, which is probably due

to the proximity of the beginning of the sample period with the foundation of the EPO.

The last 3 years of data, however, show a halt on this trend revealing the maturity of the

European patent system. On the other hand, the percentage of successes declines during

the last three years of data which may be a symptom of data truncation,32 or a symptom of

the decreasing quality of applications due to decreasing application costs over time. In spite

of these drawbacks the EPO data has advantages over the US Patent Office data. First, the

availability of data on both the number of patent applications and patents granted at the

Þrm level. Second, the EPO uses date of application instead of date of issue, which proxies

better the innovation date. Third, the application cost difference (Straus, 1997) seems

enough to avoid the �domestic market effect� (Archibugi and Pianta, 1992 and Cincera,

1998), which consists in applying for more patents than the number of inventions justify

in order to reduce foreign competition. For this reason, the applications to foreign Patent

Offices may be a better indicator of technological progress.

31The EPO was founded in June 1, 1978 (Straus, 1997).
32Patents granted here means patents granted within at least 5 years after its application date. According

to Cincera (1998), the EPO claims to take an average of three years to grant a patent.
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TABLES for
"A Consistent Estimator for the Binomial Distribution in the
Presece of "Incidental Parameters": an application to patent

data" by Matilde P. Machado

Table 1: Comparison of estimators when total observations=100

β = 0.5
Standard M.L.E.

without Fixed Effects
Standard M.L.E.
with Fixed Effects

C.M.L.E

N = 5 N = 2 N = 5 N = 2 N = 5 N = 2

T = 2
�β = 0.758
σ�β = 0.101

�β = 0.524
σ�β = 0.145

�β = 0.568
σ�β = 0.184

�β = 0.712
σ�β = 0.390

�β = 0.509
σ�β = 0.164

�β = 0.527
σ�β = 0.285

T = 4
�β = 0.856
σ�β = 0.119

�β = 0.739
σ�β = 0.160

�β = 0.531
σ�β = 0.140

�β = 0.592
σ�β = 0.256

�β = 0.503
σ�β = 0.132

�β = 0.514
σ�β = 0.219

T = 5
�β = 0.872
σ�β = 0.124

�β = 0.784
σ�β = 0.163

�β = 0.572
σ�β = 0.238

�β = 0.572
σ�β = 0.238

�β = 0.506
σ�β = 0.131

�β = 0.511
σ�β = 0.211

T = 10
�β = 0.886
σ�β = 0.146

�β = 0.855
σ�β = 0.186

�β = 0.517
σ�β = 0.122

�β = 0.544
σ�β = 0.208

�β = 0.501
σ�β = 0.127

�β = 0.515
σ�β = 0.195

T = 20
�β = 0.860
σ�β = 0.189

�β = 0.856
σ�β = 0.225

�β = 0.513
σ�β = 0.123

�β = 0.529
σ�β = 0.201

- -

T = 50
�β = 0.745
σ�β = 0.266

�β = 0.750
σ�β = 0.298

�β = 0.504
σ�β = 0.121

�β = 0.511
σ�β = 0.193

- -

Table 2: Mean Square Error when total observations=100

β = 0.5
Standard M.L.E.
without F.E.

Standard M.L.E.
with Fixed Effects

C.M.L.E.

MSE MSE Reduction (%) MSE Reduction (%)
N = 5 N = 2 N = 5 N = 2 N = 5 N = 2 N = 5 N = 2 N = 5 N = 2

T = 2 0.0768 0.0216 0.0385 0.1970 49.87 −812.20 0.0230 0.0820 64.86 −279.40
T = 4 0.1409 0.0827 0.0206 0.074 85.41 10.54 0.0174 0.0482 87.63 41.78
T = 5 0.1538 0.1072 0.0196 0.0618 87.28 42.34 0.0172 0.0446 88.82 58.37
T = 10 0.1703 0.1606 0.0152 0.0452 91.09 71.86 0.0161 0.0383 90.53 76.19
T = 20 0.1653 0.1774 0.0153 0.0412 90.75 76.75 - -
T = 50 0.1308 0.1513 0.0147 0.0374 88.79 75.30 - -

i



Table 3: Comparison of estimators when I =50

β = 0.5
Standard M.L.E.
NO Fixed Effects

Standard M.L.E.
with Fixed Effects

C.M.L.E.

I = 50 N = 5 N = 2 N = 5 N = 2 N = 5 N = 2

T = 2
�β = 0.758
σ�β = 0.101

0.524
σ�β = 0.145

�β = 0.568
σ�β = 0.184

�β = 0.712
σ�β = 0.390

�β = 0.509
σ�β = 0.164

�β = 0.527
σ�β = 0.285

T = 3
�β = 0.826
σ�β = 0.090

�β = 0.664
σ�β = 0.122

�β = 0.540
σ�β = 0.124

�β = 0.619
σ�β = 0.231

�β = 0.503
σ�β = 0.115

�β = 0.511
σ�β = 0.188

T = 4
�β = 0.857
σ�β = 0.081

�β = 0.735
σ�β = 0.108

�β = 0.533
σ�β = 0.10

�β = 0.586
σ�β = 0.175

�β = 0.505
σ�β = 0.094

�β = 0.509
σ�β = 0.150

T = 5
�β = 0.873
σ�β = 0.077

�β = 0.779
σ�β = 0.100

�β = 0.525
σ�β = 0.085

�β = 0.566
σ�β = 0.145

�β = 0.503
σ�β = 0.081

�β = 0.507
σ�β = 0.128

T = 6
�β = 0.881
σ�β = 0.072

�β = 0.806
σ�β = 0.093

�β = 0.518
σ�β = 0.076

�β = 0.553
σ�β = 0.129

�β = 0.501
σ�β = 0.073

�β = 0.505
σ�β = 0.117

T = 7
�β = 0.889
σ�β = 0.068

�β = 0.828
σ�β = 0.087

�β = 0.517
σ�β = 0.066

�β = 0.547
σ�β = 0.111

�β = 0.502
σ�β = 0.065

�β = 0.506
σ�β = 0.102

Table 4: Mean Square Error when I=50 and N=5

β = 0.5
Standard M.L.E.
without F.E.

Standard M.L.E.
with FE

C.M.L.E.

I = 50 MSE MSE Reduction (%) MSE Reduction (%)
N = 5 N = 2 N = 5 N = 2 N = 5 N = 2 N = 5 N = 2 N = 5 N = 2

T = 2 0.0768 0.0216 0.0385 0.1970 49.87 −812.20 0.0270 0.0820 64.86 −279.40
T = 3 0.1144 0.0418 0.0170 0.0675 85.16 −61.61 0.0132 0.0355 88.43 15.11

T = 4 0.1340 0.0669 0.0111 0.0380 91.73 43.16 0.0089 0.0226 93.39 66.24
T = 5 0.1451 0.0878 0.0079 0.0254 94.59 71.11 0.0066 0.0164 95.47 81.29
T = 6 0.1503 0.1023 0.0061 0.0195 95.94 80.98 0.0053 0.0137 96.45 86.59
T = 7 0.1559 0.1152 0.0046 0.0145 97.02 87.38 0.0042 0.0104 97.29 90.93

ii



Table 5: Results restricted to Þrms with less than 400 total patent applications
nobs = 405 1 2 3 4 5 6 7 8

year 1988
0.527
(0.082)

0.520
(0.079)

year 1989
0.528
(0.072)

0.516
(0.069)

year 1990
0.521
(0.067)

0.506
(0.066)

year 1991
0.474
(0.064)

0.462
(0.063)

trend(1988− 1991)
−0.070
(0.023)

−0.070
(0.022)

−0.055
(0.023)

−0.022
(0.025)

−0.034
(0.024)

−0.014
(0.025)

year1992
−0.785
(0.084)

−0.774
(0.082)

−0.711
(0.083)

−0.575
(0.100)

−0.600
(0.093)

−0.521
(0.095)

R&Dt
−0.456
(0.327)

1.013
(0.484)

0.258
(0.307)

1.269
(0.676)

0.012
(0.428)

0.813
(0.386)

R&Dt−1
−2.450
(0.613)

−1.689
(0.689)

−0.787
(0.346)

R&Dt−2
−2.879
(0.496)

R&Dt−3
−2.741
(0.469)

−2.609
(0.423)

−2.397
(0.427)

R&Dt−5
−0.252
(0.558)

−0.307
(0.529)

−0.108
(0.209)

R&Dt−7
−0.892
(0.436)

R&Dt−8
0.471
(0.442)

−0.582
(0.273)

−0.634
(0.248)

t−TP
s=t

(0.85)t−sR&Ds
−2.952
(0.620)

t−TP
s=t−1

(0.85)t−1−s R&Ds
−4.839
(0.780)

L ikelihood −630.53 −622.65 −614.00 −604.25 −609.79 −608.24 −619.83 −611.42
R2 0.946 0.950 0.954 0.959 0.956 0.957 0.952 0.955

Table 6: Comparison between different estimators for different T
column 1

T = 5, nobs = 405
column 1

T = 2, nobs = 166
column 4

T = 5, nobs = 405
co lumn 4

T = 2, nobs = 166
m.l.e m.l.e.f.e c.m.l.e m.l.e m.l.e.f.e c.m.l.e. m.l.e m.l.e.f.e c.m.l.e. m.l.e m.l.e.f.e c.m.l.e.

const.
0.225
(0.060)

0.479
(0.084)

0.2309
(0.058)

0.4683
(0.081)

trend
−0.035
(0.021)

−0.071
(0.022)

−0.070
(0.023)

−0.098
(0.052)

−0.116
(0.059)

−0.114
(0.059)

−0.0392
(0.021)

−0.0218
(0.020)

−0.022
(0.025)

−0.0946
(0.05)

0.0076
(0.076)

0.0069
(0.078)

year92
−0.557
(0.076)

−0.791
(0.081)

−0.785
(0.084)

−0.5915
(0.073)

−0.5798
(0.085)

−0.575
(0.100)

R&Dt
−0.392
(0.074)

−0.456
(0.312)

−0.456
(0.327)

0.167
(0.053)

−1.939
(0.653)

−1.934
(0.648)

0.0551
(0.424)

1.2865
(0.522)

1.269
(0.676)

1.1136
(0.427)

0.3369
(1.054)

0.3070
(1.110)

R&Dt−1
0.2616
(0.580)

−1.6987
(0.499)

−1.689
(0.689)

−1.034
(0.500)

−1.144
(0.784)

−1.1241
(0.296)

R&Dt−3
−1.1496
(0.382)

−2.7625
(0.327)

−2.741
(0.469)

−1.254
(0.480)

−2.684
(0.813)

−2.635
(0.556)

R&Dt−5
0.7002
(0.366)

−0.2577
(0.452)

−0.252
(0.558)

1.629
(0.469)

1.017
(1.480)

0.9727
(0.408)

R&Dt−7
−0.1523
(0.397)

−0.9011
(0.296)

−0.892
(0.436)

0.0119
(0.517)

−0.8896
(0.720)

−0.8624
(0.578)

R&Dt−8
−0.1913
(0.275)

0.4785
(0.294)

0.471
(0.442)

−0.3300
(0.375)

−1.2037
(0.746)

−1.1779
(0.832)

Lik. −1145.9 −810.0 −630.5 −621.0 −332.8 −167.5 −1134.2 783.5 −604.3 −604.9 −327.4 −162.2

iii


