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Abstract 
This article explores the reasons why GMM estimators of production function parameters 

are generally found to produce unsatisfactory results. I attribute this finding to the inaccurate 
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practice of using industry-wide deflators leads to lower scale estimates, mainly due to a relevant 
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1 Introduction

Despite the wide literature available dealing with empirical estimation of
production functions, there are some interesting and challenging questions
that have not been solved. Although simple OLS regression gives plausible
parameter estimates, consistent with constant return to scale, econometri-
cians agree that the usual exogeneity assumptions of the regressors that are
required for the consistency of OLS are unlikely to hold. To the extent that
a productivity shock is anticipated before the optimal quantity of inputs is
chosen, the production function disturbances are transmitted to the input
demand equation. This can lead to an estimation bias due to the correla-
tion between the right-hand variables and the error term (often defined as
“simultaneity bias”). Moreover, it is likely that each firm is characterised by
specific factors of production, such as entrepreneurial ability, that are not
observable but that can affect the current input choice, thus worsening the
bias in OLS estimates.

The availability of company panel data provides the necessary set of re-
sponses to get around the strict exogeneity requirements of the regressors.
As long as one is willing to assume that productivity differences among firms
tend to be rather persistent over time, one can proceed to first difference the
panel data to eliminate firm-specific effects. At the same time, panel data
provides the necessary instruments to correct for simultaneity in this first
differenced equations. The most widely used technique is the Generalized
Method of Moment (GMM ) that relies on combining in an optimal way a set
of orthogonal conditions generally defined using suitably lagged levels of the
inputs as instruments.1

In empirical practice, attempts to control for unobserved heterogeneity
and simultaneity generally give less satisfactory results: low and often in-
significant capital coefficients and unreasonably low estimates of returns to
scale. A number of reasons has been put forward to explain the endemic
problems found with estimators in differences. Blundell and Bond (2000)
suggest that these problems derive from the weak correlation that exists be-
tween the growth rates of capital and employment and the lagged levels of
these inputs. Being the capital and the employment series highly persistent,

1See Arellano and Bond (1991) for detailed discussion.
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past levels of these variables contain little information about the specification
in first differences. They show that estimation can be notably improved by
adding lagged first differences as instruments for the equation in levels. Using
this extended GMM estimator, they find a higher and significant coefficient
for the capital and they fail to reject the constant return to scale hypothesis.
The explanation and proposed solution both lie in the econometric field.

On the contrary, Klette and Griliches (1996) - hereafter KG - suggest
that the implausible low estimates of returns to scale can be explained by
the incorrect measure of the output. They affirm that “the practise of using
deflated sales as a proxy for real output will, ceteris paribus, tend to create
a downward bias in the scale estimate obtained from the production func-
tion regressions” (pag. 344). They stress that the estimated parameters in
production function analysis are reduced form parameters that derive from
the interaction of the production function with the demand equation. True
elasticities of scale can only be inferred modelling a more general framework
where the production function is augmented with a demand equation and a
price setting rule. The authors present also an empirical estimation to illus-
trate their theoretical approach. Unfortunately, without the availability of
firm level data, it is impossible to know the magnitude of the bias in scale
estimate due to the use of common price deflators and we can not contrast
whether reinterpreting the parameters as reduced form coefficients actually
provides a reliable solution to this bias.

The first aim of this paper is to provide interesting evidences on this
matter. The data base used reports variations in output prices at the firm
level. This allow us to construct two measures of output: first deflating sales
using firm-level price data (the correct measure of output) and second using
industry-wide deflators (the incorrect but generally used measure of output).
Apart from investigating the impact on input coefficients for a standard pro-
duction function, I explore the consequences of using deflated revenues when
estimating price-cost margins and scale economies. The results obtained sup-
port the perspective of KG. I find that scale estimates and price-cost margins
are downward biased when using deflated sales (or deflated value added) as
dependent variable in the production function equation.

Additionally, evidences are provided on two aspects that have been largely
unnoticed in this literature. First, the fact that the difficulty pointed out for
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deflated sales needs to be extended to intermediate consumptions. Given
that most of the available data set do not report a “quantity” measure of
material, the general approach is to deflate the normal expenditure in inter-
mediate inputs by a common (and often unique) deflator. The underlying
hypothesis made is that there is perfect competition in this factor market,
so that all the firms are charged with the same price. However, significant
dispersion in input prices seems to exist between firms in the same industry.2

The theoretical part of the paper shows that the use of deflated expenditures
in materials exacerbates the bias in the point estimates of labour (already)
introduced by the use of deflated sales but it can potentially offset the bias
in estimating the coefficient for materials. Using the available data on in-
termediate input prices for individual firms, I present evidences supporting
this result. Second, the consequences of using incorrect measure of output
and intermediate inputs on estimating R&D output elasticities. Since the
seminal paper of Griliches (1979), many authors have investigated the pro-
ductivity effects of R&D (generally defined as knowledge capital). I find that
the practice of using common deflators tend to create a large upward bias in
the estimation of the R&D coefficient.

Another reason that has been advanced to justify the poor results ob-
tained in the first difference GMM framework is the lack of information on
quality of labour and capital and, even more important, on capacity utilisa-
tion. As long as demand shocks or sudden changes in factor prices, such as
the energy price shocks of 1973 and 1979, lead to under or over-utilisation
of capacity, producers may find themselves in short-run or temporary equi-
librium. As suggested by Berndt and Fuss (1986) (hereafter BF), in these
circumstances the growth rate of output can hardly be explained by the vari-
ation of capital as reported in standard company data set. It can be the
case that increases in the output produced in two subsequent periods can be
accommodated through changes in the utilisation rate of equipment without
any further investment in capital. The existence of a temporary equilibrium
requires the adjustment of the (quasi-fixed) capital variable in order to get a

2Differences in the prices of materials paid by manufacturers can be due to differences
in firms’ purchasing power or because of incomplete information on the prices charged by
all potential suppliers. Large firms, for example, are likely to get lower prices because
they can afford higher searching costs (when chosing among suppliers) and because of
the discounts that are usually granted on large buying. Beaulieu and Mattey (1999) find
evidences of large dispertion in the prices of materials for same US industries.
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correct measure of the capital coefficient in production function regressions.

The second goal of this paper is to explore the possibility of improving
the estimation of the capital coefficient by taking into account the short-run
relative factor usage. Although the relevance of these temporary equilibrium
effects has long been recognised in productivity analysis and growth theory,
this issue has been largely ignored in empirical research, mainly because of
the lack of suitable micro data. I show that the use of capacity utilisation
data at the firm level can significantly improve the estimation of the capital
coefficient, avoiding the low estimates that are usually found in most of the
studies.

The empirical part is based on a micro panel data set of Spanish manufac-
turing firms that includes about 2000 entities during the period 1990-1999.
In addition to the standard data on firms’ sales and factors of production,
there is access to output and intermediate input prices as well as the average
percentage of capacity used by the firm along the year. This data set allows
me to compute a “true” measure of output and material and to adjust the
stock of capital for short-run equilibrium.

The rest of the paper is organised as follows: Section 2 provides a general
theoretical analysis of the bias in the production function regression when
using deflated sales and deflated expenditure in intermediate inputs. The
analysis is extended to the estimation of capital coefficients considering the
information on utilisation of capacity. Section 3 describes the data and ex-
plains how the variables are constructed. Section 4 discusses the empirical
results while Section 5 draws some final comments.

2 Theoretical and Econometric Framework

In this section I provide a set of theoretical underpinnings to clarify the con-
sequences of using incorrect measure of output and factors of production.
KG show that if real but unobserved prices are correlated with the explana-
tory variables included in the model, an omitted variable bias will arise. The
same analysis needs to be extended to intermediate input prices: using com-
mon deflators for expenditures in materials can exacerbate or reduce the bias
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mentioned above. Moreover, plausible assumptions suggest that the R&D co-
efficient is upward biased. In the second part of the section, I discuss the
importance of modifying the standard approach used to estimate the capital
coefficient in order to accommodate forms of temporary equilibrium.

2.1 Deflators Bias

To keep things as simple as possible, assume that the production function
for manufacturing firms can be represented by a Cobb-Douglas function in
three “conventional” inputs,3 labour L, physical capital C and materials M ,
augmented with a technology parameter based on the firm research effort R:

Qit = L
α1
it M

α2
it C

α3
it R

α4
it e

upit (1)

where Q is the quantity produced and up is the random error term for
the equation, representing the effect of efficiency differences, functional form
discrepancies and measurement errors. Subscripts are reported only when it
is strictly necessary to avoid confusion.

Taking logarithms and first differences to eliminate fixed effects that are
buried in the residual, we obtain the linear equation:

q̃it = α1l̃it + α2m̃it + α3c̃it + α4r̃it + ũ
p
it (2)

Where lowercase letter with a tilde stands for logarithm differences be-
tween year t− 1 and t.
Assume that deflated sales is the available proxy for real output. Then,

the relationship between output growth, q̃, and deflated sales, ỹ, is:

q̃it + p̃it − p̃It = ỹit (3)

where p̃it is the growth in firm i ’s specific price while p̃It is the growth in
the industry-wide deflator.4

3As stressed by Griliches and Mairesse (1984, pag. 342), “one could, of course, consider
more complicated functional forms, such as the CES or Translog functions. [..] this will
not matter as far as our main purpose of estimating the output elasticities of R&D and
physical capital, or at least their relative importance, is concerned.

4Suppose that we have data on sales, Pit ∗ Qit and we use a common price deflators
PIt to get deflated sales Yit = (Pit ∗Qit)/PIt. Taking logarithms and first differences, we
obtain ỹit = q̃it + p̃it − p̃It.
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Substituting (3) in equation (2), we get:

ỹit = α1l̃it + α2m̃it + α3c̃it + α4r̃it + (p̃it − p̃It) + ũpit (4)

The latter equation shows that when deflated sales, Y , replace the true
measure of output, Q, the omitted price variable (p̃it − p̃It) enters into the
residual. As long as the optimal choice of factors of production is affected by
changes in firm prices, the omitted price term tends to create a bias in OLS
estimator of the parameter vectors α.5

At the same time, if the variable that we observe is not real materials,
M , but deflated expenditures in materials, N , then we have that ñit = m̃it+
g̃it − g̃It, where g̃it and g̃It are intermediate input prices at firm level and
aggregate level, respectively. Accordingly, equation (4) should be restated as
follows:

ỹit = α1l̃it + α2ñit + α3c̃it + α4r̃it + (p̃it − p̃It)− α2(g̃it − g̃It) + ũpit (5)

The term (g̃it − g̃It) can possibly exacerbate or offset the biased intro-
duced by the output price variable (p̃it− p̃It).6 The difficulties outlined above
cannot be solved by using appropriate instrumental variables. Potentially
useful instruments, which have to be correlated with the inputs growth, are
likely to be correlated with the input and output price changes buried in
the residual and therefore are illegitimate instruments. Our results, obtained
using instrumental variable method confirm this perspective.

Following the analysis presented in KG, the consequences of using com-
mon deflators on estimating the production function parameters can be il-
lustrated defining a log-linear demand equation for firm i of the following
type:

5Let us define the term (p̃it − p̃It) as Πit. As shown in Klette and Griliches (1996),
pag. 346, the bias in the OLS estimator of the α coefficients depend on the sign and the
magnitude of the parameter δ in the auxiliary regression: Π = Xδ + uΠ where X is the
matrix of the growth in inputs and uΠ is a white-noise error term.

6Let us define the term (g̃it − g̃It) as Ωit. Using a symmetric argument to the one in
the previous footnote, we have that the OLS estimator of the parameter vector α depends
also on the auxiliary regression: Ω = Xγ+ uΩ. Then, the overall direction and size of the
bias depend on the sign and magnitude of δ and γ.
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Qit = QIt ∗ (Pit/PIt)ηRβ1
it e

udit (6)

where Qit stands for firm i ’s sales, QIt is the industry output, Pit is
the firm specific price while PIt is the average price in the industry. Rit is
the knowledge capital of the firm measuring the innovative content of its
product. This variable acts as a demand shifter: increasing the quality of
the product through innovation boasts the sales of the firm.7 Rewriting the
demand system in terms of growth rates (more precisely as first differences
of logarithms), we obtain:

q̃it = q̃It + η(p̃it − p̃It) + β1r̃it + ũ
d
it (7)

Now, using equation (3) and rearranging, it follows that:

(p̃it − p̃It) = 1

1 + η
(ỹit − q̃It − β1r̃it − ũdit) (8)

Equation (8) gives an analytical interpretation of the (usually) unobserved
term (p̃it − p̃It). Apart from the residual, the only variable that is unknown
is the growth in industry output q̃It. As shown by KG, it is possible to use
the weighted average growth in deflated sales of all the firms in the sample
as a proxy for this term . We will come back to this point in Section 3.

Combining equation (5) and (8), we get:

ỹit =
η + 1

η
(α1l̃it + α2ñit + α3c̃it) + (

η + 1

η
α4 − β1

η
)r̃it

− 1
η
q̃It − α2

η + 1

η
(g̃it − g̃It) + ṽdit (9)

where ṽ is an error term that captures both demand and productivity
shocks.

Equation (9) shows that the estimated parameters for the production
function have to be interpreted as reduced form parameters (coming up from
supply and demand coefficients). Under a variety of situations, the omitted
price variable (p̃it− p̃It) tends to create a downward bias in scale estimate for

7See Klette and Griliches (1996) and Klette (1996) for further details.
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OLS technique.8 As we show in the empirical part, the growth in industry
output q̃It plays a crucial role to identify the true coefficients for the standard
inputs of production.

Equation (9) differs from the analysis of KG because of two terms: the
knowledge capital, r̃it, and the omitted material price, (g̃it − g̃It). Notice
that the two terms making up the coefficient of r̃it capture the effect of both
product and process innovation. The coefficient (η+1

η
α4 − 1

η
β1) in equation

(9) is greater than α4 in equation (2) if β1 is larger than α4.9 In a companion
paper, Ornaghi (2002), evidence supporting this assumption is provided.10

We can then infer that the use of common price deflators tend to create an
upward bias in the estimation of the productivity effects of R&D. The results
presented in Section 4 suggest that this upward bias can be rather large for
manufacturing firms: using deflated sales as dependent variable can lead to
estimate an R&D coefficient that is almost twice as large as the one we obtain
using the “true” output measure.

As far as the term (g̃it−g̃It) is concerned, it seems plausible that firms that
experience higher costs of materials will, ceteris paribus, reduced the quantity
used of this input in favour of the other short-run factor of production, such as
labour.11 In econometric terms, this is equivalent to assume the existence of
a systematic negative correlation of the generally unobserved term (g̃it− g̃It)
with materials and a positive correlation with labour. Given the negative
sign in front of the (g̃it − g̃It) coefficient, the downward bias in the estimate
of input elasticities due to the omitted output price (p̃it− p̃It) is exacerbated
in the case of labour but it is (partially or fully) offset for materials.12 The
estimates shown in Section 4 confirm that the coefficient of materials under

8The term (p̃it − p̃It) is a source of downward bias for OLS estiamates whenever it is
negatively correlated with the explanatory variables in the equation. This seems likely if
the firm market power arises mainly from a specific demand for its products. Detailed
discussion of this issue can be found in Griliches and Mairesse (1995).

9Take the coefficient (η+1η α4 − 1
ηβ1) and rewrite β1 in terms of α4 as β1 = nα4, with

n ∈ R+. Rearrenging, we obtain that 1η (η − (n − 1))α4. This term is greater than α4 if
n > 1, that is if β1 > α4. Moreover, the greater is n, the higher is the coefficient of r it in
equation (9) compared to the one in (2).

10See Garcia et all. (2002) for a similar result.
11The assumption made is that these two inputs are to a certain extent substitutes in

the production process.
12Suppose that we have a correct measure of output, Q. Moreover, we know total ex-

penditure in intermediate inputs but we do not have individual prices charged to the firm
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equations (9) - that is, when general deflators are used - and (2) - when the
“true” measures of output and materials are used -are not sensibly different
from each other, but the labour coefficient is seriously biased downwards.

2.2 Temporary Equilibrium

Awell known finding in productivity analysis is the low and often insignificant
estimate of capital coefficients when the production function is specified in
differences. My claim is that this persistent puzzle is essentially due to the
existence of temporary equilibria characterised by under or over utilisation
of firms’ installed capacity. If the production function is stated in levels,
it seems plausible that there is always a positive and significant correlation
between the firm output and its available total stock of capital, even when
producers are not in a long-run equilibrium. Things are different when we
consider a regression in first differences. Increases in the output produced
in two subsequent periods can now be accommodated through variations in
capacity utilisation of equipment and machinery, without undertaking any
investment. Appendix C presents a simple econometric model to show that
measurement errors are more likely to severely affects the estimation of the
capital coefficient when we go from levels to differences.

The relevance of temporary equilibria, especially those associated with
business cycles, has long been recognised in productivity analysis. In their
article dated 1986, BF suggest to adjust the quantities of the quasi fixed fac-
tors for temporary equilibrium effect. The theoretical underpinnings to this

for these inputs; this means that we can construct a proxy for material using general
deflators. Then, the (first-differenced) specification of our production function would be:
q̃it = γ1l̃it + γ2m̃it + γ3c̃it + γ4r̃it + γ5(g̃it − g̃It) + ũit Let define (g̃it − g̃It) as Ωit. The
OLS estimate of the labour and material coefficients would be:
γ1 =

cov(l̃it,q̃it)

var(l̃it)
− γ5

cov(Ω,l̃it)

var(l̃it)
= α1 − γ5

cov(Ω,l̃it)

var(l̃it)

γ2 =
cov(m̃it,q̃it)
var(m̃it)

− γ5
cov(Ω,m̃it)
var(m̃it)

= α2 − γ5
cov(Ω,m̃it)
var(m̃it)

where α1 and α2 are the true coefficients. It is likely that firms that experience a higher
growth in prices of intermediate inputs, Ωit, will try to substitute this input with labour.
For example, firms can decide to reduce the “outsourcing” of their activities when these
contracts became so expensive that the cost of performing it inside is less than contracting
it out. This reasoning implies a positive value of the covariance term in the first equation
reported above and a negative value for the corresponding term in the second equation.
Then, we can expect that the use of general deflators leads to γ1 < α1 and γ2 > α2.
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adjustment rely on the fact that the stock of capital should always reflect the
unobservable available services from this input. However, the lack of micro
data has hampered the possibility of defining adjustment procedures. In this
paper I define two variants of the production function equation (2) above in
order to deal with temporary equilibrium effects. Detailed explanations of
these procedures are postponed to the next Subsection. Results presented in
Section 4 confirm that estimates of output elasticities with respect to capital
are notably improved by exploiting the information on capacity utilisation
rates.

2.3 Input Elasticities, Scale Eonomies and Mark-ups

In this section I state the estimating equations considered in the empirical
analysis. All the models are estimated using, on one hand, a “quantity”
measure of output, Q, and materials, M (that is, the true but usually not
observable measures) and, on the other hand, deflated sales, Y, and deflated
expenditure in intermediate inputs, N (the variables generally used in most
of the empirical papers). All these models provide interesting evidences on
the extent of the bias due to the incorrect measurement of the variables. In
the first part, the capital input C correspond to the total stock of equipment
as reported by the firm and a measure of capacity utilisation, CU , is added
as a (independent) regressor in the production function. In the second part,
I provide the alternative specifications dealing with short-run equilibrium
effects.13

Consider equation (2) above. Under constant return to scale with respect
to standard factors of production (labour, materials and physical capital),
we have that α1 + α2 + α3 = ε = 1. For interpretive reasons, equation (2) is
restated so that deviations from constant returns are measured explicitly:

q̃it− c̃it = α1(l̃it− c̃it)+α2(m̃it− c̃it)+(εob−1)c̃it+α4r̃it+α5fcuit+ ũobit (S1)
The corresponding specification using deflated variables is:

13I prefer to start with a more “conservative” specification based on a standard definition
of the capital input, C, in order to clearly disentangle the “omitted price” bias from the
effects of temporary equilibrium.
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ỹit− c̃it = γ1(l̃it− c̃it)+γ2(ñit− c̃it)+(εunob−1)c̃it+γ4r̃it+γ5fcuit+ũunobit (S2)

Notice that εob and εunob correspond to the scale elasticity of standard
inputs when “quantity” measure of output and materials are observable or
unobservable, respectively. Moreover, the error term in (S2) picks up dif-
ferences between changes in firm output and intermediate input prices and
the corresponding industry price indexes, (p̃it − p̃It) and (g̃it − g̃It). Section
4 shows estimation results when value added is used as dependent variable,
too.

Equation (9) above shows that in principle the growth in industry out-
put, q̃It, ensures identification of demand elasticities and production function
parameters. If this were the case, true input elasticities obtained from es-
timating equation (S1) can be inferred, even when we use deflated gross
production and intermediate input expenditure, by adding the term q̃It to
model (S2), as follows:

ỹit − c̃it = γ1(l̃it − c̃it) + γ2(ñit − c̃it) + (εunob − 1)c̃it
+γ4r̃it + γ5fcuit + γ6q̃It + ũ

unob
it (S3)

Results presented in Section 4 are partially consistent with this approach,
first modelled by KG.

I have also considered a different specification of the models above. Fol-
lowing the works of Hall (1988) and others,14 the elasticities of short-run
inputs, labour and materials, can be replaced by their income shares cor-
rected for the presence of market power:

α1 = µ ∗ ωl and α2 = µ ∗ ωm (10)

where µ is the ratio between price and marginal costs, ωl and ωm are the
(observable) income shares of labour, ωl = (CostLabour/Sales), and mate-
rials, ωm = (CostMaterials/Sales).15 Under these conditions, the resulting
estimating equations are:

14See, for example, Klette (1999) .
15On an empirical ground, the shares of labour and materials costs in total revenues, ωl

and ωm, are computed as the averages over adjacent years (i.e., following the Tornquist
approximation).
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q̃it − c̃it = µob1 ωl(l̃it − c̃it) + µob2 ωm(m̃it − c̃it) + (εob − 1)c̃it
+α4r̃it + α5fcuit + ũobit (S4)

and

ỹit − c̃it = µunob1 ωl(l̃it − c̃it) + µunob2 ωm(ñit − c̃it) + (εunob − 1)c̃it
+γ4r̃it + γ5fcuit + ũunobit (S5)

These later models allow us to determine the extent of the bias in estimat-
ing the mark-up coefficient, µ, as well as the scale parameters, ε, when true
measures of the variables, as stated in model (S4), are replaced with variables
computed with industry-wide deflators, as in model (S5). Although theoret-
ical models predict the existence of a unique markup term (see equation (10)
above), we prefer to estimate µ1 and µ2 separately in order to see their vari-
ation across specifications. This approach can be used as a simple test to
assess the effects of industry-wide deflators: as long as the assumption that
(g̃it−g̃It) intensify the downward bias of the labour coefficient while softening
the bias for material holds, we should find a discrepancy between µunob1 and
µunob2 . If this is the case, µunob2 should be considered a better indicator of the
market power exercised by firms in an industry. I come back to this point in
Section 4, after presenting the results for specification (S4) and (S5).

As for specification (S3), the variable q̃It can be added to (S5) in order
to retrieve true mark-up factors when industry-wide deflators are used:

ỹit − c̃it = µunob1 ωl(l̃it − c̃it) + µunob2 ωm(ñit − c̃it) + (εunob − 1)c̃it
+γ4r̃it + γ5fcuit + γ6q̃It + ũ

unob
it (S6)

Finally, I present the estimating equations when allowing for the existence
of temporary equilibria. As advanced in Section 2.2, two different procedures
are defined in order to account for these short-run effects. First, I separate
the estimates of the capital coefficient depending on the degree of capacity
utilisation reported by the firm:

q̃it = α1l̃it + α2m̃it + αh3D1c̃it + αl3D2c̃it + α4r̃it + α5fcuit + ũpit (S7)
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where D1 is a dummy that takes value 1 if the capacity utilisation in both
year t and t+1 is greater than 80% while D2 takes value 1 if this condition
is not satisfied.16 We expect the parameter αh3 to be a better estimate of
“true” capital coefficient as the proportionality assumption used to identify
capital flows from stocks does not hold when factor usage is rather low.17 As
a second approach to the estimation of a more reliable capital coefficient, I
define a “short-run” capital input, C*, by multiplying C and CU. Then we
estimate the equation:

q̃it = α1l̃it + α2m̃it + α3c̃it + α4r̃it + ũ
p
it (S8)

using C* as instrument of the quasi-fixed factor C.18 The econometric
underpinnings of specification (S8) is found in the context of errors in vari-
ables. The capital stock C is an erroneous measure of true capital services
when capacity utilisation is not full.. I then use C* as instrument to soften
the measurement error. Notice that the last two specifications are defined so
as to get a direct estimate of the capital coefficient, α3, and not to determine
deviation from constant return to scale, (ε− 1), as in previous equations.

2.4 Other Econometric Issues

As mentioned in the introductory section, the required predeterminacy of the
right-hand variables to get consistent OLS estimates is unlikely to hold for

16As explained in Appendix C, the downward bias in the estimate of the capital coef-
ficient is minimized when we use high values of capacity utilization for two consecutive
years. I opt for a threshold value of 80% since it is the average capacity utilisation re-
ported by the firm as shown in Appendix A. Results are robust to alternative specifications
(higher than 80%) of this value althought coefficients are less precisely estimated.

17On this point BK (pag.11) affirm that “when economic utilization is full, flows from
quasi-fixed inputs can be assumed to be proportional to the stocks [...]. This leads to the
replacement of unobserved service flows [...] by observed stocks”

18I could alternatively use C* as regressor in equation (S8) but I think that specification
(S8) allows to differenciate those firms that use the same amount of capital services but
whose stock of capital is different. For example, suppose that two competing firms are
using two equipments each but one of these firms is not using a third equipment. In this
context, the stock of capital, C, of the latter is greater but because of under utilisation, the
short-run capital services, C*, that the two firms are actually using coincide. The capital
inputs must be differentiated because one firm has capital services readly available without
affording any installation cost. Moreover, the capacity utilisation is an average rate for
the entire year and it can possibly not reflect the true factore usage in some periods.
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some inputs of the production function. In particular, I assume that short-
run factors of production, labour and materials, are possibly correlated with
the error term. To avoid the “simultaneity bias” due to the transmission of
productivity shocks, I use GMM estimators with lags of employment and
materials as instruments of the endogenous variables. As far as the capacity
utilisation is concerned, I test for the endogeneity of this variable in each
specification using the “Incremental” Sargan Test.19 I fail to reject the null
hypothesis of strict exogeneity only for models (S4), (S5) and (S6). As shown
in Section 4, lagged levels of CU are used as instruments when estimating
all the other specifications.

Additionally, anecdotal evidence suggests that firms do not adopt a uni-
form criterion when reporting the R&D expenditures incurred during the
year. Therefore, it is likely that the R&D stock (see Section 3 below) is sub-
ject to some measurement errors, creating a problem of endogeneity similar
to the one due to simultaneity. Again, this problem is tackled using lags of
this variable as instruments. In Section 4 I report the exact set of instruments
used to estimate the alternative specifications stated above.

3 Data and Variables

The data used in this study are retrieved from the Encuesta sobre Estrate-
gias Empresariales, ESEE, (Business Strategy Survey) an unbalanced panel
sample of Spanish manufacturing firms published by the Fundación Empresa
Pública covering the period 1990-1999. The raw dataset consists of 3,151
firms for a total number of 18,680 observations. A “clean” sample is defined
according to a set of criteria which are given in Appendix A. The sample em-
ployed here consists of all the firms that have been surveyed for at least three
years after dropping all the time observations for which the data required to
the estimation are not available. Firms are classified in 15 different sectors,
which are listed in Appendix A. This Appendix also reports an explanation

19This test is defined using the Sargan Test, S, and the relative degrees of freedom, (df),
of two separate regressions: one considering capacity utilisation as an exogenous variable,
S1(df1), and the other as an exogenous variable, S2(df2).The difference between the two
Sargan Test, S1−S2, is distributed as a χ2 with degrees of freedom (df1 − df2).
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of the variables used across the specifications stated in Section 2.3 together
with descriptive statistics.20

A unique feature of the data set is the availability of information on the
price changes set by the firm together with price changes charged to the firm
for its intermediate inputs. This allows me to construct a proper measure of
output, Q, and materials, M .21 Subtracting the latter from the first, we also
obtain a quantity measure of value added, V A.

Complementary information about price deflators for gross production,
expenditures in materials and gross value added are taken from the (Spanish)
National Institute of Statistics (Instituto Nacional de Estadistica - INE).
The series of output deflators for gross production at fifteen-industry level
cover all the period 1990-1999 while those for value added are limited to the
period 1990-1997. Using these series, two alternative dependent variables
are defined: deflated gross production, Y , and deflated value added, deV A.
Deflated materials, N, are computed using an overall deflator for non-durable
goods. These alternative measures of output and intermediate inputs allow
us to infer the magnitude of the bias due to the use of industry-wide deflators.

Labour inputs are represented by man hours, taking into account overtime
and lost hours.22 It is likely that this variable is affected by measurement
errors due to rounding-off. The number of employees, EMP, is then used as
instruments of the hours of work when estimating the production function.23

Capital, C, is computed recursively from an initial estimate (based on book
values adjusted to take account of replacement values) and data on firms’
investments in equipment goods:

Cit = (1− δj) ∗ Cit−1 + Iit (11)

20Further detail on the dataset can be found in Garcia et all. (2002) and Ornaghi (2002).
21Suppose that we have data on gross production (at seller price) for two consecutive

years: Pit ∗Qit and Pit+1 ∗Qit+1. Having access to data on price changes, we can express
the figures above in terms of the reference year t: Pit ∗Qit and Pit ∗Qit+1. At this point
if we take log first-difference, we have a measure of the output growth rate, (log(Qit+1)−
log(Qit)), free from price effects.
22More precisely, this variable has been constructed using the number of workers ad-

justed for the “double counting” of R&D employees, times the normal hours plus overtime
and minus lost hours.
23This is more a formal than a substantial problem. Estimation results obtained using

lag valued of L instead of EMP gives similar results.
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The subscript j states that we use sectorial estimates of the rate of depre-
ciation, δ. Real capital is then obtained using an overall investment deflator
(for durable goods). Another interesting feature of this survey is the avail-
ability of data on capacity utilisation, CU . As mentioned above, I construct
an alternative measure of capital, C∗, to be used as instrument of C in spec-
ification (S8). This (short-term) capital input is computed multiplying the
original capital input, C, by the reported capacity utilisation, CU.

The R&D capital variable has been computed using standard historical
or perpetual inventory method:

Rit = (1− δ) ∗Rit−1 + Eit−1 (12)

The knowledge capital in period t depends on the previous period stock
of knowledge, suitably depreciated at rate δ, plus investments in R&D of
period t-1. These investments, E, take into account not only the cost of
intramural activities but also payments for outside contracts and imported
technology. Equation (11) has been implemented using a depreciation rate
of 15%.24 Given that our data are limited to the period 1990-1999, I need to
define a plausible value of the knowledge stock for 1990 before applying the
law of motion (11). The pre-sample capital is defined using the data on the
history of R&D expenditures during the eighties and nineties provided by the
INE for our 15 industries. Once computed the firms’ average expenditures
during the period 1990-1999 and the associated expenditures at industry
level using our survey, the individual R&D is assumed to follow the same
evolution of total industry investments for each year since the firm has been
established;25 if the firm has been established before 1980, we just consider
the expenditure of the eighties..26

24This is the depreciation rate most frequently used in this type of estimation. In another
paper, Ornaghi (2002), I show that estimates of R&D coefficients are robust to alternative
specification of the depreciation rate. Hall and Mairesse (1995) obtain similar evidences.
25For example, suppose that firm-i average expenditures during the period 1990-1999

amounts to 5% of total industry-j average expenditures for the same period. Firm-i invest-
ments for the previous decade are computed applying this percentage to total industry-j
R&D investments as reported by the INE.
26The definition of the initial capital does not seem to be a relevant issue in the case

of Spain, considering that the level of R&D investments during the seventies is negligible
and the expenditures during the eighties are sensibly lower than those of the following
decade. Total R&D investments amount to 46,862 millions of pesetas in 1982 compared
to 246,239 in 1990. The average amount of R&D expenditures for the period 1982-1989 is
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Finally, the growth rate in industry output from year t-1 to year t, q̃It,
is estimated using a weighted average of growth in deflated sales for all the
firms in the industry, with the average output shares in the two years as
weights.27

4 Regression Results

Table 1 presents the results obtained estimating the production function (S1)
and (S2) as well as model (S3) where industry output is added as an extra
regressor. The first interesting evidence that obtained comparing columns 1
and 2 is that scale elasticities are lower when we use deflated sales, Y, and
expenditure in intermediate inputs, N, instead of output, Q, and materials,
M. In particular, the null hypothesis of constant return to scale is rejected at
5% significant level only in specification (S2). This result is consistent with
the idea of downward bias in scale estimates advanced by KG. However, look-
ing at the estimated coefficients of short-run inputs, it appears that only the
coefficient of labour is downward biased (and largely so) while the coefficient
of materials is quite stable across the two specifications. In Section 2, I sup-
port the perspective that the downward bias due to the omitted output price
can be either exacerbated or offset when there is also an omitted input price
buried in the residuals. This result confirms that the practice of using com-
mon price deflators do not affect all the inputs coefficients in the same way.
Further detail on this point can be found in Appendix B. There is another
problem that has been ignored in production function analysis. As suggested
by the theoretical framework in Section 2, the impact of knowledge capital
on firms’ productivity can be overestimated when firm-level price data are
not available. The output elasticity with respect to R&D is more than 70%
higher in column 2 than in column 1.

INSERT TABLE 1 ABOUT HERE

All these findings are confirmed when we use value added as the dependent
variable. In column 4 the “true” measure of value added, V A,28 is used while

99,370 millions compared to a higher 262,460 for 1990-1992.
27This is the same approach used by KG.
28This is defined as the difference between “true” output, Q, and materials, M .
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in column 5 the dependent variable, deV A, is computed using industry-wide
deflators.29 Scale elasticities are more than ten percentage points lower in
column 5 and, once again, the null hypothesis of constant return to scale is
rejected only for this specification. Labour and R&D coefficients are seriously
downward and upward biased, respectively. Column 3 shows the results of
estimating equation (S3). The coefficient of growth in industry output is
highly significant. Interestingly, adding this industry variable to the model
do not affect the estimated coefficients for the other variables. As argued in
Section 2, true elasticities of output with respect to the factors of production
can be identified using the coefficient of this new term. Simple calculation
shows that model (S3) implies a demand elasticity, η, of -4.31. If we adjust
the labour coefficient (the only parameter that is largely affected by price
deflators) in column 3 for the term η

1+η
(see equation (9) above), we get a

new estimate around 0.38, similar to the result reported in column 1.

Table 2 shows the results obtained estimating models (S4), (S5) and (S6).
The same findings stressed above are confirmed under these specifications.
Scale elasticities are lower when we use price deflators so that the null hypoth-
esis of constant returns to scale have to be rejected. The R&D coefficient is
twice as large as the one reported in column 1, confirming a relevant upward
bias in the estimation of the productivity effect of technological innovation.
The mark-up parameters µob1 and µob2 suggest the existence of a moderate
market power across the industries. Interesting enough, the null hypothesis
that these two parameters are not statistically different cannot be rejected.
On the contrary, estimates reported in column 2 reveal a relevant downward
bias in the mark-up associated to labour, µunob1 , while the term, µunob2 , does
not show the same pathology.30 These results show that the separate esti-
mation of µunob1 and µunob2 can be considered a sort of test to assess the effect
of industry-wide deflators on the mark-up estimates. Moreover, they seem
to support the claim that the mark-up coefficient for deflated intermediate
consumption, µunob2 , is more reliable that µunob1 as a measure of market power.

INSERT TABLE 2 ABOUT HERE
29As mentioned in Section 3, I find value added deflators only for the period 1990-1997.
30Point estimate of µ2 is a little bit higher in column 2 than in column 1 as for the

models presented in Table 1.
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As far as model (S6) is concerned, we can infer that the demand elasticity,
η, is around -6.06.31 If we adjust the estimate of µunob1 in column 3 for the
term η

1+η
, we get a new price-cost margin ratio associated to the labour

coefficient of 1.10, very close to the result obtained for specification (S4). This
result supports the perspective of KG that input coefficients, scale elasticities
and price-cost margins have to be considered reduced-form parameters (a
mixtures of supply and demand side coefficients) when using common price
deflators as in model (S6).

All the results presented in Table 1 and 2 are based on models specified
in such a way that deviation from constant return to scale are measured
explicitly. Therefore, the well-known problem of small capital coefficient is
somehow hidden. Nevertheless, it is simple to notice that the capital co-
efficients take low values across all the specifications, thus confirming the
problem found with estimators in differences.32 As mentioned in Section 2,
these poor results are possibly due to the fact that the available services
from this quasi-fixed input are not fully utilised in all the faces of the busi-
ness cycle. Table 3 presents the results for specification (S7). The capital
coefficient for firms with high degree of capacity utilisation, αh3 , is positive,
large and statistically different from zero. On the contrary, the estimated co-
efficient for firms with low factor usage, αl3, takes a negative sign although it
is not statistically different from zero. Results reported in Table 4 strengthen
the findings above. Using the “short-run” capital C* as instrument, we get
higher and more reasonable estimates of capital coefficient. The point esti-
mate of α3 in column 1 of Table 4 is more than three times higher than the
lower value of 0.02 that can be inferred from column 1 of Table 1.

INSERT TABLE 3 and 4 ABOUT HERE

As the capacity utilization is not a variable usually provided in many
data set, in Appendix D I show that similar results can be obtained using
other proxies, such as the individual firm productivity (measured as output
per employee) or the sample growth rates of production. The results pre-
sented above are consistent with our claim that the low and often insignifi-
cant capital coefficients usually found in productivity analysis are due to the
31This value is slightly higher than -4.31 as reported above but it can be considered in

the same order of magnitude.
32For example, the estimated values of the capital coefficient, α3, are around 0.02 and

0.05 in column 1 and 4 of Table 1, respectively.
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existence of short-run equilibrium characterised by sub-optimal utilisation of
this quasi-fixed input.

5 Conclusions

This paper explores the reasons why GMM estimators of production func-
tion parameters are generally found to produce unsatisfactory results: low
and often insignificant capital coefficient and unreasonably low estimates of
returns to scale. I attribute this well-known finding to the inaccurate con-
struction of the variables used in production function analysis. In particular,
I suggest that the problem lies in the use of common price deflators as well
as in a capital stock that does not reflect the time flow of the services. I show
that the practice of using deflated sales and deflated expenditure in materials
instead of a “quantity” measure of output and intermediate inputs leads to
lower scale estimates, mainly due to a relevant downward bias in the labour
coefficient. At the same time, the unavailability of firm-specific price data
introduces a large upward bias in estimating the elasticity of output with
respect to technological innovation. I propose a simple test to assess the
effect of industry wide price deflators based on comparing the two mark-up
parameters of specification (S5). Moreover, I show that the KG suggestion of
using q̃It to infer the true values of input coefficient seems to work adequately.

As far as the capital variable is concerned, a dramatic improvement in co-
efficient estimates is obtained when we take into account the annual variations
in capacity utilisation. As described by Doms and Dune (1998), investment
is largely a lumpy activity characterised by period of low investment followed
by bursts of investments.33 When we specify our production function in lev-
els, the impossibility of full capital utilisation in a year of intense investment
activity does not trigger the estimate of capital coefficients as long as firms
move towards their long-run equilibrium during the sample period. On the
contrary, going to first-differences can reveal how dramatic can be the incor-
rect definition of capital inputs since there are a few periods of intense capital
growth but these do not necessary coincide with proportional variations in

33This finding is confirmed for the case of Spain. Sanchez (2002) finds evidences of
investment spikes using the same survey (ESEE) of this study.
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capital services if an unexpected under utilisation of capacity occurs. I show
that if the flow of capital services is adequately measured, there is a notable
improvement in the estimation.

An important message that we can get from the set of results reported
above is that imposing the constant return to scale restriction even when we
find lower estimates of returns to scale is not incorrect. Measurement errors
of output and inputs can seriously bias downward the estimates of input
coefficients and the constant return hypothesis would not be rejected if it
were not for these measurement errors. Blundell and Bond (2000) find that
more reasonable parameters estimates can be obtained using a composed
or extended GMM estimators, where lagged first differences are considered
informative instruments for the endogenous variables in levels. This paper
shows that the greatest improvements in estimating the production func-
tion parameters can be derived from a better construction of the (dependent
and independent) variables more than from a refinement of the econometric
techniques. Although this requires the use of detailed data that are usually
not available, I show that more reliable results can be obtained using other
proxies, in particular for the degree of capacity utilisation.
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Appendix A: Data and Variable
A1 Construction of Data Sample
The survey provides data on manufacturing firms with 10 or more em-

ployees. When this was designed, all firms with more than 200 employees
were required to participate while a representative sample of about 5% of the
firms with 200 or less employees was randomly selected. In 1990, the first
year of the panel, 715 firms with more than 200 employees were surveyed,
which accounts for 68% of all the Spanish firms of this size. Newly estab-
lished firms have been added every subsequent year to replace the exits due
to death and attrition. We start with a sample of 3,151 firms in an unbal-
anced panel data. The total number of observations is 18,680. We then clean
our dataset according to the following criteria:

1) We remove all the observations where the log difference of the R&D
variable between two consecutive years exceeds 4 in absolute value. This
removes 64 observations.
2) We drop the observations where the log difference of the capital stock

variable between two consecutive years exceed 2 in absolute value. This
removes other 81 observations.
The subsample we use in our study consists of all the firms that have

been surveyed for at least three years. There are 2,430 firms satisfying this
condition, for a total number of 16,637 observations. At this point, we re-
move any observations for which the data required to the estimation are not
available. In the tables showing the results of the estimation, we report the
exact number of observations making up the final samples.

The original industrial classification reported in the survey is based on 18
sectors. A classification based on 15 sectors is used here since deflators for
gross production and were found at this level because of aggregation. These
15 sectors are:

1) Ferrous and non ferrous metals; 2) Non-metallic minerals; 3) Chemical
products; 4) Metal products; 5) Industrial and agricultural machinery; 6)
Office and data processing machine; 7) Electrical and electronic goods; 8)
Vehicles, cars and motors; 9) Other transport equipment; 10) Food and bev-
erages; 11) Textiles, clothing and shoes; 12) Timber and furniture; 13) Paper
and printing; 14) Rubber and plastic products; 15) Other manufacturing
products.
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A2 Description of Variables
Capacity Utilization (U): Yearly average rate of capacity utilization re-

ported by the firms
Deflated Gross Production (Y): Gross production is defined as the sum of

sales and the variation of inventories. We deflate the nominal amount using
output deflators at fifteen-industry level.
Deflated Expenditure in Materials (N): We deflate total expenditure in

intermediate inputs as reported in the data set using a deflator for non-
durable goods.
Deflated Value Added (deVA): It has been computed subtracting N from

the gross production Y (see above the two definitions).
Employment (EMP): Approximation to the average number of works dur-

ing the year; it does not consider employees engaged in R&D activities.
Labour (L): Labour consists of the total hours of work. It has been

constructed using the number of works, adjusted for the double counting of
R&D employees, times the normal hours plus overtime and minus lost hours.
Materials (M): Nominal materials are given by the sum of purchases and

external services minus the variation of intermediate inventories. We use
firms’ specific deflator based on the variation in the cost of raw materials
and energy as reported by the firm.
R&D stocks (R): This variable is constructed using the perpetual inven-

tory method, assuming a depreciation rate of 15%, ρ = 0.15. Computation
is fully explained in Section 3.
Output (Q): Nominal output is defined as the sum of sales and the varia-

tion of inventories. We deflate the nominal amount using the firms’s specific
output price as reported in the data set.
Physical Capital (C): It has been constructed capitalising firms’ invest-

ments in machinery and equipment and using sectorial rates of depreciation.
The capital stock does not include buildings. This variable is taken from
Martin and Suarez (1997).
Value Added (VA): It has been computed subtracting the value of ma-

terials, M, from output, Q. As both these variables are based on firm-level
prices, we consider VA as our “true” measure of production.
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Growth rates of the variablea; sample period: 1990-1999.
Variable Name Mean St. Dev.
Output Q 0.0369 0.279
Deflated Gross Prod. Y 0.0282 0.279
Value Added V A 0.0505 0.463
Deflated Value Added deV A 0.0018 0.502
Labour L 0.0015 0.211
Employment EMP 0.0023 0.194
Materials M 0.0266 0.382
Deflated Expen. Mater. N 0.0276 0.383
Physical Capital C 0.0775 0.248
Capacity Utilizationb U 0.80 0.156
R&D stocks R 0.0366 0.232
Note:
aWe use the logarithmic differences of the variables.
bVariable expressed in Levels

Appendix B: Decomposing the “omitted price”
bias
Results reported in this table show the impact on production function

parameters of the term (p̃it − p̃It) and (g̃it − g̃It), separately. Column 1
reports estimation results using “true” measure of output, Q, and materials,
M . In column2, deflated gross production, Y , is used as dependent variable
and materials, M , as a regressor (this allows us to isolate the bias due to
(p̃it − p̃It)). In column 3, I use deflated expenditure in intermediate inputs,
N , and output, Q, as dependent variable (this allows us to isolate the bias due
to (g̃it− g̃It)). Finally, column 4 reports the overall effect on the estimation of
the parameter vector α when using industry-wide output and input deflators.
Notice that results shown in column1 and 4 are equivalent to those reported
in Table 1.
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Estimation method: GMM estimatesa
Dep.Vbls Q Y Q Y
Model 1 2 3 4

Labour 0.362*** 0.344*** 0.318*** 0.296***
(0.063) (0.061) (0.065) (0.062)

Materials 0.541*** 0.537*** 0.565*** 0.570***
(0.049) (0.049) (0.052) (0.051)

Capital -0.077 -0.091* -0.101* -0.110**
(0.056) (0.055) (0.056) (0.054)

R&D 0.112** 0.143*** 0.166*** 0.192***
(0.055) (0.053) (0.054) (0.050)

Cap.Util 0.286*** 0.288*** 0.241*** 0.238***
(0.089) (0.088) (0.091) (0.088)

Ind. Dum. Inc. Inc. Inc. Inc.
Time Dum. Inc. Inc. Inc. Inc.
Period 1990-99 1990-99 1990-99 1990-99
N. Obs 11,476 11,476 11,476 11,476
Sargan T. 90.48 98.5 87.68 88.86
(df) (82) (82) (82) (82)
m1 -10.45 -10.54 -10.34 -10.56
m2 0.01 -0.61 -0.16 -0.66
Heteroskedasticity robust standard errors shown in parentheses.
* significant at 10% level; ** significant at 5%; *** significant at 1%.
aIV ṡ: number of workers, physical capital and capacity utilization lagged

levels from t− 2 to t− 4; materials lagged levels from t−2 to t− 3 and R&D
capital lagged levels in t − 2; (exogenous variables) growth of capital and
growth in industry output (for specification in column 3).

Appendix C: Measurement Errors of Physi-
cal Capital
In this Appendix I show that the bias of capital coefficients is likely to

be amplified when we specify the production function in differences. This
analysis mimics the one presented in Chapter 4 of Arellano (2002), to which
we refer for detailed explanations. Consider first the model in levels yit =
αx†it + uit and suppose that the regressor is measured with an error, so that
we actually observe: xit = x

†
it+εit (i). Under this framework, the existence of

temporary equilibria characterized by sub-optimal utilisation of the available
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physical capital can be modelled as a measurement error εit = (1 − θit)xit
where θit is the proportion of capital stock xit that is actually used. Then,
we can rewrite (i) as xit = x

†
it + (1− θit)xit or, rearranging, xit = (1/θit)x

†
it.

Now, the point estimate of the capital coefficient using xit will be given by:

α̂ = cov(xit,yit)
var(xit)

=
cov((1/θit)x

†
it,yit)

var((1/θit)x
†
it)

=
(1/θit)cov(x

†
it,yit)

(1/θit)2var(x
†
it)
= θit ∗ α (ii)

where α is the true value of the capital coefficient if we use x†it. In my
dataset, firms use in the average 80% of their capacity utilisation, θ̄ = 0.8,
so that we can expect a point estimate of the capital coefficient that is lower
than its true value. Now, I analyse the effect of measurement errors when
the model is specified in first differences: ∆yit = α∆x†it + ∆uit. The esti-

mated coefficient is given by: cov(∆xit,∆yit)
var(∆xit)

=
cov((1/θit)x

†
it−(1/θit−1)x†it−1,∆yit)

var((1/θit)x
†
it−(1/θit−1)x†it−1)

=

cov( 1
θit
x†it− 1

θit
x†it−1+

1
θit
x†it−1− 1

θit−1 x
†
it−1,∆yit)

var( 1
θit
x†it− 1

θit
x†it−1+

1
θit
x†it−1− 1

θit−1 x
†
it−1)

=
cov( 1

θit
∆x†it+(

1
θit
− 1

θit−1 )x
†
it−1,∆yit)

var(( 1
θit
)∆x†it+(

1
θit
− 1

θit−1 )x
†
it−1)

=
cov( 1

θit
∆x†it,∆yit)+cov((

1
θit
− 1

θit−1 )x
†
it−1,∆yit)

var( 1
θit

∆x†it)+var((
1
θit
− 1

θit−1 )x
†
it−1)+2cov(

1
θit

∆x†it,(
1
θit
− 1

θit−1 )x
†
it−1)

(iii).

If we assume that the covariance term in the denominator and the second
term in the numerator are close to zero (given that most of the series of
output and inputs are persistent, first differences have low correlation with
past levels as noticed by Blundell and Bond (2000)), we can rewrite (iii) (after
dividing by var( 1

θit
∆x†it) the denominator and the numerator) as

θit∗α
1+λ

(iv)

where λ =
var(( 1

θit
− 1

θit−1 )x
†
it−1)

var( 1
θit

∆x†it)
. Comparing (ii) and (iv), we find that the bias

of the capital coefficient for first difference equations is higher than the one
for levels. In order to minimize this bias we need to find two (consecutive)
values of θit and θit−1 that are both close to 1. In this way, the downward
bias in the numerator (as θit will be close to one) and in the denominator (as
the term ( 1

θit
− 1

θit−1
) will be close to zero) is simultaneously reduced

Appendix D: Temporary Equilibrium
As data on capacity utilization are usually not available, this Appendix

shows that similar results to those presented in Table 3 can be obtained using
other proxies, namely the individual firm productivity and the “sample”
growth rates of production. Let’s start considering the first of these two
variables.
After computing the worker productivity, prod, measured as output per

employee, I determine the maximum value,maxprod, and the minimum value,

27



minprod, of this variable for each firm across all the years surveyed and, then,
the following rule is applied to infer the possible capacity utilization:
CapUtil2it = (100− 50 ∗ (maxprod− prodit)/(maxprod−minprod))
The variable CapUtil2 takes values between 50 (in the year of the lowest

worker productivity) and 100 (in the year of highest productivity). Then
using this variable, I determine two distinct capital coefficients as in specifi-
cation (S7) of Section 3.2:
q̃it = α1l̃it + α2m̃it + αh3D1c̃it + αl3D2c̃it + ũ

p
it (S7b)

where D1 is a dummy that takes value 1 if the variable CapUtil2 is greater
than 80% in both year t and t+1 while D2 takes value 1 if this condition is
not satisfied. Column 1 of Table D1 reports the results obtained using this
approach.
The second variable used as a proxy for capacity utilization is the “sam-

ple” growth of production. Once computed the average growth in each year
of the survey, I consider the 4 years where the growth rate records a greater
increase (or a smaller decrease) compared to the previous year and we esti-
mate the capital coefficient for these 4 years separately from the other years.
This means that the dummy D1 in equation (S7b) takes value one for all the
observations in these 4 years (namely, 1991, 1994, 1997 and 1998) and D2

takes value 1 for the observations in the remaining years. Results reported
in column 2 show that even under this simple classification, rather different
point estimate of the elasticity of output with respect to capital are obtained.

Estimation method: GMM estimates
Dep.Vbls Q Q

1a 2a

Labour 0.313*** (0.075) 0.274*** (0.073)
Materials 0.623*** (0.045) 0.613*** (0.046)
D1 ∗ Capital 0.155* (0.085) 0.095** (0.038)
D2 ∗ Capital -0.021 (0.029) -0.048 (0.035)
Ind. Dum. Inc. Inc.
Time Dum. Inc. Inc.
Period 1990-99 1990-97
N. Obs 11,581 11,581
Sargan T. (df) 56.83 (54) 54.8 (54)
m1 -9.46 -9.34
m2 -0.09 -0.21
* significant at 10% level; ** significant at 5%; *** significant at 1%.
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aIV ṡ: number of workers and physical capital lagged levels from t− 2 to
t−4; materials lagged levels from t−2 to t−3; (exogenous variables) growth
of capital.
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TABLES

Table 1. Production Fuction Estimates
Estimation method: GMM estimates
Dep.Vbls Q Y Y V A deV A
Model (S1)a (S2)a (S3)a (S1)b (S2)b

Labour 0.362*** 0.296*** 0.296*** 0.775*** 0.621***
(0.063) (0.062) (0.062) (0.125) (0.137)

Materials 0.541*** 0.570*** 0563*** - -
(0.049) (0.051) (0.051)

Capital -0.077 -0.110** -0.117** -0.177 -0.293**
(0.056) (0.054) (0.055) (0.112) (0.122)

R&D 0.112** 0.192*** 0.190*** 0.268*** 0.441***
(0.055) (0.050) (0.050) (0.104) (0.108)

Cap.Util 0.286*** 0.238*** 0.257*** 0.536*** 0.688***
(0.089) (0.088) (0.089) (0.178) (0.206)

Ind.Output - - 0.232*** - -
(0.040)

Ind. Dum. Inc. Inc. Inc. Inc. Inc.
Time Dum. Inc. Inc. Inc. Inc. Inc.
Period 1990-99 1990-99 1990-99 1990-97 1990-97
N. Obs 11,476 11,476 11,476 8,687 8,687
Sargan T. 90.48 88.86 94.70 57.44 59.28
(df) (82) (82) (82) (66) (66)
m1 -10.45 -10.56 -10.55 -10.45 -10.83
m2 0.01 -0.66 -0.56 -1.09 -1.64
Heteroskedasticity robust standard errors shown in parentheses.
* significant at 10% level; ** significatn at 5%; *** significant at 1%.
aIV ṡ: number of workers, physical capital and capacity utilisation lagged

levels from t − 2 to t − 4; materials lagged levels from t − 2 to t − 3 and
R&D capital lagged levels in t − 2; (exogenous variables) growth of capital
and growth in industry output (for specification in column 3).

bIV ṡ: number of workers and capacity utilisation lagged levels from t− 2
to t−4; physical capital from t to t−4 (as it is considered exgoneous); R&D
capital lagged levels from t− 2 to t− 3;
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Table 2. Mark-up Estimates
Estimation method: GMM estimates
Dep.Vbls Q Y Y
Model (S4)a (S5)a (S6)a

Labour 1.095*** 0.929*** 0.926***
(0.113) (0.118) (0.118)

Materials 1.082*** 1.104*** 1.104***
(0.061) (0.056) (0.056)

Capital -0.072 -0.105** -0.106**
(0.048) (0.047) (0.048)

R&D 0.070** 0.143*** 0.143***
(0.035) (0.033) (0.034)

Cap.Util 0.028** 0.039*** 0.039***
(0.012) (0.012) (0.012)

Ind.Output - - 0.165***
(0.036)

Ind. Dum. Inc. Inc. Inc.
Time Dum. Inc. Inc. Inc.
Period 1990-99 1990-99 1990-99
N. Obs 9,969 9,969 9,969
Sargan T. 82.64 78.56 81.65
(df) (78) (78) (78)
m1 -12.71 -13.64 -13.59
m2 -1.08 -2.41 -2.26
* significant at 10% level; ** significatn at 5%; *** significant at 1%.
aIV ṡ: number of workers from t − 2 to t − 5; physical capital from t to

t − 3 (as it is considered exgoneous); materials lagged levels from t − 2 to
t − 3 and R&D capital lagged levels from t− 2; (exogenous) growth rate of
capacity utilisation.
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Table 3. Temporary Equilibrium 1
Estimation method: GMM estimates
Dep.Vbls Q VA
Model (S7)a (S7)b

Labour 0.374*** 0.767***
(0.064) (0.127)

Materials 0.516*** -
(0.049)

D1 ∗ Capital 0.181** 0.284*
(0.091) (0.162)

D2 ∗ Capital -0.078 -0.044
(0.059) (0.073)

Cap.Util 0.326*** 0.622***
(0.095) (0.201)

R&D 0.122** 0.251**
(0.056) (0.106)

Ind. Dum. Inc. Inc.
Time Dum. Inc. Inc.
Period 1990-99 1990-97
N. Obs 11,476 8,687
Sargan T. 83.18 53.12
(df) (81) (65)
m1 -10.26 -10.41
m2 0.01 -1.01
* significant at 10% level; ** significatn at 5%; *** significant at 1%.
aIV ṡ: number of workers, physical capital and capacity utilisation lagged

levels from t− 2 to t− 4; materials lagged levels from t−2 to t− 3 and R&D
capital lagged levels in t− 2; (exogenous variables) growth of capital.

bIV ṡ: number of workers and capacity utilisation lagged levels from t− 2
to t−4; physical capital from t to t−4 (as it is considered exgoneous); R&D
capital lagged levels from t− 2 to t− 3;
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Table 4. Temporary Equilibrium 2
Estimation method: GMM estimates
Dep.Vbls Q VA
Model (S8)a (S8)b

Const. 0.00 0.024
(0.011) (0.027)

Labour 0.347*** 0.794***
(0.069) (0.150)

Materials 0.533*** -
(0.059)

Capital 0.076*** 0.123***
(0.025) (0.041)

R&D 0.134** 0.296**
(0.058) (0.155)

Ind. Dum. Inc. Inc.
Time Dum. Inc. Inc.
Period 1990-99 1990-97
N. Obs 11,476 8,687
Sargan T. 82.97 35.71
(df) (67) (39)
m1 -8.69 -10.25
m2 -1.24 -1.74
* significant at 10% level; ** significatn at 5%; *** significant at 1%.
aIV ṡ: number of workers lagged levels from t − 2 to t − 5; capacity

utilisation from t− 2 to t− 4 and materials from t− 2 to t− 3; R&D capital
lagged levels in t−2; growth of “short-run” capital, C*, is used as instrument
for stock of capital.

bIV ṡ: number of workers and capacity utilisation lagged levels from t− 2
to t− 4; R&D capital lagged levels from t− 2 to t− 3; growth of “short-run”
capital, C*, is used as instrument for stock of capital.
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