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1 Introduction

This paper derives and estimates optimal monetary policy rules in a setup where certainty

equivalence does not hold. In particular, our approach combines two different strands of the

literature on monetary policy rules that depart from the standard linear-quadratic framework

because either (i) central bank preferences are not quadratic, or (ii) the aggregate supply

relation is nonlinear.

As it is well known [see, for example, Svensson (1997) and Clarida et al. (1999, 2000)],

the combination of a quadratic loss function and a linear aggregate supply constraint leads

to a linear reaction function (or Taylor rule) by the central bank. The optimal policy rule

implies that the nominal short-term interest rate under the central bank’s control is a linear

function of the inflation and output gap deviations from their respective targets. Depending

on the backward or forward nature of wage and price setting, and on assumptions regarding

the information available to the central bank, both variables appear in the rule either in

current terms or as expectations of their future values. Because they provide a reasonably

good description of policy, linear rules have become a key element of diagnosis in the toolkit

of monetary-policy analysts.

Recently, there have been a number of studies that seek to extend this traditional setup.

The generalizations fall in two groups. First, Nobay and Peel (1998), Cukierman (1999),

Gerlach (1999), and Ruge-Murcia (2001, 2002) relax the assumption of a quadratic central

bank loss function and adopt instead asymmetric preference specifications. Their functional

forms allow different weights for positive and negative inflation and/or output deviations

from their target. Asymmetric preferences modify some of the results previously derived in

the linear-quadratic framework.

For example, Cukierman (1999) shows that when the central bank is more concerned

about under- than over-employment and there is uncertainty regarding future realizations

of inflation and unemployment, an inflation bias can arise even if the unemployment target

is the natural rate. Cukierman’s proposition is examined empirically by Ruge-Murcia using

cross-section data from OECD countries [Ruge-Murcia (2001)] and time series data from G-

7 countries [Ruge-Murcia (2002)] with encouraging results. Since the assumption that the

central bank aims at a lower unemployment rate than the natural rate has been challenged

on theoretical and institutional grounds [see Blinder (1998) and McCallum (1995, 1997)],

this avenue of research seems promising.

Second, Schaling (2000) and Dolado et al. (2001) study models where the aggregate

supply curve is not linear, but convex. In particular, the difference between realized and

expected inflation is a convex function of the output gap. The underlying idea behind

[1]



this specification goes back to the traditional Keynesian assumption that nominal wages are

flexible upwards but rigid downwards, implying that inflation is a decreasing and convex

function of the unemployment rate. This implies that an increase in unemployment will

drive inflation down by much less when unemployment is high than when it is low [see Layard

et al. (1991), Clark and Laxton (2000), and Álvarez-Lois (2001)]. If unemployment and

the output gap are related through Okun’s law, then a convex relationship between inflation

and the output gap is a natural generalization of the linear aggregate supply. Combined

with a quadratic loss function, the optimally-derived Taylor rule has nonlinear features: it

implies that the central bank will increase interest rates by a larger amount when inflation

is above target than it will reduce them when inflation is below target.

In line with the above discussion, the goal of this paper is to construct and estimate a

more general model that combines both asymmetric central bank preferences and a non-linear

Phillips curve. This is important for several reasons. First, it allows the joint analysis of

two departures from the linear-quadratic setup that until now have been studied separately

in the literature. Second, it permits us to trace back nonlinearities and asymmetries in the

nominal interest rate to either central bank preferences, nonlinearities in the supply curve,

or both. Finally, parameter estimates will indicate the relative importance of these two

elements in monetary policy making.

In order to make the analysis tractable, we make a number of simplifying assumptions.

These assumptions allow us to obtain an econometric specification of a Taylor rule where

departures from the usual linear-quadratic model can be identified. First, we take as starting

point the case of inflation targeting with no output-stabilization term appearing in the central

bank’s loss function. The reason for choosing this restricted specification is that it yields

a closed-form solution for the optimal policy rule, that is not possible to obtain when the

additional output goal is also considered. However, Svensson (1997) points out that allowing

for the latter term does not change the form of the policy function, although it reduces the

interest-rate response by the central bank to inflation and the output gap. Since our main

interest is in identifying departures from the standard reaction function and not in the size

of the coefficients themselves, we believe that the adopted assumption is not too restrictive

for the purpose at hand.

Second, we adopt a backward-looking specification of the IS and AS schedules in the

theoretical part [as Svensson (1997)], rather than a forward-looking specification as the one

proposed by Clarida et al. (1997, 1999, 2000). Again, the reason for adopting this formu-

lation of the aggregate baseline model is analytical tractability. The basic advantage of a

forward-looking specification is that it does not require the assumption that the central bank

is “over-ambitious” with respect to output in order to generate benefits from commitment
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[see Clarida et al. (1999)]. Since we do not tackle that issue directly in this paper, we

believe that the adopted specification is not too restrictive in this regard.

The contributions of this paper are twofold. From an analytical viewpoint, we construct

a model of inflation targeting where the central bank’s preferences are asymmetric and the

aggregate supply curve is nonlinear. Preferences are asymmetric in the sense that positive

deviations from the inflation target can be weighted more (or less) severely than negative

deviations in the central bank’s loss function. The aggregate supply curve is an increasing

and convex function of the output gap. In this manner, we are able to derive a Taylor rule

in a nonlinear framework that generalizes the usual specification in the literature where the

objective function is quadratic and constraints are linear.

From an empirical viewpoint, we confront the new Taylor rule with data on short-term

interest rate interventions by the US Federal Reserve. Reduced-form estimates indicate

that US monetary policy can be characterized by a nonlinear rule after 1983, but not before

1979. Although we do not find evidence in favor of a convex aggregate supply curve, we do

find evidence consistent with asymmetric inflation preferences on the part of the US Federal

Reserve after 1983. This suggests that the Fed’s inflation preferences during the Volcker-

Greenspan regime differ considerably from the ones during the Burns-Miller regime. When

we compare our results with those of Clarida et al. (2000) using a linear Taylor rule for the

post-1982 period, we do not find evidence that the response of the short—term interest rate to

inflation was larger than unity once asymmetric preferences are allowed for. The reason for

this result is that under asymmetric preferences, the targeted interest rate depends on the

conditional variance of inflation, that in turn depends nonlinearly on lagged inflation. The

response of the interest rate to inflation depends on a linear part and a nonlinear part such

that the overall response is most likely stabilizing, as suggested by Clarida et al. However,

the interpretation of how stabilization was achieved in the Volcker-Greenspan era is different

in both models.

The rest of the paper is structured as follows. Section 2 derives the form of the nonlinear

policy rule under the general case of asymmetric preferences and a convex aggregate supply

curve, and compares it to several relevant subcases. Section 3 estimates the nonlinear rule

for the US, distinguishing between the two relevant subperiods and using a wide array of

alternative specification to check the robustness of the results. Finally, Section 4 concludes.

An Appendix contains a detailed derivation of the nonlinear monetary policy rule.
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2 A Simple Model

In order to fix ideas, it is helpful to consider a simple model of optimal monetary policy. The

model follows closely the one proposed by Svensson (1997), but generalizes the specification

of the central bank preferences and aggregate supply curve in a manner to be made precise

below. Although Section 3 reports estimates of the policy rule obtained using this model,

it also shows that the main finding of this paper is robust to the precise form of the rule (for

example, whether forward or backward looking).

Assume that monetary policy is conducted by a central bank that chooses the sequence

of short-term interest rates that minimizes the present discounted value of its loss function.

The loss function depends on the distance between realized inflation and its socially optimal

rate. Formally, the central bank’s problem is

Min Et
∞P
s=0

βsL(πt+s − π∗),

{it+s}∞s=0
(1)

where it is the nominal interest rate, 0 < β < 1 is the discount rate, πt is the inflation rate,

π∗ is socially-optimal inflation rate, and the loss function L(·) takes the form:

L(πt − π∗) =
exp(γ(πt − π∗))− γ(πt − π∗)− 1))

γ2
.

This loss function corresponds to the linex function, originally proposed by Varian (1974).

This function has several important properties. First, it permits different weights for posi-

tive and negative inflation deviations from π∗. Consider the case where γ > 0. For inflation

rates below π∗, the linear term becomes progressively more important as inflation decreases

and, consequently, the loss rises linearly. For inflation rates above π∗, it is the exponential

term that eventually dominates and the loss associated with a positive deviation rises expo-

nentially. Hence, positive deviations from π∗ are weighted more severely than negative ones

in the central banker’s loss function. Second, it predicts that both the size and sign of a

deviation affect the central banker’s loss. In contrast, under quadratic preferences, the loss

is completely determined by the size of the deviation. Third, it relaxes certainty equivalence

and allows a prudence motive on the part of the central banker. Then, moments of higher

order than the mean might play a role in the formulation of monetary policy. For this

loss function, the coefficient of relative prudence [see Kimball (1990)] is γ(πt − π∗), that is

directly proportional to the inflation deviation from its target and increasing in γ. Finally,

it nests the quadratic function commonly used in previous literature as a special case when
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the preference parameter γ tends to zero.1 This result is important because it suggests that

the hypothesis that the central banker’s preferences are quadratic over inflation could be

evaluated by testing whether γ is statistically different from zero.

The central bank takes as given the behavior of the private sector, that is summarized

by:

yt+1 = δyt − rt + ηxt, (2)

πt+1 = πt + f(yt) + ut+1, (3)

where

f(yt) = αyt/(1− αφyt), (4)

xt+1 = ψxt + et+1, (5)

it = rt + Etπt+1, (6)

yt is the output gap, rt is the real interest rate, xt is an exogenous variable that follows

the AR(1) process in (5), ut and et are normally and independently distributed shocks with

zero mean and variances σ2u and σ2e , respectively, and the remaining parameters satisfy 0 <

ψ, δ < 1, α > 0, and φ ≥ 0. Note that although we assume constant unconditional variances
for ut and et, we allow the possibility that these shocks are conditionally heteroskedastic.

Equation (2) is an IS relationship where the output gap depends on the lagged output gap,

the real interest rate, and the exogenous variable, xt. Equation (3) is a backward-looking AS

relationship where inflation depends on lagged inflation and output gap, the latter appearing

in a (possibly) non-linear way. The nonlinearity of the AS curve is represented using the

functional form (4). This form is more tractable than other specifications used in the

literature [see, for example, Nobay and Peel (2000)] and includes the cases of a linear AS

curve when φ = 0 and a convex one when φ > 0. Finally, equation (6) is the Fisher relation.

Although this model is a highly stylized description of the economy, it is representative of

the type of models used by the literature on monetary policy rules.

Since the interest rate affects inflation with a two-period lag, without any effects in t and

t + 1, the central bank can find the optimal interest rate at time t as the solution to the

simpler period-by-period problem [see Svensson (1997)]:

Min Et β
2L(πt+2 − π∗).

{it} (7)

1Formally,

Lim
γ → 0

exp(γx)− γx− 1
γ2

=
Lim
γ → 0

x exp(γx)− x
2γ

=
Lim
γ → 0

x2 exp(γx)

2
=
x2

2
.
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The Appendix shows that the first-order conditions for minimizing (7) subject to the con-

straints (2) and (3), yields the following Taylor rule for the nominal interest rate:

it = πt + f(yt) + δyt +
(1/α)(πt − π∗ + γσ2π,t/2 + f(yt))

1− φ(πt − π∗ + γσ2π,t/2 + f(yt))
+ ηxt, (8)

where σ2π,t = σ2u,t denotes the conditional variance of the inflation rate.

A key assumption of the model is that the central bank’s loss function excludes an output

stabilization term. The reason for this exclusion is analytical tractability. The Appendix

shows that when an output term is allowed for in the loss function, it is not possible to

obtain a closed-form solution for the central bank’s problem and, consequently, the Taylor

rule cannot be characterized analytically. Svensson (1997) shows that allowing an output

stabilization term in a linear model does not change the form of the policy function compared

with the case of pure inflation targeting, but the response of the interest rate target to

inflation and output gaps is more gradual.

The Taylor rule (8) is general in that it nests the cases where the central bank’s preferences

are quadratic (γ → 0), the AS schedule is linear (φ = 0), or both. The latter case corresponds

to the linear monetary policy rules examined by previous literature. In order to gain intuition

regarding this policy rule, the following sections examine three special cases contained in (8).

2.1 Case I: Linear Aggregate Supply Schedule (φ = 0)

When φ = 0, the function f(·) becomes f(yt) = αyt and the AS curve is linear. In this case

the only nonstandard feature of the model is the asymmetry in central bank preferences, and

the nonlinear Taylor rule simplifies to

it = πt + (1+ α+ δ)yt + (1/α)(πt − π∗ + γσ2π,t/2) + ηxt. (9)

Under asymmetric preferences, the conditional variance of inflation, σ2π,t (along with the

inflation rate and the output gap) is one of the main determinants of the interest rate target.

Up to the extent that σ2π,t depends on lagged inflation and output (for example, as in ARCH-

type models), the Taylor rule is nonlinear on lagged inflation and output.

Consider the situation where γ > 0, meaning that the central bank weights more severely

positive than negative inflation deviations from its optimal rate. Since α > 0, an increase

in inflation volatility (as measured by σ2π,t), leads to an increase in the nominal interest rate,

even if the level of inflation and the output gap remain unchanged. The increase is directly

proportional to γ because the central bank’s prudence increases with γ.2 The increase is

2A comparable result can be found in the literature on precautionary savings. When the assumption of
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inversely proportional to α for the following reason: when α is large, the central bank needs

to increase the nominal and real interest rates by less because a given decrease in the output

gap leads to a proportionally larger decrease in inflation when the AS curve is steep.

2.2 Case II: Quadratic Loss Function (γ → 0)

When γ → 0, the central bank preferences become quadratic on inflation and there is no

longer a prudence motive in the implementation of monetary policy. However, if φ > 0, the

AS curve is convex and the Taylor rule takes the nonlinear form

it = πt + f(yt) + δyt +
(1/α)(πt − π∗ + f(yt))
1− φ(πt − π∗ + f(yt))

+ ηxt. (10)

In this case yt, will not appear in a linear way but through the f(·) transformation. As a

result of the second-to-last term in (10), the nominal interest rate will depend nonlinearly on

inflation and the output gap, but this nonlinearity is conceptually and functionally different

from the one in Case I above. It is shown below that when the AS curve is convex, interest

rate changes in response to inflation/output deviations from their target are subject to sign

and size asymmetries.

2.3 Case III: Linear Rule

The case where both γ → 0 and φ = 0 corresponds to the usual model with quadratic

preferences and linear constraints. In this case, the optimal reaction function is linear in

inflation and output:

it = πt + (1+ α+ δ)yt + (1/α)(πt − π∗) + ηxt. (11)

We will see below, in this case changes in the short-term nominal interest rate are symmet-

ric, proportional, and history-independent. Put differently, for linear models, the impulse-

response associated with a shock of size 1 (standard deviation) would be the mirror image

of the response to a shock of size −1, one-half the response of shock size 2, and independent
of the moment the shock is assumed to take place [see Gallant, Rossi, and Tauchen (1993)

and Koop, Pesaran, and Potter (1996)].

quadratic utility is relaxed and labor-income risk in nondiversifiable, then uncertainty increases the expected
marginal utility of future consumption. To satisfy the Euler condition, prudent households decrease current
consumption compared to future consumption and increase their savings.
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2.4 Implications

As we have seen above, the combination of asymmetric central bank preferences and a

nonlinear AS curve has nontrivial implications for the interest-rate response to inflation and

output gap deviations from their desired values. This section explores in more detail some

of these implications and the interaction between the two main features of the model.

When the AS curve is linear, a marginal change in the current inflation rate leads the

central bank to change the nominal interest rate by ∂it/∂πt = 1 + 1/α. In this case, the

change in it is independent of the current output gap and inflation rate and is symmet-

ric, meaning that if inflation increases (decreases) by 1 percent, the nominal interest rate

increases (decreases) by 1+ 1/α percent.

In contrast, under the general Taylor rule (8) (where the AS curve is nonlinear), the

change in it is ∂it/∂πt = 1 + (1/α)(1 − φ(πt − π∗ + γσ2π,t/2 + f(yt))
−2. The nonlinear

interest rate rule gives rise to sign and size asymmetries. The sign asymmetry refers to

the fact that under the nonlinear Taylor rule, the response to an increase in inflation is

larger than the response to a decrease, even if both are of the same magnitude. As an

illustration, assume that inflation is exactly the optimal rate, the output gap is zero, and

α = 2, δ = 0.1,φ = 0.2 and γσ2π,t/2 = 0.4. Then, ∆πt = +1 induces ∆it = +1.76 but

∆πt = −1 induces ∆it = −1.48.
The size asymmetry refers to the fact that the interest rate response does not change

linearly with the change in the inflation rate. For example, taking the same parameter

values above, ∆πt = +1 induces ∆it = +1.76 but ∆πt = +2 induces ∆it = +4.09. Although

∆πt = +2 is twice ∆πt = +1, the interest rate response +4.09 is more than twice +1.76. On

the other hand, while ∆πt = −1 induces ∆it = −1.48, ∆πt = −2 induces ∆it = −2.82, that
is less than twice −1.48. The sign and size asymmetries that arise when the AS curve is
convex follow directly from the fact that the interest rate response with respect to inflation

(∂it/∂πt) is convex on the rate of inflation.

Note that when γ = 0 and, consequently, γσ2π,t/2 = 0, the corresponding interest rate

responses to ∆πt = +1 and −1 under the nonlinear Taylor rule would be ∆it = +1.63 and
−1.42, respectively, whereas for ∆πt = ±2 they would be ∆it = +3.67 and −2.71. Hence,
asymmetric preferences appear to reduce the size of both the sign and size asymmetries.

The reason is that the interest rate response to inflation is less convex on inflation as γσ2π,t/2

decreases.

Similar results regarding sign and size asymmetries arise when considering the interest

rate response to a change in the output gap. When the AS curve is linear, ∂it /∂yt = 1+α+δ,

but under the nonlinear Taylor rule, ∂it/∂yt = δ+f 0(yt)(1+(1−φ(πt−π∗+γσ2π,t/2+f(yt))
−2)
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where f
0
(yt) = ∂f(yt)/∂yt = α(1 − αφyt)

−2. The interest rate depends nonlinearly on the

current output gap giving rise to asymmetric responses on the part of the central bank. For

the parameter values above, the interest rate response to ∆yt = ±0.1 is ∆it = 0.35 and

−0.31. The response to ∆yt = ±0.2 is 0.74 and −0.59. Hence, as before, the response

depends on the sign of the output gap deviation from its target and is nonlinearly related to

the size of the deviation.

In summary, a convex AS curve leads an optimizing central bank to respond asymmet-

rically, in both sign and size, to changes in the output gap and inflation rate. Asymmetric

preferences leads to prudent behavior whereby the central bank responds to the conditional

variance of inflation. When the conditional variance of inflation is well approximated by an

ARCH-type process, the central bank responds nonlinearly to lagged inflation and output.

When both features are present, asymmetric preferences appear to reduce the sign and size

asymmetries that arise due to the nonlinearity of the supply curve. Since asymmetric pref-

erences and a nonlinear AS schedule lead to different types of nonlinearity in the interest rate

response by the central bank, it might be possible to assess empirically relative importance

of these two elements in monetary policy making.

3 Empirical Evidence

3.1 The Data

The nonlinear Taylor rule is estimated using US data on inflation, the output gap, and the

federal funds rate. Previous literature employs both monthly and quarterly data frequencies

to estimate monetary policy rules. We report results using both data frequencies and show

that the main result of the paper is robust to whether one uses monthly or quarterly data

in estimation. At the monthly frequency, inflation is measured by the annual percentage

change in the Consumer Price Index (CPI). Output is measured by the seasonally-adjusted

Industrial Production Index (IPI). The natural output level is the Hodrick-Prescott (HP)

trend of the logged IPI. The output gap is then computed as the difference between the

logged IPI and its HP trend. We also consider a second measure of the output gap con-

structed as minus the difference between the seasonally-adjusted unemployment rate and

its HP trend. The sample period is 1970:01 to 2000:12, but we focus on the subsamples

1970:01 to 1979:06 and 1983:01 to 2000:12. The first subsample corresponds (roughly) to

the chairmanships of Arthur Burns and William Miller. The second subsample corresponds

to the chairmanships of Paul Volcker and Alan Greenspan, but excludes the period when

the Federal Reserve targeted nonborrowed reserves, rather than short-term interest rates.
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At the quarterly frequency, inflation is measured by the annualized quarterly percentage

change in the Implicit GDP Deflator. Two measures of the output gap are constructed as

explained above, except that the quarterly observation of the IPI and unemployment rate

is the arithmetic average of the three observations in each quarter. Since at the quarterly

frequency the number of observations in the first subsample 1970:I to 1979:II is too small

to yield reliable results, we follow Clarida et al. (2000) in starting the quarterly sample in

1960:I.

In the econometric analysis below, we assume that the model variables are stationary in

levels. Although unit-root test results do not always support this assumption for all variables

and frequencies, it is well known that unit-root tests have low power and are biased in favor

of the null when there are changes in regime as the ones documented by this paper.

3.2 Preliminary Analysis

The estimation of the non-linear Taylor-rule is carried out using a two-step procedure. First,

the conditional variance of inflation is estimated from the aggregate supply relation. Then,

σ2π,t is replaced in the Taylor rule and the rule is estimated by Generalized Method of Mo-

ments (GMM). However, some issues need to be addressed prior to estimation. First, the

precise form of the non-linear Taylor rule depends on whether the aggregate supply relation

is linear or not. Recall that the AS curve is linear when φ = 0 and convex when φ > 0.

Hence, it is important to test whether φ is statistically different from zero in our data set.

Second, the prediction that the conditional variance of inflation is a component of the policy

rule can be examined in a time series setup only if inflation is conditionally heteroskedastic.

That is, if σ2π,t varies over time. Otherwise, if σ2π,t is constant, its coefficient might not be

identified. Hence, one must also test whether the conditional variance of inflation is indeed

time-varying.

In order to address these two issues, we estimate the aggregate supply relation (3) by

nonlinear least squares under the assumption that the disturbance term ut is conditionally

homoskedastic. We then test the null hypothesis φ = 0 using a t-test, and the null hypothesis

of no conditional heteroskedasticity using a LM test for neglected ARCH. The LM statistics

were calculated as the product of the number of observations and the uncentered R2 of

the OLS regression of the squared unemployment residual on a constant and six of its lags.

Under the null hypothesis of no conditional heteroskedasticity, the statistic is distributed chi-

square with as many degrees of freedom as the number of lagged squared residuals included

in the regression.

Results in Panels A and B of Table 1, support the notion of an upward sloping AS curve
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(as predicted by the theory), but results using quarterly data are somewhat weaker than the

ones using monthly data. This result might be explained by the fact that the econometrician

has more data points to estimate α when using monthly than quarterly data. In all cases the

hypothesis φ = 0 cannot be rejected at standard levels. Hence, for these sample periods and

data frequencies, it would appear that the US aggregate supply curve is well approximated

by a linear relation. Results of the LM tests for neglected ARCH are reported in the first

row of Table 2. Note that the hypothesis of no conditional heteroskedasticity is rejected for

both frequencies and output gap measures.

In light of these results, we estimate a linear (in mean) AS curve with conditionally

heteroskedastic errors. The parameter φ is constrained to be zero and the conditional

variance of inflation is parameterized using a GARCH(1,1) model. These results are reported

in Panel C of Table 1. The terms ψ0, ψ1, and ψ2 denote the constant, the coefficient of the

lagged square residual, and the coefficient of the lagged conditional variance, respectively.

Note that in all cases their estimates are significant and suggest a persistent process for σ2π,t.

Since the conditional variance is estimated using inflation and output data, σ2π,t is a

generated regressor for the second step of the estimation procedure. The implications of

generated regressors in estimation and inference have been examined by Pagan (1984) and

Pagan and Ullah (1988). Generated regressors can be problematic because they measure

with noise the true, but unobserved, regressor. In the case of models where a conditional

variance is one of the explanatory variables, estimates can be biased and inconsistent if the

ARCH-type model employed is misspecified. Pagan and Ullah (p. 99) suggest specification

tests to assess whether the chosen ARCH model is valid. A standard misspecification test

for ARCH models is the same LM test for neglected ARCH described above, but applied

to the standardized residuals. If the ARCH model is correctly specified, then the residuals

corrected for heteroskedasticity and squared should be serially uncorrelated. The second

row in Table 2 reports these LM statistics. Since all statistics are below the 5 percent critical

value of the appropriate distribution, the null hypothesis of no autocorrelation cannot be

rejected. Hence, it would appear that the parsimonious GARCH(1,1) model employed here

adequately captures the conditional heteroskedasticity present in the US inflation data.

3.3 Estimation

As is customary in the empirical literature on monetary policy rules, the observed smoothing

of interest rates is captured by a partial adjustment model whereby lagged values of the

interest rate are also included as explanatory variables. The optimally determined interest

rate is interpreted as the desired rate towards which the current interest rate sluggishly
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adjusts. That is,

it = ρ(L)it−1 + (1− ρ)i∗t + ξt, (12)

where ρ(L) = ρ1 + ρ2L + · · · + ρn+1L
n, ρ ≡ ρ(1), and i∗t is given by the right hand side of

equation (9). Substituting (9) into (12), the estimated model is

it = a+ ρ(L)it−1 + (1− ρ)(byt + cπt + dσ
2
π,t + ηxt) + ξt, (13)

where a is an intercept term, b = 1+ 1/α, c = 1+ α+ δ, and d = γ/2α.

If the current values of inflation and the output gap are taken to be unknown by the

central bank when setting interest rates, then equation (13) can be estimated by Instrumental

Variables (IV), using lagged values of the variables as instruments. As an additional check on

the robustness of the results, we also estimate two forward-looking versions of (13) where the

current values of πt(yt) are replaced by expectations of future variables k(q) periods ahead,

Etπt+k and Etyt+q, and a backward-looking version where they are replaced by πt−1(yt−1).

The partial adjustment models were estimated byGeneralized Method of Moments (GMM).3

Denoting by zt a vector of m instruments, GMM exploits the set of orthogonality conditions

E(ξt|zt) = 0 to estimate the relevant parameters. The validity of the (m− p) overidentifica-
tion restrictions can be assessed through the J test that is asymptotically distributed as a

chi-square with (m− p) degrees of freedom.
The estimated nonlinear rules are reported in Tables 3 and 4, for the periods 1970:01

to 1979:06 and 1983:01 to 2000:12, respectively. The basic difference between both set of

results is that the coefficient on the conditional variance of inflation (d) is not statistically

significant in the first subsample, but it is always positive and significant in the second one.

This result is robust to both forward and backward-looking specifications of the Taylor rule

[see columns (3) to (5)]. Notice that in most cases for the second subsample, the rate of

inflation is no longer statistically significant once one introduces the conditional variance as

a regressor.4 In all cases, the overidentification restrictions of the model are not rejected by

the data at standard significant levels.

These findings suggest the following. First, monetary policy in the United States could

be well approximated by a linear Taylor rule prior to 1979. Second, the Fed’s inflation

preferences could be described as symmetric with respect to inflation in the period prior

1979. More precisely, the hypothesis that preferences are quadratic (γ = 0) would not

3In the case of forward-looking rules, we replace expectations of future variables by their realized values.
Then, by construction, the error term in the estimable form will be aMA(h) process with h =max{k, q}−1
implying that an optimal weighting matrix that allows for serial correlation ought to be used.

4Note that the conditional variance employed here is the one estimated using the full sample. However,
using estimates of σ2π,t for each subperiod yields qualitatively the same results as those reported.
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be rejected by the data against the alternative of asymmetric preferences (γ 6= 0). Third,

after 1983, a nonlinear Taylor rule seems to provide a more accurate characterization of US

monetary policy than a linear rule. In particular, the Federal Funds rate appears to react

more strongly to the volatility than to the level of inflation after 1983. Fourth, since the

coefficient on the conditional variance of inflation is positive and statistically significant after

1983, this suggest that the Fed’s inflation preferences during the Volcker-Greenspan might

be asymmetric. In particular, positive deviations of inflation from its target appear to be

weighted more severely than negative ones, even if they are of the same magnitude.

3.4 Comparison with Clarida, Gali, and Gertler (2000)

The results above parallel somewhat the evidence in Clarida et al. (2000), where it is

reported that the coefficient on inflation in a forward-looking version of the Taylor rule is

substantially different in the pre-Volcker and Volcker-Greenspan eras. In order to make this

comparison more direct, consider results in Tables 5 and 6 that report the estimated rules

using quarterly data for the periods 1960:I to 1979:II and 1983:I to 2000:IV. As before, the

second sample excludes the period when the Federal Reserve targeted nonborrowed reserves,

rather than short-term interest rates. However, starting the second subsample in 1979:III

yields the same results as reported here.5

Column (1) in both tables illustrates Clarida et al.’s main result, namely that the reaction

with respect to inflation (c), is smaller than unity prior to 1979 but larger than unity during

the tenure of chairmen Volcker and Greenspan. This result is robust to the measure of the

output gap. However, note in Table 5 that this result does not hold completely once we

allow for asymmetric inflation preferences on the part of the central bank. Although results

are sensitive to the form of the rule, there are specifications for which the point estimate of

c is larger than one prior to 1979, though one would not be able to reject the null hypothesis

that the true value is less than one. For example, column (3) in Table 5 correspond to the

baseline model reported by Clarida et al. (p. 157) but includes the conditional variance

of inflation as one of the regressors. The point estimates of the inflation coefficient are

1.14(0.12) and 1.04(0.12) depending on the output gap measure employed. Also, notice

that in certain cases, the coefficient on σ2π is negative and statistically different from zero.

The intuition for this result is explained below.

Regarding the post-1982 data, Table 6 shows that the inflation response is considerably

smaller when we allow asymmetric preferences. For some specifications, ĉ is smaller than

5Results when the second subsample is 1979:III to 2000:IV are available from the corresponding author
upon request.
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one, though one would not be able to reject the null hypothesis that the true value is larger

than one. The reason for this result is straightforward: since the conditional variance of

inflation depends on lagged squared inflation, the inflation response consists of a linear part,

with coefficient c, and a nonlinear part, with coefficient d. The overall response with respect

to inflation is most likely stabilizing, as suggested by Clarida et al. The contribution of

Table 6 is to show that the nonlinear reaction to the conditional variance of inflation is a

quantitative and, in most cases, statistically important component of Fed’s reaction function

after 1982.

3.5 What Drives the Results?

In order to understand the empirical results reported in this paper, it is instructive to consider

the relation between the real interest rate and the conditional variance of inflation in both

subsamples. Although the policy rule is defined in terms of the nominal interest rate, one

can think of the central bank as implicitly targeting a measure of the real interest rate, that

in turn affects output through the IS curve. Figures 1 and 2 plot the relation between

the two variables at the quarterly frequency, and the fitted values of an OLS regression of

the real rate on σ2π. The estimated parameters of these regressions are reported in columns

(3) and (4) in Table 7. (Results using monthly data are reported in columns (1) and

(2).) Notice that in the first subsample, the real rate is negatively but mildly related to

the conditional variance. The coefficient is statistically different from zero, but given the

large variability of inflation during this period, the real interest rate response is considerably

muted. In contrast, in the second subsample, there is a strong positive relationship between

the two variables. The result is striking in that inflation is much less volatile in the second

than in the first subsample. The positive relation between the real interest rate and the

conditional variance of inflation is consistent with asymmetric inflation preferences because

this specification predicts a prudence motive in the implementation of monetary policy.

4 Conclusions

This paper contributes to the literature on optimal monetary policy rules by considering

setups where certainty equivalence does not hold because either central bank preferences

are not quadratic and/or the aggregate supply schedule is convex. Under some simplifying

assumptions, albeit not restrictive ones, it is possible to derive a nonlinear Taylor rule incor-

porating both features. This rules is general in that it nests the cases where either feature

is present or where none is and, consequently, the monetary policy rule is linear.
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In order to examine how relevant nonlinear monetary policy rules are in practice, we

estimate the rule using US data during the Burns-Miller (pre-1979) and Volcker-Greenspan

(post-1982) regimes at the US Federal Reserve. Although, there is no evidence against a

linear aggregate supply schedule in either regime, we find fairly robust evidence in favor of

the view that the central bank preferences are considerably different in both regimes. In

particular, the Fed’s inflation preferences during the Volcker-Greenspan regime appear to

be asymmetric, in the sense that positive inflation deviations from its target are weighted

more heavily than negative ones, even if they are of the same magnitude. In contrast, it is

not possible to reject the null hypothesis of quadratic inflation preferences during the Burns-

Miller regime. Under asymmetric preferences, the fact that certainty equivalence does not

hold, means that a prudence motive can arise in the conduct of monetary policy and interest

rates respond not only to inflation changes but also to its variability.

A final interesting result of this paper is that, in contrast to Clarida et al. (2000) who

report that interest rate policy in the Volcker-Greenspan period appears to have been much

more sensitive to changes in expected inflation than in the pre-Volcker period, we do not find

the response of interest rates to inflation to be larger than unity in the Volcker-Greenspan pe-

riod. However, once the additional effect stemming from the conditional variance of inflation

is considered, the rule in the Volcker-Greenspan era is found to be stabilizing as well.
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Table 1. Estimated Aggregate Supply Schedules

Monthly Data Quarterly Data
IPI (−)Unemp. IPI (−)Unemp.

Coefficients (1) (2) (3) (4)

Panel A. Linear
α̂ 0.06∗ 0.24∗ 0.05† 0.21†

(0.006) (0.03) (0.029) (0.13)

Panel B. Nonlinear with No ARCH
α̂ 0.06∗ 0.24∗ 0.04 0.06

(0.007) (0.03) (0.03) (0.05)bφ 0.31 0.12 −0.79 47.92
(0.47) (0.59) (2.47) (37.87)

Panel C. Linear with GARCH(1,1)
α̂ 0.05∗ 0.22∗ 0.015 0.08

(0.006) (0.03) (0.03) (0.15)bφ 0 0 0 0
− − − −bψ0 0.005∗ 0.004∗ 0.07† 0.07†

(0.0025) (0.0019) (0.04) (0.04)bψ1 0.21∗ 0.17∗ 0.08† 0.08†

(0.05) (0.05) (0.05) (0.05)bψ2 0.75∗ 0.80∗ 0.87∗ 0.87∗

(0.06) 0.05 (0.06) (0.06)

Notes: The figures in parenthesis are standard errors. The superscripts ∗ and † denote the

rejection of the hypothesis that the true coefficient is zero at the 5 percent and 10 percent

significance levels, respectively.
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Table 2. LM Test for Neglected ARCH

Monthly Data Quarterly Data
IPI (−)Unemp. IPI (−)Unemp.

Residuals (1) (2) (3) (4)

Original 34.54∗ 25.96∗ 15.72∗ 24.29∗

Standardized 4.50 3.34 9.83 9.93

Notes: The LM statistics were calculated as the product of the number of observations and

the uncentered R2 of the OLS regression of the squared unemployment residual on a constant

and six of its lags. The superscripts ∗ and † denote the rejection of the null hypothesis of

conditional homoskedasticity at the 5 percent and 10 percent significance levels, respectively.
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Table 3. Estimated Reaction Functions

Monthly Data

Pre-Volcker

Nonlinear
Forward (q, k)

Linear Baseline (3, 6) (6, 6) Backward
Coefficient (1) (2) (3) (4) (5)

Panel A. Using IPI Gap
â −0.10 0.38∗ 0.39∗ 0.32∗ 0.36∗

(0.33) (0.15) (0.08) (0.09) (0.17)

b̂ 0.57† 0.49∗ 0.08 0.12† 0.43∗

(0.31) (0.13) (0.06) (0.11) (0.10)
ĉ 0.84∗ 0.38† 0.73∗ 0.80∗ 0.40†

(0.31) (0.22) (0.07) (0.09) (0.23)

d̂ 0 4.27 −5.19 −5.94 4.52
− (6.81) (3.57) (4.31) (7.41)

J statistic 4.98 6.76 6.20 7.15 7.14
d.f. 8 13 13 13 13

Panel B. Using (minus) Unemployment Gap
â 0.34 0.71∗ 0.78∗ 0.80∗ 0.27

(0.28) (0.17) (0.16) (0.16) (0.22)

b̂ 1.93∗ 4.33∗ 0.29∗ 0.37∗ 2.04∗

(0.50) (1.30) (0.14) (0.17) (0.33)
ĉ 0.75∗ 0.10 0.70∗ 0.70∗ 0.72∗

(0.13) (0.29) (0.04) (0.04) (0.10)

d̂ − 3.03 −3.35 −3.93† 4.02
(4.92) (2.05) (2.05) (5.09)

J statistic 7.02 6.43 6.63 6.17 7.93
d.f. 8 13 13 13 13

Notes: The figures in parenthesis are standard errors. The instruments are a constant and

six lags of the variables in the estimated rule. d.f. stands for degrees of freedom. The

superscripts ∗ and † denote the rejection of the hypothesis that the true coefficient is zero at

the 5 percent and 10 percent significance levels, respectively.
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Table 4. Estimated Reaction Functions

Monthly Data

Volcker-Greenspan

Nonlinear
Forward (q, k)

Linear Baseline (3, 6) (6, 6) Backward
Coefficient (1) (2) (3) (4) (5)

Panel A. Using IPI Gap
â 0.50∗ 0.38∗ 0.28∗ 0.08 0.26∗

(0.23) (0.15) (0.10) (0.05) (0.12)

b̂ 0.40† 0.88∗ 1.98∗ 0.65 0.90∗

(0.23) (0.29) (0.81) (1.02) (0.35)
ĉ 0.89∗ 0.73∗ −0.02 0.46 0.55

(0.19) (0.26) (0.59) (0.66) (0.37)

d̂ 0 10.17∗ 21.05∗ 29.10† 17.87∗

− (3.00) (7.34) (15.07) (6.21)
J statistic 6.00 10.76 10.17 12.67 11.69
d.f. 8 13 13 13 13

Panel B. Using (minus) Unemployment Gap
â 0.52∗ 0.13† 0.15† 0.13 0.15†

(0.23) (0.08) (0.08) (0.08) (0.08)

b̂ 2.75∗ 4.06∗ 4.52∗ 6.74∗ 3.40∗

(1.38) (1.97) (2.16) (3.24) (1.45)
ĉ 0.74∗ 0.43 0.72 0.59 0.57

(0.24) (0.46) (0.46) (0.52) (0.36)

d̂ − 17.38∗ 17.85∗ 22.41∗ 16.86∗

(7.10) (7.10) (9.74) (6.07)
J statistic 7.05 9.87 10.20 9.43 9.90
d.f. 8 13 13 13 13

Notes: The figures in parenthesis are standard errors. The instruments are a constant and

six lags of the variables in the estimated rule. d.f. stands for degrees of freedom. The

superscripts ∗ and † denote the rejection of the hypothesis that the true coefficient is zero at

the 5 percent and 10 percent significance levels, respectively.
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Table 5. Estimated Reaction Functions

Quarterly Data

Pre-Volcker

Nonlinear
Forward (q, k)

Linear Baseline (1, 1) (1, 2) Backward
Coefficient (1) (2) (3) (4) (5)

Panel A. Using IPI Gap
â 0.58∗ 0.43 0.99∗ 1.00∗ 0.72∗

(0.15) (0.29) (0.24) (0.27) (0.22)

b̂ 1.07 2.97 0.31∗ 0.29† 0.94∗

(0.66) (6.56) (0.11) (0.16) (0.30)
ĉ 0.49† −0.77 1.14∗ 1.21∗ 0.36

(0.28) (4.49) (0.12) (0.20) (0.27)

d̂ − 1.41 −1.46∗ −1.87∗ 0.59
(5.99) (0.43) (0.73) (0.74)

J statistic 6.59 8.31 4.09 5.51 7.22
d.f. 4 7 7 7 7

Panel B. Using (minus) Unemployment Gap
â 0.68∗ 0.73∗ −0.99∗ 1.08∗ 0.87∗

(0.16) (0.21) (0.21) (0.27) (0.26)

b̂ 3.21∗ 3.82∗ 1.55∗ 1.57∗ 3.52∗

(0.91) (1.48) (0.43) (0.77) (0.65)
ĉ 0.71∗ 0.63∗ 1.04∗ 1.14∗ 0.46∗

(0.11) (0.26) (0.12) (0.20) (0.15)

d̂ − 0.05 −1.04∗ −1.59∗ 0.64
(0.57) (0.39) (0.66) (0.48)

J statistic 7.03 6.96 4.60 4.56 6.26
d.f. 4 7 7 7 7

Notes: The figures in parenthesis are standard errors. The instruments are a constant and

four lags of the variables in the estimated rule. d.f. stands for degrees of freedom. The

superscripts ∗ and † denote the rejection of the hypothesis that the true coefficient is zero at

the 5 percent and 10 percent significance levels, respectively.
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Table 6. Estimated Reaction Functions

Quarterly Data

Volcker-Greenspan

Nonlinear
Forward (q, k)

Linear Baseline (1, 1) (1, 2) Backward
Coefficient (1) (2) (3) (4) (5)

Panel A. Using IPI Gap
â −0.12 −0.99† −0.96∗ −0.78† 0.62†

(0.20) (0.56) (0.44) (0.40) (0.33)

b̂ 0.76† 0.51∗ 0.72∗ 1.03∗ 0.51∗

(0.44) (0.11) (0.19) (0.24) (0.15)
ĉ 2.96∗ 1.18∗ 1.22∗ 0.90∗ 0.73∗

(0.75) (0.23) (0.27) (0.39) (0.23)

d̂ − 5.44∗ 5.43∗ 6.25∗ 1.00
(1.13) (1.53) (2.06) (2.20)

J statistic 5.72 3.89 5.05 8.22 8.91
d.f. 4 7 7 7 7

Panel B. Using (minus) Unemployment Gap
â −0.19∗ −0.44 −0.87 −1.42∗ 0.36

(0.26) (0.39) (0.63 (0.55) (0.33)

b̂ 2.36† 2.91∗ 2.86∗ 2.74∗ 2.17∗

(1.37) (0.76) (0.80) (0.66) (0.58)
ĉ 3.08∗ 1.14∗ 0.89∗ 1.03† 0.37

(0.76) (0.35) (0.22) (0.52) (0.28)

d̂ − 4.81∗ 5.39∗ 6.88∗ 3.18
(1.57) (1.13) (2.05) (2.19)

J statistic 4.35 5.82 4.20 7.78 8.87
d.f. 4 7 7 7 7

Notes: The figures in parenthesis are standard errors. The instruments are a constant and

four lags of the variables in the estimated rule. d.f. stands for degrees of freedom. The

superscripts ∗ and † denote the rejection of the hypothesis that the true coefficient is zero at

the 5 percent and 10 percent significance levels, respectively.
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Table 7. Results OLS Regression

Monthly Data Quarterly Data
Pre-Volcker Volcker-Greenspan Pre-Volcker Volcker-Greenspan

Coefficient on (1) (2) (3) (4)

Constant 0.63∗ 2.62∗ 2.32∗ −0.58
(0.30) (0.19) (0.33) (1.13)

σ2π −3.83 7.03∗ −0.94∗ 4.15∗

(2.34) (1.92) (0.17) (1.06)

Notes: The figures in parenthesis are standard errors. The superscripts ∗ and † denote the

rejection of the hypothesis that the true coefficient is zero at the 5 percent and 10 percent

significance levels, respectively.
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A Appendix

This Appendix derives the optimal monetary policy rule when preferences are asymmetric

and the supply curve is nonlinear. The central bank is assumed to implement monetary

policy using the nominal interest rate as instrument. The dynamic problem of the central

bank [see eq. (1) in text] can be decomposed into the sequence of period-by-period problems:

Min Etβ
2L(πt+2 − π∗),

{it}
subject to

yt+1 = δyt − rt + ηxt,

πt+1 = πt + f(yt) + ut+1,

where f(yt) = αyt/(1− αφyt), xt+1 = ψxt + et+1, and it = rt + Etπt+1, with all notation as

defined in the text. In order to derive the first-order condition, apply the chain rule:

Et((∂Lt+2/∂πt+2)(∂πt+2/∂yt+1)(∂yt+1/∂rt)(∂rt/∂it)) = 0,

−α(exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t)− 1)/(γ(1− αφyt+1)
2) = 0.

This condition is satisfied if and only if:

Etπt+2 = π∗ − γσ2π,t/2.

But, from the aggregate supply relation

Etπt+2 = Et(πt+1 + f(yt+1) + ut+2),

= Et(πt + f(yt) + f(yt+1) + ut+2 + ut+1),

= πt + αyt/(1− αφyt) + α(δyt − rt + ηxt)/(1− αφ(δyt − rt)).

Hence, it must be the case that

πt+2 − γσ2π,t/2 = πt + αyt/(1− αφyt) + α(δyt − rt + ηxt)/(1− αφ(δyt − rt)). (14)

Solving for rt :

rt = δyt +
(πt − π∗ + γσ2π,t/2 + f(yt))

α(1− φ(πt − π∗ + γσ2π,t/2 + f(yt)))
+ ηxt. (15)

Substituting into the Fisher equation, using Etπt+1 = πt + f(yt), and simplifying:

it = πt + f(yt) + δyt +
(1/α)(πt − π∗ + γσ2π,t/2 + f(yt))

1− φ(πt − π∗ + γσ2π,t/2 + f(yt))
+ ηxt,
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that corresponds to expression (8) reported in the text.

If a quadratic output-stabilization term were to be added to the central bank’s loss

function, the new function would be

L(πt − π∗, yt) =
exp(γ(πt − π∗))− γ(πt − π∗)− 1))

γ2
+ λy2t ,

where λ > 0 measures the importance of output stabilization. The minimization of this

function subject to the same set of constraints is discussed in detail in Svensson (1997).

Svensson (see Appendix B) proposes to study first the simpler problem represented by the

Bellman equation.

V (πt) =
min

{yt}
(
exp(γ(πt − π∗))− γ(πt − π∗)− 1))

γ2
+ λy2t + βEtV (πt+1)

)
,

subject to πt+1 = πt + f(yt) + ut+1, where the output gap is the control variable and, for

simplicity, we will assume that φ = 0, meaning f(yt) = αyt. When γ → 0, the value function

will be quadratic: V (πt) = k0 + k1(πt − π∗)2. The coefficient k1 can be found analytically

using the envelope theorem. When γ 6= 0, the value function will have the linex form:

V (πt) = k0 + k1
exp(γ(πt − π∗))− γ(πt − π∗)− 1

γ2
.

The envelop theorem implies

Vπ(πt) = k1
exp(γ(πt − π∗))− 1

γ
,

EtVπ(πt+1) = k1
exp(γ(Etπt+1 − π∗) + γ2σ2π,t/2)− 1

γ
.

It is not hard to verify that a closed-form expression for k1 does not exist. Consequently, a

closed-form expression for the policy rule does not exist either.
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