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Abstract
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1.  INTRODUCTION 

Until early 90’s the electricity sector has been a vertically integrated industry, where regulators fixed 

prices as a function of generation, transmission and distribution costs and therefore there was little 

uncertainty in prices. In last years electricity markets in many countries are experiencing a deregulation 

process, with the aim of introducing competition in generation and supply activities (not in transmission and 

distribution since they are considered natural monopolies). One of the main consequences of this reform is 

that prices are determined by the interaction between supply (generators) and demand (suppliers, who are 

agents that buy energy and sell it to the consumers) in what is usually called a “pool”. In this context 

generators compete to sell electricity in the market pool while the suppliers to consumers purchase electricity 

from the pool at equilibrium prices set by the intersection of aggregated demand and supply on an hourly (or 

half-hourly) basis. These new deregulated prices have been characterized in all the markets by having an 

extremely high volatility. Even when compared with financial markets (stock, bonds) or with other 

commodities, the behavior of electricity prices is still regarded as quite complex and volatile. The 

deregulation has introduced new elements of uncertainty in the sector and therefore usual financial aspects 

like financial risk management, derivative contracts, or hedging are being introduced in the industry. In fact 

the more experienced markets now include futures and options markets (for instance, electricity futures 

contracts are traded in different markets, Sidney Futures Exchange, New Zealand Futures and Options 

Exchange, Eltermin (Scandinavia), NYMEX and others). There is an extensive literature on the deregulation 

effects of electricity markets from a regulatory and industrial organization point of view. For an introduction 

to the analysis of competition in electricity markets, see for instance, Wolak(1997), Hogan (1998), 

Borenstein (2001) and references therein. 

The characterization and understanding of the behavior of electricity prices is a necessary task and is the 

basis for the valuation and risk management of real assets and financial claims on the commodity. Some 

initial recent contributions are Johnson and Barz (1999), Bhanot (2000), Lucia and Schwartz (2002) and 

Knittel and Roberts (2001). 

We extend this literature by proposing and estimating a general and flexible model and applying it to a 

comprehensive set of markets, Argentina, NordPool, Australia (Victoria), New Zealand (Hayward), US 

(Pennsylvania -New Jersey-Maryland, PJM hereafter) and Spain. This will allow us to compare the different 

behavior observed in deregulated markets and quantify the role of  different characteristics (importance of 

seasonality, mean-reversion, volatility and/or jumps) in each individual market. Our goal is to propose a 

general (benchmark) model that encompasses the main features present in all markets. 

One of the main innovations of this paper is the estimation of a general and flexible model to a 

comprehensive set of markets.  That is, we take into account the interaction between jumps and GARCH 

behavior, and among jumps, GARCH and mean reversion. Our results stress the importance of including 

those three elements simultaneously in order to isolate the main elements of the behavior of electricity prices 

in deregulated markets. The other main contribution is the proposal and application of a new unit root testing 

strategy in the presence of jumps and volatility. Although we focus on equilibrium prices from electricity 
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markets, this modeling strategy could also be applied to other commodity prices like for instance, natural 

gas. 

The paper is organized as follows. Section 2 describes the main characteristic factors of electricity prices and 

discuss some related literature. Section 3 presents the model and the econometric methodology. Section 4 

describes our data sets and presents some descriptive statistics. Section 5 presents the empirical results from 

the estimated models. Section 6 applies a variety of unit root tests for the null hypothesis of a unit root 

against the alternative of mean reversion. Finally, section 7 includes some conclusions and provides some 

insights for future risk management research based on our empirical findings. 

 

2.   ELECTRICITY PRICE BEHAVIOR AND RELATED LITERATURE 

2.1.  Why are electricity prices so volatile? 

There are several elements that explain the observed high volatility of electricity prices. Probably the 

most important one is the non-storability of electricity. Electricity cannot be physically stored in a direct way 

(electricity can be indirectly stored via hydroelectric schemes or via storage of generator fuel), and 

production and consumption have to be continuously balanced. Therefore, supply and demand shocks cannot 

easily be smoothed out and they will have a direct effect on equilibrium prices.  

The characteristics of demand and supply play also an important role in the observed volatility. Electricity 

demand is highly inelastic because it is a necessary commodity and also highly weather-dependent. The 

characteristics of the supply stack of each market can also contribute to the volatility of a particular demand. 

Pool’s prices are determined by the intersection between demand and supply. For low levels of demand, 

generators supply electricity by using base-load units with low marginal costs, as higher quantities are 

needed new generators with higher marginal costs enter into the system. The relative insensitivity of demand 

to price fluctuations and the binding constraints supply can face at peak times, makes short-term prices for 

electricity extremely volatile. Therefore, in markets where both the demand and supply curves are steep we 

could observe sharp increases in prices as the quantity demanded is increased. Moreover, depending on the 

structure of the market and the market power of the generators, for high levels of demand only few 

generators could satisfy the residual demand and therefore market power could come into play through  

monopolistic or oligopolistic behaviors of generators. 

2.2.   Characteristics of electricity prices 

 The model we propose is very flexible and allow us to simultaneously include seasonality, mean 

reversion, volatility and jumps. The main goal of this paper is to show that this general model captures the 

salient idiosyncratic features of electricity prices. As we will see later on in sections 4 and 5, there is enough 

empirical evidence in the data to include the four characteristics simultaneously. 

2.2.1.  Seasonality 

 Electricity demand is heavily influenced by economic and business activities and by the weather 

conditions. These two factors explain the main seasonal behavior of electricity prices. Different kinds of 

seasonality appear in the data; intra-daily, weekly and monthly seasonality. As it is usual in this literature, we 

assume that seasonality is generated by deterministic factors and since we use the average daily prices, we 
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will only consider weekly and monthly seasonality. In particular, the seasonality is captured by means of two 

deterministic seasonal functions: a) weekly seasonality, captured by means of daily dummies and b) monthly 

seasonality, captured by either monthly dummies or by a sinusoidal functions. 

The importance of deterministic regular patterns in the behavior of electricity prices has been analyzed by 

Lucia and Schwartz (2002) and by Bhanot (2000). Lucia and Schwartz (2002) propose and estimate a one 

and two-factor mean reverting models with deterministic seasonality for the Scandinavian market 

(NordPool), showing that the seasonal pattern in spot electricity prices could explain part of the shape of the 

observed term structure of futures prices. Bhanot (2000) analyses electric power prices using data from 12 

regional markets from the US focusing in the mean-reverting and seasonal behavior of the series and on the 

possible regional differences among them. 

2.2.2.  Mean-reversion 

Since shifts in demand will push prices up, increasing the economic incentives of more expensive 

generators to enter in the supply side (shift in supply) of the system, it seems natural to expect some degree 

of mean reversion in the evolution of electricity prices. On the other hand, it could also be argued that prices 

are mean-reverting because weather is a dominant factor which influences equilibrium prices through 

changes in demand. Since the evolution of weather is a cyclical and mean-reverting process, this tendency to 

revert to its mean level (maybe time-varying) will affect demand and therefore also equilibrium prices 

(Knittel and Roberts 2001). Although the great majority of models have been proposed up to now are mean-

reverting models, for instance, Bhanot (2000), Karesen and Husby (2000), Lucia and Schwartz (2002) and 

Knittel and Roberts (2001) there are also some recent papers that characterize electricity prices as non-mean 

reverting, see for example De Vany and Walls (1999) and Leon and Rubia (2001). Furthermore, Johnson and 

Barz (1999) analyzed the fit of mean-reverting and non-mean reverting models with and without jumps to a 

set of deregulated markets. They found that the best fit was obtained by a mean-reverting model with jumps. 

However they did not provide any formal test (unit roots, etc.) nor considered the possibility of non-constant 

volatility (GARCH, etc.). In this paper we solve those limitations in two ways: a) extending the analysis to 

electric ity markets for other countries and b) suggesting a new formal procedure to tests for the unit root 

hypothesis against the alternative of mean-reversion in the presence of GARCH and Jumps in the data. 

2.2.3.   Jumps and volatility 

By simple eye inspection (a formal econometric analysis will be done in Section 5) of the graphs 

presented in Figures 1 to 6 of the appendix, it is clear the existence of important jumps in the behavior of 

electricity prices. 

One of the characteristics of evolution of these jumps is that the price does not stay in the new level, to 

which it jumps, but reverts to the previous level rapidly. This behavior can be captured by introducing a 

Poisson process as in a jump-diffusion model. There are already some applications of jump-diffusions to 

electricity prices. Johnson and Barz (1999) estimate various jump-diffusion process to several electricity 

price series, Knittel and Roberts (2001) also estimate a jump diffusion model (with time dependent jump 

intensity)  to California prices. In spite of the advantages of introducing jumps in the model there are some 

limitations in modelling electricity prices by jump-diffusion processes (see e.g. Pirrong and Jermakyan 1999 
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and Clewlow and Strickland 2000). The main criticism is the assumption that all the shocks affecting the 

series die out at the same rate. Simple economic intuition would argue that this is not a likely case. For larger 

shocks it seems evident that forces of demand and supply will push back electricity prices quite fast. On the 

other hand, when shocks are smaller it is more likely that prices will revert slowly to the previous level due 

to the existence of adjustment costs. In statistical terms, modeling the series by a jump diffusion process has 

its own limitations. When estimating the jump-diffusion process by (Quasi) Maximum Likelihood the 

estimated model tend to capture the smallest and more frequents jumps in the data. Furthermore, the jump-

diffusion modeling approach does not capture the fact that jumps will probably appear in those periods 

where the difference between the maximum supply and the demand is not very big (small excess capacity). If 

the supply stack is convex (increasing marginal costs) during periods of high demand, the effect on prices, 

for a given increase in demand (shift of the demand curve to right), will be greater the smaller is the excess 

capacity.  Our flexible modeling approach solves those limitations. 

Another important aspects of electricity  prices is the existence of high volatility and volatility clustering. 

One of the most popular approaches for modeling conditional volatility is the GARCH model and its 

extensions. Although there is some work on applying models of the ARCH family to electricity prices there 

are problems with the usual modeling approach. For an application of different types of ARCH or GARCH 

models to energy prices see Duffie et al. (1998) and Knittel and Roberts (2001). Duffie et al. (1998) showed 

that the application of these kind of models to electricity prices has its limitations, because one can end with 

an integrated volatility process, which is not a very appealing result. One of the reasons for the possibility of 

explosive volatility is the presence of outliers (spikes) in the data, biasing the estimation of the GARCH 

process. This bias of GARCH coefficients in the presence of jumps has also been obtained in other financial 

applications, see for instance the application of jump-diffusions to exchange rates belonging to the ERM, 

Neely (1999). Other papers that analyze the effects of outliers (jumps) on GARCH models with applications 

to stock data are Carnero, Peña and Ruiz (2001), Hotta and Tsay (1998) and Verhoeven and McAleer (2000). 

Our results show that one can improve both jump-diffusion models and GARCH  models by working with a 

model that simultaneously takes into account both characteristics. We show that both modeling approaches 

are complementary and not substitutes. It is remarkable that once we allow for jumps in the GARCH models 

we recover the desired stationarity of the volatility process. On the other hand, by allowing a GARCH 

behavior in the jump-diffusion process we find a decreasing probability of observing a jump since part of the 

smaller jumps that were previously captured by the pure jump model are now part of the GARCH 

component.  

Furthermore, we allow for non-constant jump intensities. We have seen that the technological characteristics 

of electricity markets, like increasing marginal costs in the supply stack, increase the probability of observing 

higher jumps when demand is high (high rate of capacity utilization), see for instance Birnbaum et al. (2002). 

However, we also observe jumps in electricity prices even when demand is not very high. This is in general 

due to transmission problems or because certain plants cannot generate electricity. In those situations, the 

decrease (shift to the left) in supply and not the increase in demand, is the alternative main source of jumps 

of equilibrium prices. For illustrative purposes and data limitations, we have decided to model the time 
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varying specification of the jump intensity by introducing different dummies per season. These dummies are 

proxies for the demand variable that is one of the main sources of observed jumps. It is worth noting the 

flexibility of our model allowing for simultaneous modeling of intensity of the jump process and volatility 

(GARCH). 

 

3. MODEL SPECIFICATION AND ESTIMATION 

We have seen in previous section that a reasonable model for electricity prices should allow for the 

existence of deterministic seasonality, the possibility of mean-reversion, jumps and (stochastic) volatility. 

Therefore we propose a model that simultaneously incorporates all these factors in an flexible way. In 

particular, our general model takes into account the possibility of seasonality (deterministic), mean-

reversion, volatility (GARCH behavior) and jumps (with the possibility of time-dependent intensity). 

Moreover we can test for the significance of each of these factors, estimating six different nested models for 

each of the analyzed markets. 

We present the model in continuous and discrete time. Since this paper is devoted to the analysis of the data 

generating process of equilibrium spot electricity prices, we work with the discrete time version of the 

model. But since most financial questions (for instance valuation and hedging) are usually addressed in 

continuous time we first present the model in its continuous time version. 

The model in continuous time is 1: 

Pt = f(t) + Xt        (1) 

dXt = -κ Xt dt + vt
1/2 dZ + J(µJ ,σJ) d∏(λt)     (2) 

dvt = kv (θv – vt )dt + vt
1/2 σ  dZv      (3) 

where Pt is the equilibrium spot electricity price of electricity markets, f(t) is a deterministic seasonal 

function that captures the seasonality  observed in electricity prices (captured either by monthly dummy 

variables or by sinusoidal functions), dZ and dZv are independent Wiener processes, d∏(λt) is a Poisson 

distributed random variable with (time-dependent) intensity λt , and J(µJ ,σJ) is a random variable normally 

distributed with mean µJ and standard deviation σJ.  vt  captures the evolution of the stochastic volatility. We 

assume  that the Wiener processes, the Poisson process and the jump size are mutually independent 

processes. 

Continuous-time models are the basis for a wide range of problems in finance and are usually hard to 

estimate. The estimation methods for continuous-time models are computationally intensive in practice and 

they are specially difficult to estimate in the context of time dependent intensities. A popular approach has 

been discretization (for instance using the Euler approximation). It is well known that discretization of 

continuous-time stochastic differential equations does introduce an estimation bias. However, the bias is 

smaller the shorter the sampling interval. With daily data this bias is negligible (see Bergstrom 1988,  Melino 

1994 and Das 2001). 

                                                 
1 Notice that we are dealing with equilibrium electricity prices. The data we use is the average price. We have decided 
not to take logarithms since this transformation would tend to eliminate right skewness and outliers. In our case  right 
skewness and outliers are explicitly modelled as part of the main sources of uncertainty. 
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The goal of this paper is to disentangle the possible components that are present in electricity prices series 

and therefore, we have decided to work with a discrete time version of model (1)-(3) for two reasons: a) the 

estimation bias with daily data is negligible and b) we have greater flexibility with discrete time models. 

The general discrete time model we estimate is: 

 

Pt = f(t) + Xt      (4) 

 

φ· Xt-1+ht
½ε1t;              prob. 1- λt 

Xt =                                                                                (5) 

φ· Xt-1+ht
½ε1t+µJ+σJ· ε2t ;     prob.  λt 

 

ht=ω + α· ε2
t-1 + β· ht-1        (6) 

 

λt=L1· wintert+L2· fallt+L3· springt+L4· summert       (7) 

 

where ε1t and, ε2t ~ i.i.d. N(0,1). The parameter φ describes the degree of mean-reversion, if |φ| <1, then Pt 

reverts back to its (non-constant) mean. The parameter φ in (5) stands for (1-κ) in (2), so a low mean 

reversion, low κ  is equivalent to φ ≈ 1. The (nonnegative) parameters ω, α and β characterize the dynamics 

of the volatility following a GARCH(1,1) process (ω > 0; α , β ≥0). The nonegativity restrictions are needed 

to guarantee that the conditional variance is positive and also ω has to be strictly positive for the process not 

to degenerate. If α + β <1, then the variance reverts back to its unconditional mean σ 2 = ω / (1- α - β). 

The equation (7) models the time-dependent intensity process for the jumps by means of three dummies; 

wintert is a dummy variable that takes value 1 if the observation is in December, January and February and 

zero otherwise; fallt takes value 1 if the observation is in September, October or November and zero 

otherwise; spring t takes value 1 if the observation is in March, April or May and zero otherwise and finally 

summert takes value 1 if the observation is in June, July or August and zero otherwise.  

The deterministic seasonality is specified either by monthly dummy variables or by sinusoidal functions. 

However, for space reasons and to avoid a tedious reading, we only provide the results of the sinusoidal 

specification since the results are very similar with both specifications. In particular, with sinusoidal 

functions the seasonal factor is specified as: 

 

f(t) = B0 + B2· t + C1· sin(t+C2)· (2π/365)) + C3· sin((t+C4)· (4π/365)) + D1· wkdt           (8) 

 

where wkdt is a dummy variable that takes value 1 if the observation is in weekday and zero otherwise 

(weekend). With this general formulation for the sinusoidal function we allow for the possibility of having 

two cycles per year (two local maximum per year). In the case of one annual cycle we should have C3 = C4 

= 0. 
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By comparing different restricted versions of model (4)-(8) we are able to check which kind of model better 

explains the evolution of electricity prices. Since the proposed model is quite flexible we should be able to 

explain equilibrium electricity prices with higher or lower levels of kurtosis, greater or smaller relative 

importance of spikes, etc. 

The simultaneous modeling of GARCH and jump components in electricity markets is an important 

extension. The question of whether jump processes or stochastic volatility better describe the evolution of 

prices giving the observed kurtosis has produced and ongoing debate in financial modeling (Das and 

Sundaram 1997,  Das 2001). The sampling interval used in empirical applications also has its role in 

deciding which approach must be followed. See the discussion and the test statistic proposed by Das (2001) 

to decide between stochastic volatility and jumps. Our results show that both sources of uncertainty are 

complementary rather than substitutes, although the relative contribution of each component is different in 

each market. 

The set of parameters is Θ = {f(t), φ, σ 2,ω, α, β, µ J,σJ 
2, λt} is estimated by Maximum Likelihood 

(ML). Estimation of Θ involves the following maximization: 

 

Max Θ ΣT
t=1 ( log ( f [p t | p t –1 ] ) )             (9) 

 

Contingent on the particular nested specification considered some parameters from equation (10) will be set 

equal to zero. Now, consider that the transition probabilities for electricity equilibrium prices follows a 

Poisson-Gaussian process. That is, 
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Equation (10) approximates the true Poisson-Gaussian density with a mixture of normal distributions. Other  

Poisson-Gaussian models could have been considered as was done in the context of exchange rates and 

interest rates. However, previous evidence shows that the mixture approximation leads to similar results and 

is much easier to estimate. For some applications to exchange rates see, Vlaar and Palm (1993), Nieuwland, 

Verschoor and Wolff (1994) and Neely (1999), and Das (2001) for interest rates. 

In order to compare different processes for electricity prices we estimate six nested models on our 

international data set. For expository reasons, we have included the explicit formula of each model in 

Appendix B. The six models we estimate are: a pure-Gaussian model with constant variance and without 

jumps (Model 1); a GARCH(1,1)-Gaussian model without jumps (Model 2), a Poisson-Gaussian models 

with constant variance (Model 3), a Poisson-Gaussian models with time-varying intensity for jumps (Model 

3b), a GARCH(1,1)-Poisson-Gaussian model with constant intensity (Model 4) and the most general model 

is a GARCH(1,1)-Poisson-Gaussian model with time-varying intensity for jumps (Model 4b). All of the 

models have been estimated by maximum likelihood using RATS 2.5. The parameters estimates were 
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obtained using Berndt, Hall, Hall and Hausman (1974) algorithm. Reported results are robust to different 

starting values. 

 

4. DATA AND DESCRIPTIVE ANALYSIS 

 4.1 Data 

The electricity markets analyzed in this paper are: NordPool (Scandinavia), Argentina, Australia 

(Victoria), New Zealand (Hayward), PJM and Spain. We work with daily averages of electricity spot prices 

(on-peak and off-peak hours), so we have one price for each day. All the series are expressed in the local 

currency of the market. Data has been obtained from each of the pools. The sample period available is 

different in each international market2.  

  4.2 Descriptive statistics. 

 We present in Appendix A, a table (Table 1) with descriptive statistics for each of the five series. We 

may observe that price series are quite volatile, have positive skewness and high kurtosis. We may also see 

that although all of them share these characteristics there exist some differences among them. As was pointed 

out by Wolak (1997), the generation mix (supply stack) of each market will translate into the behavior of 

observed spot prices. In particular in Argentina and in Australia electricity is mainly generated by fossil fuel 

technology, while in New Zealand and NordPool electricity is mainly generated by hydroelectric sources. 

Therefore as seen in Table 1, the prices in the NordPool and New Zealand markets are less volatile than 

prices in Australia, Argentina and PJM. In fact we observe from the graphs of Victoria, Argentina and PJM 

equilibrium prices that spikes are quite important.  

Wolak (1997) also pointed out the effect that regulation and market microstructure rules have on the 

behavior of electricity prices. Those effects are also crucial to understand the behavior of equilibrium 

electricity prices in Spain, see Federico and Whitmore (1999) and Fabra and Toro (2001). The differences 

between markets should, and in fact do, translate to the estimation results. For instance, as we have 

commented previously, those series with higher coefficient of kurtosis, tend to have in the GARCH(1,1) 

model a higher estimated persistence. As we said above, GARCH models usually tend to introduce high 

persistence in the estimation in order to be able to generate a high degree of kurtosis. On the other hand, the 

degree of skewness translates in the estimated mean jump size. It can be shown that the mixture model 

generates higher skewness the bigger the mean jump size. 

From the summary statistics  of Table 1 and from the graphs of the price series we may see that the 

behavior of electricity prices in each market is quite different. This fact provides evidence on the high degree 

of regionalism of deregulated electricity markets. The existence of differences among market (for instance 

because differences in the type of generation, proportion of electricity generated by hydro, coal, gas or 

nuclear plants) supports the idea that we should approach the analysis of each market with a general flexible 

model, and that we should let data determine which are the most important idiosyncratic features of a given 

market. 

                                                 
2 However, the bests models were re-estimated during common periods with similar results obtained. For consistency 
and efficiency reasons of the estimates we report the results obtained from the longest possible samples of each 
international market. 



 11

 

5. RESULTS 

In this section we highlight the main empirical results obtained, see Appendix B (Tables B.1 to B.6). 

Six models were estimated to each of the average daily prices of the five international markets in order to 

estimate the relative contribution of each of the main four temporal characteristics of electricity prices: 

seasonality, mean-reversion, non-constant volatility (GARCH) and jumps. 

The selection between the two ways we model seasonality in electricity prices, monthly dummies or 

sinusoidal functions, is less relevant the more regular the seasonal pattern is. Dummy variables are more 

sensitive to the presence of jumps and they could in principle provide a higher modeling flexibility. 

However, since our empirical results are very similar with both procedures, we only report the results 

obtained with the sinusoidal function. 

The mean-reverting property of electricity prices seems clear from the plots, see Figures 1 to 6, or from the 

estimated models, see Appendix B. In all the models estimated, the autoregressive coefficient φ is positive 

and smaller than 1. Only in the NordPool the estimated coefficient is close to 1 indicating a slow mean-

reversion. For example in Model 1 of Table B.1, φ  = 0.93.  

The low degree of mean-reversion observed in NordPool can be explained by the fact that in the 

Scandinavian market, electricity is mainly generated by hydro resources. Hydro reservoirs play the role of 

indirect storage of electricity, therefore in these type of markets we could expect more inter-temporal 

substitution between inputs than in markets with a low proportion of electricity generated by water. In 

markets with no inter-temporal substitution we should observe a higher degree of mean-reversion since 

generators cannot use inventories to smooth out shocks , and the degree of mean-reversion in electricity 

prices is mainly driven by the mean-reversion in demand or in temperature. On the contrary, New Zealand 

power generation is also driven by hydro resources and it has a high degree of mean-reversion. Wolak (1997) 

pointed out the fact that in markets dominated by hydroelectric power, average prices are less stable. This 

instability of mean prices is clearly observed in the NordPool case. For example, the fact that 1996 was a dry 

year, created a high mean level of prices during that year, see also Lucia and Schwartz (2002). 

This kind of weather instability reduces the estimated degree of mean-reversion in prices, generating a 

dynamic behavior in prices that is approximated by a unit root process with autoregressive conditional 

heteroskedastic errors. By comparing the estimated autoregressive coefficient (φ) of model 1 with models 2 

to 4 we provide direct evidence on the effects of outliers and GARCH behavior on the unit root hypothesis. 

In particular, in the NordPool case when we include GARCH and jumps in the model, we clearly see that the 

mean reversion property becomes more apparent reducing the estimated value of φ  from 0.93 to 0.8. A 

formal unit root analysis against mean-reversion alternatives will be considered in section 6. 

The summary statistics of Appendix A and also the price plots of Figure 1 to 6 provide clear evidence on the 

volatility of electricity prices and in particular the non-constant and the clustering of the volatility. A well-

known cause of leptokurtosis in the unconditional distribution is conditional heterocedasticity, which 

supports the need to move beyond a simple constant variance Gaussian model. As expected, we obtain that 

Model 2 (that incorporates a GARCH(1,1) component) gives an important improvement in goodness of fit 
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with respect to the constant variance of Model 1 in all of the five international markets analyzed. One 

important aspect of most electricity markets is that the empirical parameter estimates of the GARCH(1,1) 

models imply that the volatility process is explosive, i.e. α + β > 1, Bollerslev (1986). A common finding is 

that GARCH models tend to impute a high degree of persistence (quantified by α + β) to the conditional 

volatility, generating a conditional variance process which is not covariance-stationary.  Furthermore, since 

the jth period ahead forecast of the conditional variance is given by: 

( ) ( ),)( 22 σβασ −++=+ t

j

jt hhE  for j ≥ 1      (11) 

when α + β = 1, shocks to the conditional variance accumulate and therefore are highly persistent, in the 

sense that ∞→+ )|( tjt hhE  as j → ∞ see Nelson (1990), and when α + β > 1the volatility forecast is 

explosive. It is clear that the explosive volatility forecast characteristic of electricity markets is not an 

appealing result since the predictions of the model are meaningless and create difficulties to do any possible 

risk management analysis based on prices from electricity markets. 

 In particular, this empirical result is obtained in Argentina, Australia  and PJM electricity markets 

where the  estimated GARCH have α + β > 1. This property could have been anticipated since there is a high 

degree of kurtosis of electricity prices. The close relationship between the degree of kurtosis generated by a 

GARCH(1,1) process and the value of α + β is well known, see for instance Carnero, et al. (2002). In the 

GARCH(1,1) processes the measure of persistence of volatility shocks is also given by the sum of the 

coefficients α and β. The high degree of persistence in empirical applications could therefore be due to the 

existence of a GARCH(1,1) process with high degree of kurtosis, which forces the sum of GARCH 

coefficients to be close to one. 

Two factors have been pointed out to explain the high persistence estimated in GARCH process: the 

existence of outliers (Carnero et al., 2001; Hotta and Tsay, 1998; Verhoeven and McAleer, 2000) or the 

existence of level shifts in the variance process (Lamoreaux and Lastrapes, 1993). 

For our purpose, the main factor is the existence of important price spikes in electricity markets (outliers) 

that could affect the parameter estimates of the volatility process. Observe for example, that the estimated 

value of the parameter α in Model 2 is always larger than that estimated value in Model 4 that allows for 

both GARCH(1,1) and jumps. This difference is even bigger for the cases of Argentina, Australia and PJM. 

Notice that the parameter α may increase due to the existence of occasional periods of high volatility but 

with low persistence. As we may see from Figures 1 to 6, the huge increases in prices that exist during a 

short period of time (few days) clearly appear in the electricity price series of Argentina, Australia and PJM 

markets. 

Another alternative specification, when moving beyond the simple constant variance model, is to allow for 

jumps, see Model 3 of Appendix B. Observe that in the six electricity markets, there is an improvement in 

goodness of fit when moving from Model 1 to Model 3. The parameters corresponding to the jump process 

(λ, µJ, σJ) are all  statistically significant in all the markets. Only in the New Zealand market, µJ is not 

statistically different from zero, which means that the AVERAGE jump size is nearly zero. However, this 

does not imply jump process is not important to understand behavior of electricity prices. We can check the 
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improvement when modeling jumps with either the value of the log-likelihood function (Schwarz 

Information Criterion) or by a Likelihood Ratio tests which are provided in Table B.7 of Appendix B. 

Furthermore, we also have estimated Model 3b, in order to take into account for probability of observing a 

jump not to be constant through time. In particular in Model 3b, λ is a function of seasonal dummies (one per 

season), see Appendix B for the particular parameterization used. 

Our results confirm our intuition that the probability of observing jumps is not constant. From this result we 

should expect to have a time varying jump risk premium in futures prices. An interesting topic for future 

research is to analyze which of the following variables: demand, hydro reservoir, etc. should explicitly be 

included in the model in order to identify the fundamentals behind the observed jumps in electricity prices. 

Going one step further, we could also study how futures markets prices jump risk. 

By doing pair-wise comparisons of log-likelihoods between nested models based on Likelihood Ratio Test, 

see Table 7 in Appendix B, we conclude GARCH-Poisson-Gaussian model outperforms: the constant 

volatility model (Model 1), the GARCH model (Model 2), the pure jump model (Model 3 and 3b) in all of 

the electricity markets but Spain (Spain is different!). (The oligopoly modeling approach of Fabra and Toro 

(2001) of the Spanish electricity market, is informative about the particular microstructure characteristic of 

the market which together with the particular rules for compensating the generators for the costs incurred in 

the transition to competition (CTC), make the Spanish market to evolve differently). 

We therefore conclude that both sources of uncertainty, stochastic volatility and discrete jumps, are useful in 

explaining the volatility clustering, the skewness and the excess kurtosis observed in most of the electricity 

markets. 

We check the interaction of these two sources of volatility (GARCH behavior and jumps) by analyzing the 

results of Model 4. In the case of NordPool, Australia and New Zealand, model 4 provides the best fit among 

all models. In all the markets except Spain we may see that the GARCH process is stationary in Model 4 and 

that the estimated probability of observing a jump, i.e. the estimated λ, is smaller than the reported in Model 

3. We interpret this result as a support of the idea of take into account both sources of volatility. Therefore 

jumps and GARCH are complementary rather than substitute factors in a model for electricity prices. 

Finally, Model  4b allows for time dependency in the intensity of the Poisson process. In the case of 

Argentina model 4b best fits data (under the Schwartz Criterion, SC). In the case of  Argentina (see also  

PJM),  there is a clear seasonal pattern in jump behavior, with a higher probability of observing a jump in 

June, July or August. In this case the effects of jump and volatility appear in a clear way. We may observe 

the sharp decrease in the estimated value of α when allowing for jumps (see also the results for Victoria and 

PJM). Also note that when moving from Model 3 to Model 4, the intensity of the Poisson process (λ) 

decreases (because part of the movements of the price series are captured by the GARCH process), although 

the estimated mean jump decrease is not statistically significant. 

The Spanish market deserves a special comment. The results for this market point out as the best model, 

Model 2. The estimated GARCH(1,1) process in model 2 is stationary. When we include jumps and estimate 

Model 4 we see that either the jump process is not statistically significant (in the case of seasonality with 

sinusoidal function) or we obtain an estimate of ω not statistically significant in Model 4 (with monthly 
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dummies). We believe that one of the main reasons for getting this unique behavior of the Spanish market 

are the institutional framework. Mainly, the way stranded costs (or CTC) are treated in the Spanish 

deregulation process creates conflictive incentives on the few players that are in the Spanish market, see 

Federico and Whitmore (1999) and Fabra and Toro (2001) treatment of the interaction of incentives in the 

Spanish market and its consequences on energy price risk. Basically, the amount of stranded costs to be paid 

to generators depends negatively on the price observed in the pool. If prices are above a known and pre-

established level, generators earn higher profits from their operations in the pool but will receive a lower 

amount of stranded costs. Therefore, there is a conflict of interests among power generating firms which  

depend on the characteristics of each firm: market share, expectations about the probability of obtaining 

stranded costs, etc. which affect the equilibrium price in a predictable way.  

Our empirical results suggest an improvement by moving from Model 2 or Model 3 to Model 4. Moving 

from Model 2 to Model 4 there is not only an improvement in terms of goodness of fit but also the 

understanding of the behavior of electricity prices does so. On the other hand, moving from Model 3 to 

Model 4 the goodness of  fit also improves and we observe a clear interaction between GARCH and jumps 

indicated by a decrease in the estimated intensity of the Poisson process. The effect of including 

GARCH(1,1) model is clear in terms of the estimated frequency of jumps, however the effect of the mean 

jump size is not so clear. We think there are two reasons for this ambiguous result. The first one is that since  

we are using average daily prices, and although there is a weekly dummy that tries to capture the lower 

demand on weekends, we are not capturing those holidays that are in the middle of a week, and some below 

average demand weekends. Probably in those days we may observe a “negative” jump, that has a mixed 

effect on µJ, because when we introduce GARCH behavior we are left with some negative and positive 

jumps. Clearly we are not too interested on those negative jumps since they are predictable. Probably if we 

work with an on-peak daily average price these problems will diminish. The other reason we have in mind is 

that results are not so clear in those markets where jumps are relatively less important, where GARCH 

behavior is more important to understand the uncertainty in that market. 

More work is needed in this direction by increasing the number of analysed series, using on-peak series 

and/or use a different specification for µJ (perhaps a time-dependent mean jump size, which is very easy to 

handle in our model). 

Although statistically speaking there is no huge improvement when we allow for time-dependent 

intensity this is an appealing possibility if we want to understand other aspects of these markets. For 

instance, the fact that there are time-dependent intensities could affect the behavior of risk premium, and the 

term structure of forward curves. Those questions are left for future research. 

 

6. UNIT ROOT TESTS 

Traditional unit root tests, like Dickey-Fuller (1979) are powerful against most mean-reverting 

alternatives if the errors are homoskedastic and there is no jumps in the data (stationarity). Pindyck (1999) 

deals with the issue of unit roots test in the context of energy commodities (oil, gas, coal). In part, because 
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Pindyck (1999) focus on the long-run evolution of energy prices he does not take into account the possibility 

of jumps or non-constant volatility in his unit root tests. 

 However, as we have seen in the previous section, those stationarity conditions are not satisfied by 

equilibrium electricity prices. We propose to generalize recent powerful methods proposed in the 

econometric literature that independently take into account the effects of heterocedasticity-GARCH(1,1) 

errors, see Boswijk (2000), and outliers when testing for the presence of unit roots, see Arranz, Escribano 

and Marmol (2000). 

From our empirical analysis we conclude that the most appropiate model for equilibrium electricity prices 

(Pt) is a flexible model (Model 4b of Appendix B) with deterministic seasonality, autoregressive (AR(1)) and 

GARCH(1,1) errors and with jumps with time dependent intensity of the Poisson process. That is, 

 

tt XtfP += )(       (12) 

 

where f(t) is defined in equation (8) and the stochastic term tX is generated by an AR(1) process with 

heterokedastic errors and additive outliers. 

 

Xt = φ ·  Xt-1 + ηt                                                                                                          (13)  

  

where the errors ηt follows a GARCH(1,1) process with jumps of time dependent intensities generated by  a 

Poisson distribution. That is, 

                       

 ht
1/2 ε1t;                  with  prob. 1- λt 

ηt =                                                                     (14) 

ht
1/2 ε1t + µJ + σJ · ε2t ;     with  prob. λt 

ht = ω + α · εt-1 + β · ht-1                                                               (15) 

λt = L1 ·  wintert + L2 ·  fallt + L3 ·  spring t + L4 ·  summert                          (16) 

 

where ε1t , ε2t and εt ~ i.i.d. N(0,1) and mutually independent. The objective now is to test the null 

hypothesis of a unit root, H0 : φ =1, against the mean reverting alternative hypothesis, H1 : φ < 1.  

6.1. Standard Unit Root Test, Dickey and Fuller(1979) 

The most common procedure for testing the unit root hypothesis is to use Dickey-Fuller (DF) or 

Augmented Dickey-Fuller (ADF) type of tests in the context of independent, Gaussian and homokedastic 

errors, term εt on equation (17). As a benchmark, we report results of ADF-test for the unit root null 

hypothesis, H0: (φ - 1) = 0, against the alternative of mean reverting, H1 : (φ - 1) < 0. The ADF-test is based 

on the t-ratio of (φ - 1) in the following regression equation, 
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The maximum order of the lags (r) differs in each of the individual market price series (Xt) and it is 

empirically determined in order to warranty that the residuals (estimates of εt) have no serial correlation. 

Table 6.1 includes the empirical results of the ADF-test for the five electricity markets (NP = NordPool, 

ARG = Argentina, VIC = Victoria, NZ = New Zealand and SP = Spain) with the approximate 5 % critical 

value. 

 

Table 6.1.: Unit Root Tests (ADF) 

Series ADF Test Statistic  5% Critical Value (McKinnon Critical Values) 

NP -2,922 -2,863 

ARG -6,376 -2,863 

VIC -6,947 -2,863 

NZ -6,031 -2,864 

SP -4,686 -2,865 

PJM -4,077 -2,864 

 

Those results of Table 6.1, show that the unit root hypothesis is always rejected, in favor of mean reverting 

alternative, at a 5% significance level. The lowest rejection occurs in the NordPool, as expected from the 

empirical results mentioned in the previous section. However, in the application of unit root test to electricity 

prices one has to face two additional problems that in principle creates doubts on the credibility of those 

empirical results. First, the presence of volatility (GARCH) and second, the existence of outliers (jumps) in 

the data. Most unit root testing procedures are sensitive to the occurrence of anomalous events (outliers, etc.) 

and also to the presence of heteroskedasticity, specially with near-integrated volatility. 

In what follows, we present the empirical results of addressing each of these issues independently and we 

also suggest a new sequential unit root testing procedure when both problems appear in the price series. 

6.2. Unit Root Tests with GARCH(1,1) errors: Boswijk (2001). 

In cases where the error term follows a GARCH process, estimation and testing for a unit root 

involves intrinsic problems, Pantula (1989). Peters and Veloce (1988) and Kim and Schmidt (1993) provided 

simulation results to show that Dickey-Fuller tests based on LS estimators are often sensitive and, when α + 

β <1 but is close to 1, the problem can be very serious. Ling et al. (2001) show by simulation analysis that 

tests based on ML estimators perform better than tests based on LS estimators (Dickey-Fuller). Boswijk 

(2000) considers tests for a unit root when the innovations follow a near-integrated GARCH process. As we 

have seen in agreement with Duffie et al. (1998) near-integrated GARCH processes are common in 

electricity price series. Typical unit root test rely on the constant volatility assumption. If the series has 

heterocedasticity, Least Squares estimates are not efficient, and the test might not be able to detect the (low) 

mean-reversion. The results in Boswijk (2000) point out an increase in power in unit root test (LR type of 

test) when the test takes into account the possibility of GARCH(1,1) behavior. The increase in power is 
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higher when α + β ≈ 1, specially if α is high (large short-run variation in the volatility), as it is usually the 

case with electricity price series. 

We report the results for the unit root test proposed by Boswijk  (2001). The test is a Likelihood Ratio type 

of test based on the following specification: 
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The parameter (φ - 1) describes the degree of mean-reversion. The null hypothesis is the unit root hypothesis, 

H0 : (φ  - 1) = 0, which is tested against the mean reversion alternative, H1: (φ  - 1) < 0.  

The likelihood ratio statistic for the null hypothesis is  

( ) ( )( )UR llLR θθ −⋅−= 2  

where θR and θU are the restricted and unrestricted maximum likelihood estimators respectively.  The 

limiting distribution of LR under the null hypothesis depends on a nuisance parameter. The nuisance  

parameter can be expressed (and therefore estimated) as a function of the GARCH parameters. For details on  

the limiting distribution and the calculation of the p-values, see Boswijk, (2001) and Boswijk and Doornik, 

(1999).  

 

Table 6.2.: Unit Root Tests (Boswijk, 2001) 

Series LR p-value 

NP 20,07 0,0033 

ARG 192,4 0,00 

VIC 65,71 0,00 

NZ 135,08 0,00 

SP 168,76 0,00 

PJM 320,4 0,00 

 

This test statistic clearly rejects the unit root hypothesis in all markets. 

6. 3. Unit Root Test in the Presence of Outliers: Arranz, Escribano and Marmol (2000). 

The presence of additive transitory outliers in the series biases unit root inference towards rejection 

of the unit root hypothesis, see for instance Franses and Haldrup (1994). We use a procedure recently 

proposed in the literature in order to deal with this issue. Arranz et al. (2000) have proposed to use a 

nonlinear filter (median filter) before we test for unit roots when the series has additive outliers. The 

methodology proposed by Arranz et al. (2000) consists on applying Dickey-Fuller tests on the filtered series. 

We have selected this procedure based on three arguments: this procedure is robust to the presence of 

additive outliers, it improves the performance of traditional unit root tests and it much easier to apply than 

other test based on robust estimation procedures, see for example Lucas (1995 a, b), Vogelsang (1999) and 

Ng and Perron (1998) . 
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We report the results obtained for the unit root test proposed by Arranz et al., (2000). The test consists on 2-

step: First filter the data (Xt) with the “median filter”, 

 

( )kttktt XXXmedianX +−= ,...,...,* .                                                      (19) 

 

That is, Xt*  is the filtered values of Xt where the value of k is set k = 2, following the simulation results of 

Arranz, et al. (2000). In the second step, apply an ADF-test based on the regression equation, 
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Table 6. 3.  Unit Root Test, Arranz et al., (2000) 

Series ADF Test Statistic  5% Critical Value (McKinnon critical values) 

NP -2,937 -2,863 

ARG -6,696 -2,863 

VIC -5,246 -2,863 

NZ -6,543 -2,864 

SP -4,883 -2,865 

PJM -6,788 -2,864 

 

 

Table 6.3 reports the ADF results with the corresponding critical value (at 5%). Once again, we reject with a 

95% confidence the unit root hypothesis against the mean reversion alternative for all the electricity markets. 

 

6.4. Unit Root Testing Procedures in the Presence of Outliers and GARCH(1,1) Errors: a Bootstrap 

Approach. 

One of the main limitations of those recent unit roots tests statistics is the fact that they could deal with either 

the presence of GARCH or alternatively with the presence of jumps but they cannot cope simultaneously 

with both. Our goal now is to provide a new testing strategy that is able to cope with the simultaneous 

presence of GARCH and jumps in the context of unit root testing.  
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We propose to implement this testing strategy in two step: 

First, apply the median filter of Arranz et al. (2000) to the original series (P t) without  

deterministic seasonal components on it, (Xt) in equation (12), and generate Xt
*. 

Second, apply the test proposed by Boswijk (2000) to the transformed series Xt
*. 

Since we do not know the limiting distribution, nor the small sample distribution of Boswijk´s LR test when 

it is  applied to Xt
*, we suggest to implement the LR-test by bootstrap (re-sampling) techniques. 

In particular, we are allowing the equilibrium price series to have non-constant volatility (GARCH(1,1)) and 

outliers (additive), see equations (12)-(16). In order to simultaneously take into account these two features, 

we suggest to sequentially apply both Arranz et al. (2000) and Boswijk (2001) procedures. The idea basically 

is to use a powerful test for unit root in the presence of GARCH(1,1) errors, taking also into account the 

existence of outliers and seasonality. In order to do so, we apply the median filter to the “deseasonalized” 

series  (preliminary steps). Once we have done those corrections we apply Boswijk´s unit root test combined 

with bootstrap techniques in order to obtain valid the critical values. 

Let Xt* be the equilibrium price series without seasonality and filtered with the median filter, equation (14) 

with k=2. We are interested in testing the null of unit root in the following model: 
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That is we want to test the null hypothesis H0 : (φ  - 1) = 0 against H1 : (φ  - 1) < 0 with the Boswijk’s LR 

statistic. Let }ˆ,ˆ,ˆ,ˆ{ βαωc  be the QML parameter estimates of model (16) under H0 and let *
tε be the 

bootstrap residuals from the QML residuals. Next, in order to generate bootstrap samples we have used the 

following scheme under the null hypothesis (H0):  
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We have done NB = 1000 bootstrap re-samples. For each sample we have estimated the model under the null 

and under the alternative and we have calculated their corresponding LR statistic. The bootstrap critical 

value is obtained by looking at the 5% lower tail of the empirical distribution of these Likelihood Ratios. 

In summary, the new unit root sequential testing procedure is: 

Step 1: Eliminate seasonality. Define Xt = Pt – f(t), where P t is the equilibrium electricity price series 

and f(t) is the seasonal function defined in equation (8) using the parameter values estimated from Model 4 

(Tables B.1 to B.5 of Appendix B). 

Step 2: Apply the median filter of equation (14) to Xt.. That is generate 

( )kttktt XXXmedianX +−= ,...,...,*   for k=2. 

Step 3: Estimate the model (21) by QML under the null (H0 : (φ  - 1) = 0) and under the alternative 

(H1 : (φ  - 1) < 0 ). Calculate and store the LR statistic in each case. Call this LR statistic LRZ .  
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Step 4: The QML residuals obtained under the null are used to generate NB bootstrap samples with 

the previous scheme (22). We have set NB = 1000. 

Step 5: From the bootstrap samples ( *
tZ ) we obtain bootstrap QML estimates and the corresponding 

log-likelihood values, under the null and under the alternative, and  the Likelihood Ratio (LRZ) is recorded. 

Step 6: The hypothesis H0 : (φ  - 1) = 0 is rejected if  LRZ is bigger than the corresponding bootstrap 

critical value, obtained by looking at the 5% lower tail of the empirical distribution. 

 

Table 6.4 Results for Likelihood Ratio, critical value and p-value 

Series Likelihood Ratio (LRZ) 5% bootstrap critical value p-value 

NP 7,15 6,99 0,046 

ARG 150,82 10,58 0,000 

VIC 112,95 7,44 0,000 

NZ 35,98 10,46 0,003 

SP 28,96 10,64 0,004 

PJM 248,25 25,41 0,000 

  

The results of the proposed unit root tests, see Table 6.4, allow us to reject with a 95% confidence the null 

hypothesis of unit root in all the series. Furthermore, from the estimation results of the previous section we 

know that the NordPool estimate of the autoregressive parameter, (AR(1)), is the largest and it is near a unit 

root. From the sequential testing procedure that we have proposed we observe that in the NordPool the unit 

root hypothesis can be rejected at  5% and that the p-value of the NordPool3 is highest. Since the lowest 

power in unit root test occurs when the roots are near unity, we should not be surprised by this result.  

Our purpose in the near future is to do risk management in electricity markets and for that we will consider 

that prices from the NordPool are slowly mean reverting. For other modeling purposes like forecasting, 

cointegration, etc., the mistake one can make by imposing that there is a unit root in the NordPool when in 

fact is slowly mean reverting should not be important and it could even be of some help, see for instance the 

cointegration approach of De Vany and Walls(1999). 

 

7. CONCLUSIONS AND FURTHER RESEARCH 

Deregulation in electricity sector has among other things introduced price uncertainty. The main concern 

of this paper is the source of equilibrium price uncertainty generated in each “pool” as a result of the 

evolution of the intersections of demand and supply of electricity. We have shown the high degree of 

volatility and the existence of price spikes (jumps) in several international markets. We have presented a 

general model for electricity prices in deregulated markets that jointly takes into account those factors and 

provides both empirical evidence and economic intuition for the presence of these factors, and the interaction 

among them. 
                                                 
3 For the NordPool case we also have done the bootstrap analysis with 2000 bootstrap replications. In this case, the 
critical value was 6,67 and the p-value was 0,039. 
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The main factors are: seasonality, mean-reversion, conditional heterokedasticity and jumps. We have shown 

that our model is flexible enough to incorporate the main characteristics of equilibrium electricity prices in a 

set of different markets. We have shown the adequacy of our model even for series with different degrees of 

seasonality, different degree of persistence of shocks in the equation of the mean, different jump intensities 

(different levels of kurtosis) and different markets structures (different technology mix in the power 

generators offering electricity in each market).  

We also provide a detailed analysis of mean-reversion in electricity prices. We did a comprehensive set of 

unit root tests that take into account the effect of heterokedasticity and outliers. The new unit root testing 

strategy proposed in this paper allow us to conclude that in five markets analyzed using daily data; 

Argentina, Australia (Victoria), New Zealand (Hayward), Nordpool, PJM and Spain, equilibrium electricity 

prices are mean-reverting . As expected, the lowest degree of mean-reversion is observed in the NordPool, 

but even in this case the mean reverting degree increases when we simultaneously allow for jumps and 

GARCH behavior. Although the GARCH(1,1) behavior is an important factor in general, the inclusion of 

both GARCH and jumps are needed (except for the Spanish market) to get convincing results. 

Our empirical methodology is flexible enough to model some other plausible characteristic elements of  

equilibrium electricity prices. For example, given the seasonality observed in the electricity demand and 

given the convexity of the electricity supply function, seasonal volatility could also be an interesting aspect 

to consider when  modeling equilibrium electricity prices. In our approach we tried to capture this behavior 

by means of a time-dependent intensity process. However, other alternatives are available like the 

introduction of periodic specifications of the GARCH(1,1) process (Bollerslev and Ghysels 1996). We could 

also include some kind of asymmetric GARCH behavior, see Knittel and Roberts (2001). The idea is that the 

convexity of the supply stack implies some asymmetric behavior on the volatility of electricity prices 

contingent on the sign of the shock. For example , Knittel and Roberts (2001) estimated an EGARCH (1,1) 

model (without jumps) to California electricity prices finding an “inverse leverage effect”. Therefore, a 

plausible extension could be to consider and EGARCH with jumps, in order to capture the volatility effect on 

the jump estimates. Another interesting extension would be to introduce some explanatory variables in the 

jump process like, demand or capacity of the system, which will affect the probability of observing a jump 

(λ) or the mean jump size (µJ). 

However, our next line of research in the near future is to use our estimated models in the analysis and 

quantification of risk management. Given that we are jointly taking into account two sources of uncertainty, 

jumps and stochastic volatility, and since we found some predictable component in the estimated jumps, we 

could compare the Value at Risk (VaR) estimates from our specification to those obtained with more 

established methods. In particular, we could compare the VaR estimates “a la Riskmetrics”, that only take 

into account GARCH uncertainty, with our modeling procedure that also allows for jumps of time dependent 

intensity. Furthermore on the valuation side,  since we are able to quantify the relative role of jumps and 

stochastic volatility, we could search for evidence on the type of risk premiums that are relevant for pricing 

of derivatives in electricity markets. Those questions are out of the scope of this paper and are left for future 

research. 
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APPENDIX A 

This table presents descriptive statistics for a set of daily average electricity spot prices for different 

countries. Summary statistics are reported for the price level, units are expressed in local currency. 

Series analyzed and samples: 

 

 NordPool (NP): January 1, 1993 – November 30, 1999 

 Argentina (Arg): January 1, 1995 – September 30, 2000 

 Australia, Victoria (Vic): July 1, 1994 – December 12, 1999 

 New Zealand, Hayward (NZ): October 1, 1996 – August 31, 2000 

 Spain (SP): January 1, 1998 – December 31, 2000 

U.S., PJM (PJM): April 1, 1998 – December 31, 2001 

 

 

 

Table 1. Descriptive statistics. 

Series N. Obs. Mean Med. Min. Max. Std.Dev Skew. Kurt. 

NP 2525 142,59 132,12 14,81 423,38 66,70 0,75 3,51 

ARG 2100 18,79 17,46 8,03 111,44 6,39 6,39 35,65 

VIC 1991 25,55 20,70 1,46 441,28 22,56 6,57 87,26 

NZ 1431 37,12 38,40 0,58 115,00 14,32 0,04 3,63 

SP 1096 4,52 4,42 1,62 8,54 1,04 0,91 4,48 

PJM 1370 27,92 22,57 8,19 397,34 25,58 7,60 76,44 
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Figure 1a: NordPool. Daily Average Price. 

0

100

200

300

400

500

1/01/93 5/16/94 9/28/95 2/09/97 6/24/98 11/06/99
 

 
 
Figure 1b: NordPool. Empirical Distribution (Kernel Density, Epanechnikov, h = 22,679) 
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Figure 2a: Argentina. Daily Average Price. 
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Figure 2b: Argentina. Empirical Distribution (Kernel Density, Epanechnikov, h = 1,5116) 
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Figure 3a: Australia. Daily Average Price. 
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Figure 3b: Australia. Empirical Distribution. (Kernel Density, Epanechnikov, h = 5,9686) 
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Figure 4a: New Zealand. Daily Average Price. 
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Figure 4b: New Zealand. Empirical Distribution. (Kernel Density, Epanechnikov, h = 6,2931) 
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Figure 5a: Spain. Daily Average Price. 
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Figure 5b: Spain. Empirical Distribution. (Kernel Density, Epanechnikov, h = 0,3521) 
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Figure 6a: PJM. Daily Average Price. 
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Figure 6b: PJM. Empirical Distribution. (Kernel Density, Epanechnikov, h = 4,3946 ) 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

100 200 300 400  
 

 



 26

 APPENDIX B: MODELS AND EMPIRICAL RESULTS 

Model 1: Autoregressive (AR(1)), constant volatility model with no jumps (pure diffusion model). 

Pt = f(t) + Xt 

Xt = φ Xt-1 + σ ε1t 

ε1t ∼ i.i.d. N(0,1) 

 Model 2: Autoregressive (AR(1)), GARCH(1,1) model with no jumps. 

Pt = f(t) + Xt 

Xt = φ Xt-1 + h0.5
t-1 ε1t 

ht= ω + α εt-1 + β ht-1 

ε1t ∼ i.i.d. N(0,1) 

Model 3: Autoregressive (AR(1)), pure jump model. 

Pt = f(t) + Xt       

φ Xt-1+σ · ε1t; prob. 1- λ 

Xt =                                                                     

φ Xt-1+σ · ε1t+µJ+σJ · ε2t ; prob.  λ 

ε1t , ε2t ~ i.i.d. N(0,1) 

 Model 3b: Autoregressive (AR(1)), pure jump model, intensity of the Poisson process time 

dependent. 

 

Pt = f(t) + Xt       

φ Xt-1+σ · ε1t; prob. 1- λt 

Xt =                                                                     

φ Xt-1+σ · ε1t+µJ+σJ · ε2t ; prob.  λt 

λt  = L1 ·  wintert + L2 ·  fallt + L3 ·  spring t + L4 ·  summert  

ε1t , ε2t ~ i.i.d. N(0,1) 

 

Model 4: AR(1), GARCH(1,1) model with jumps, intensity of Poisson process constant. 

Pt = f(t) + Xt       

φ · Xt-1+ht
1/2 ε1t; prob. 1- λ 

Xt =                                                                       

φ · Xt-1+ht
1/2 ε1t+µJ+σJ · ε2t ; prob.  λ 

ht=ω + α · εt-1 + β ·  ht-1        

ε1t , ε2t ~ i.i.d. N(0,1). 
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Model 4b: Autoregressive (AR(1)), GARCH(1,1) model with jumps, intensity of the Poisson 

process time dependent. This is general the model we have presented previously (equations (4) – 

(7)). 

Pt = f(t) + Xt 

φ ·  Xt-1 + ht
1/2 ε1t; prob. 1- λt 

Xt = 

 φ · Xt-1 + ht
1/2 ε1t+µJ+σJ · ε2t ; prob.  λt 

ht = ω + α ·  εt-1 + β ·  ht-1    

λt=L1 ·  wintert + L2 ·  fallt + L3 ·  spring t + L4 ·  summert  

ε1t , ε2t ~ i.i.d. N(0,1). 
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APPENDIX B. Estimation Results 

 

Table B.1: Estimation Results (NORDPOOL). 

 Model 1 Model 2  Model 3  Model 3b  Model 4  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

B0 137,04 63,03 111,81 195,95 110,14 65,57 111,75 66,71 111,73 181,77 

φ 0,93 134,69 0,82 57,04 0,90 114,22 0,90 117,43 0,82 60,61 

D1 7,99 4,16 7,33 13,35 7,56 5,48 7,51 5,38 6,41 11,07 

C1 30,02 14,77 38,68 58,41 37,13 28,69 40,18 28,39 40,29 64,36 

C2 221,09 63,86 200,13 237,81 213,12 98,66 212,12 93,70 201,23 233,23 

σ 34,26 74,35   18,50 24,03 19,22 28,84   

ω  10,30 8,40    6,03 3,67 

α  0,41 10,58    0,41 10,33 

β  0,59 22,98    0,58 19,32 

λ    0,28 5,65  0,04 0,85 

L1      0,14 4,21   

L2      0,29 5,67   

L3      0,26 5,23   
L4      0,31 5,14   

µJ    50,78 6,43 53,93 6,94 15,89 0,91 

σJ    33,84 7,82 33,46 7,31 12,82 1,81 

LL -12505 -11131  -12177  -12165  -11095  
SC 25057  22324,7  24424,5  24424  22278,2  
 

Table B.2: Estimation Results (ARGENTINA ). 

 Model 1  Model 2 Model 3  Model 3b  Model 4  Model 4b  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

B0 19,36 42,39 18,75 184,24 19,26 99,21 19,27 99,19 19,25 137,14 19,22 136,12 

φ 0,61 96,36 0,56 33,44 0,58 53,89 0,58 53,88 0,55 23,79 0,55 23,17 

B2 -0,0021 -8,12 -0,0022 -39,33 -0,0028 -20,41 -0,0028 -20,51 -0,0026 -24,49 -0,0026 -24,59 

D1 2,14 6,64 1,05 12,32 1,34 10,62 1,34 10,74 1,13 13,19 1,16 13,35 

C1 -2,03 -6,81 -1,07 -15,16 -1,00 -8,97 -0,99 -9,10 -0,78 -8,89 -0,76 -8,70 

C2 103,88 10,58 170,65 45,64 140,79 23,47 145,50 23,10 139,38 20,88 142,99 20,11 

C3 -1,71 -6,21 -0,74 -9,85 -0,64 -5,90 -0,57 -5,24 -0,61 -7,11 -0,57 -6,54 

C4 131,69 25,85 145,06 57,60 126,58 26,24 128,46 24,09 122,63 27,98 122,33 26,14 

σ 4,55 216,10  1,90 50,84 1,90 52,42     

ω   0,95 14,87     0,797 10,03 0,83 10,11 

α   0,85 24,15     0,486 13,56 0,47 13,27 

β   0,37 29,75     0,329 11,35 0,32 10,18 

λ    0,11 11,09   0,049 4,51   

L1      0,087 5,21   0,037 2,92 

L2      0,070 4,60   0,037 2,68 

L3      0,028 2,93   0,027 2,60 

L4      0,264 10,07   0,125 4,66 

µJ    8,09 7,82 8,00 7,82 7,01 3,55 6,80 4,46 

σJ    10,10 42,73 10,07 41,60 6,50 6,19 6,48 7,63 

LL -6148,1  -5052,2 -5148,3  -5096,6  -4822,6  -4810,8  
SC 12365,0  10188,5 10388,4  10307,9  9752,3  9751,6  
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Table B.3: Estimation Results (AUSTRALIA (Victoria)).  

 Model 1  Model 2 Model 3  Model 3b  Model 4  Model 4b  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

B0 31,64 15,02 18,99 60,72 26,95 35,61 26,63 35,84 24,22 41,70 25,27 44,51 

φ 0,47 49,27 0,57 45,04 0,55 57,48 0,54 56,18 0,61 30,98 0,61 31,09 

B2 -0,011 -7,08 -0,002 -11,27 -0,008 -14,52 -0,008 -14,38 -0,0062 -14,63 -0,0067 -15,78 

D1 6,82 5,53 2,13 9,23 5,20 10,08 5,07 10,02 3,17 9,94 3,30 10,20 

C1 6,37 4,83 2,23 10,51 3,59 8,13 3,37 7,70 2,06 6,31 5,05 15,05 

C2 53,82 10,61 110,27 51,27 55,42 15,79 57,53 15,62 45,55 10,62 46,50 13,07 

C3 4,32 3,43 7,29 38,94 4,90 11,47 5,08 11,70 6,00 18,04 2,81 8,45 

C4 48,50 2,74 63,72 44,56 58,03 11,02 59,78 12,12 52,13 18,02 37,10 11,56 

σ 18,18 256,26    7,81 50,78     

ω   2,31 7,06     3,23 6,51 3,72 7,01 

α   1,07 33,89     0,32 10,75 0,33 10,92 

β   0,49 77,96     0,62 29,45 0,61 28,41 

λ    0,07 9,14   0,019 4,86   

L1      0,141 6,49   0,030 2,59 

L2      0,048 4,01   0,015 2,35 

L3      0,031 2.81   0,006 1,18 

L4      0,099 5,95   0,021 2,88 

µJ    29,73 3,86 28,84 3,95 64,03 1,90 66,83 1,68 

σJ    53,98 35,80 52,22 37,48 84,06 8,17 86,24 6,87 

LL -8582,6  -7566,8 -7527,5  -7512,7  -7161,7  -7159,2  
SC 17228,2  15210,6 15139,0  15130,4  14421,4  14447,4  

 

Table B.4: Estimation Results (NEW ZEALAND (Hayward)).  

 Model 1  Model 2 Model 3  Model 3b  Model 4  Model 4b  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 
B0 43,94 36,25 44,72 64,25 45,47 48,16 44,77 43,97 46,82 112,15 46,82 112,93 
φ 0,62 47,94 0,61 23,70 0,64 45,22 0,65 42,54 0,57 22,89 0,57 22,67 

B2 -0,013 -10,13 -0,011 -15,60 -0,015 -16,17 -0,014 -13,45 -0,017 -31,62 -0,017 -31,52 
D1 3,35 5,05 3,25 6,53 2,44 4,36 2,77 4,67 2,83 9,56 2,82 9,57 

C1 -4,05 -6,48 -5,69 -15,26 -5,27 -10,10 -4,91 -8,43 -4,57 -15,12 -4,53 -14,97 

C2 52,59 5,83 64,60 17,62 40,30 7,14 48,73 7,62 46,32 11,26 46,62 11,20 
C3 -2,50 -3,82 2,81 7,51 1,71 3,24 1,93 3,33 -1,07 -3,38 -1,03 -3,26 

C4 -5,17 -0,72 -120,29 -30,96 458,06 53,76 455,55 55,96 22,01 2,51 21,48 2,36 

σ 9,87 91,25  5,43 17,64 7,35 29,44     

ω   8,14 9,42     1,11 3,60 1,13 3,64 

α   0,40 9,91     0,36 8,84 0,36 8,61 

β   0,60 25,77     0,59 19,75 0,58 18,93 

λ    0,42 10,71   0,10 5,76   

L1      0,066 1,88   0,096 3,40 

L2      0,169 3,61   0,114 3,17 

L3      0,279 5,03   0,089 2,89 

L4      0,171 3,58   0,145 3,71 

µJ    0,99 1,21 1,64 0,99 2,97 1,44 2,92 1,49 

σJ    12,75 36,94 15,94 20,20 15,51 22,40 15,18 22,34 

LL -5291,8  -5184,0 -5218,3  -5212,1  -4984,4  -4983,6  
SC 10649,0  10447,9 10523,8  10533,2  10070,5  10090,7  
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Table B.5: Estimation Results (SPAIN). 

 Model 1  Model 2 Model 3  Model 4  Model 4b  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

B0 3,32 39,24 3,81 91,52 3,44 47,21 3,62 32,90 3,97 75,94 
φ 0,60 29,15 0,53 16,75 0,62 32,67 0,55 11,76 0,53 17,10 

B2 0,001 10,54 0,0004 5,86 0,0008 8,41 0,0006 4,51 0,0002 2,73 

D1 0,787 29,13 0,56 14,36 0,71 14,37 0,55 7,68 0,53 16,28 

C1 0,18 3,26 0,15 4,94 0,16 3,46 0,13 2,07 0,17 5,79 

C2 70,98 4,58 72,57 12,87 49,14 3,07 44,28 1,68 90,70 8,29 

C3 -0,43 -8,33 -0,16 -4,99 -0,36 -7,92 -0,25 -4,54 -0,12 -3,87 

C4 -2129,3 -639,3 -2112,2 -383,6 -2123,6 -591,4 -2120,3 -307,7 -2110,9 -267,4 

σ 0,67 58,26  0,52 20,14     

ω   0,018 6,66   0,034 1,95 0,002 0,80 

α   0,18 6,66   0,14 2,76 0,16 5,79 

β   0,78 32,88   0,85 17,05 0,81 29,09 

λ    0,193 3,58 0,0002 0,00   

L1        0,45 3,03 

L2        0,25 2,23 

L3        0,08 1,06 

L4        0,15 2,10 

µJ    0,378 2,61 0,61 0,00 -0,18 -2,16 

σJ    0,919 11,49 0,41 0,00 0,50 8,26 

LL -1107,9  -942,1 -1077,8  -1010,3  -915,2  

SC 2278,8  1961,2 2239,6  2118,6  1949,4  

 

Table B.6: Estimation Results (PJM).  

 Model 1  Model 2 Model 3  Model 3b  Model 4  Model 4b  

Parameter Coeff. t-stat. Coeff. t-stat. Coeff. t-stat . Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

B0 17,59 4,90 8,70 22,60 15,92 22,26 15,88 21,60 16,70 32,71 16,69 32,25 

φ 0,57 85,02 0,39 9,69 0,39 41,42 0,39 39,88 0,49 17,67 0,49 17,23 

B2 0,0072 2,32 0,0079 15,76 0,008 11,71 0,008 11,83 0,006 10,50 0,006 10,31 

D1 7,45 3,12 4,11 12,99 3,06 6,67 2,99 6,43 2,33 6,50 2,33 6,47 

C1 5,79 2,62 4,91 22,56 1,46 4,21 1,28 3,65 0,97 3,12 0,95 3,01 

C2 -68,75 -6,38 -128,08 -84,34 -91,41 -12,99 -95,33 -11,69 105,50 12,07 103,58 11,56 

C3 5,61 2,38 -7,21 -19,41 2,05 5,78 2,12 6,09 -3,39 -11,42 -3,29 -11,00 

C4 -733,18 -22,36 1452,43 777,25 -685,66 -68,04 -682,03 -67,76 556,72 101,39 557,43 98,16 

σ 20,29 14,92  5,99 42,95       

ω   1,42 2,06       3,96 7,30 

α   1,117 16,80       0,31 9,80 

β   0,498 27,02       0,56 25,67 

λ    0,065 8,02   0,027 4,43   

L1      0,07 4,11   0,01 1,20 

L2      0,01 1,70   0,01 1,24 

L3      0,02 1,85   0,03 2,41 

L4      0,14 6,61   0,06 3,42 

µJ    46,34 4,28 47,13 4,27 54,98 1,91 54,35 1,83 

σJ    65,81 13,37 67,00 12,66 67,05 4,94 66,67 4,50 

LL -6050,03  -5285,00 -4836,07  -4809,47  -4686,32  -4678,13  
SC 12165,06  10649,45 9758,81  9727,28  9473,76  9479,04  
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Table B. 7: Generalized Likelihood Ratio Tests * (p-values in parenthesis). 

Series [1] χ2
(2) [2] χ2

(3) 

 

[3] χ2
(5) 

 

[4] χ2
(3) 

 

[5] χ2
(2) 

 

[6] χ2
(3) [7] χ2

(3) 

NordPool 

 

2748 
(0.00) 

656 
(0.00) 

2820 
(0.00) 

72 
(0.00) 

2164 
(0.00) 

24 
(0.00) 

N.A. 

Argentina 

 

2191 
(0.00) 

1999,6 
(0.00) 

2651 
(0.00) 

459,2 
(0.00) 

651,4 
(0.00) 

103,4 
(0.00) 

23,6 
(0.00) 

Australia 

(Victoria) 

2031 
(0.00) 

2110 
(0.00) 

2841 
(0.00) 

810,2 
(0.00) 

731,6 
(0.00) 

29,6 
(0.00) 

5 
(0.17) 

New Zealand  

(Hayward) 

215,6 
(0.00) 

147 
(0.00) 

614,8 
(0.00) 

399,2 
(0.00) 

467,8 
(0.00) 

12,4 
(0.006) 

1,6 
(0.659) 

Spain 331,6 
(0.00) 

60,2 
(0.00) 

195,2 
(0.00) 

N.A. 135 
(0.00) 

N.A. 190,2 
(0.00) 

PJM 1530,1 
(0.00) 

2427,9 
(0.00) 

2727,4 
(0.00) 

1197,4 
(0.00) 

299,5 
(0.00) 

 

53,2 
(0.00) 

16,4 
(0.00) 

 

 

                                                 
* [1] Constant variance, no jump model against GARCH(1,1), no jump model; [2] Constant variance, no jump model against pure 
jump model; [3] Constant variance, no jump model against GARCH(1,1) jump(λ) model; [4] GARCH(1,1) model against 
GARCH(1,1) jump(λ) model; [5] Pure jump model against GARCH(1,1) jump(λ) model; [6] Pure jump model against jump(λ(t)); 
[7] GARCH(1,1) jump(λ) model against GARCH(1,1) jump(λ(t)) model. P-values are given in parenthesis. 



 32

 

REFERENCES 

Arranz, M. A., Escribano, A., and Mármol,F. (2000), “Effects of Applying Linear and Nonlinear Filters 

on Tests for Unit Roots with Additive Outliers”, Working Paper 00-86, Statistics and Econometrics 

Series, Universidad Carlos III. 

Bhanot, K. (2000), “Behavior of Power Prices: Implications for the Valuation and Hedging of Financial 

Journal of Risk, 2 , 43-62. 

Bergstrom, A. R. (1988), “The History of Continuous-Time Econometric Models”, Econometric 

Theory, 4:3, 365-383.  

Berndt, E.K., Hall, B.H., Hall, R.E., and Hausman, J.A. (1974), “Estimation and Inference in Non-

Linear Structural Models”. Annals of Economic and Social Measurement, 4 , 653-665. 

Birnbaum, L., Del Aguila, J.Mª., Domínguez, G., and Lekander, P. (2002), “Why Electricity Markets 

McKinsey Quarterly 1. 

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heterokedasticity”, Journal of 

Econometrics, 31 , 307-327. 

Bollerslev, T., Engle, R.F., and Nelson, D.B. (1994), “ARCH Models”, in R.F. Engle and D.L. 

McFadden (eds.), Handbook of Econometrics, vol. 4, Amsterdam: Elsevier. 

Bollerslev, T., and Ghysels, E. (1996), “Periodic Autoregressive Conditional Heteroscedasticity”, 

Journal of Business and Economic Statistics, 14 , 139-151. 

Borenstein, S. (2001), “The Trouble with Electricity Markets (and some Solutions)”, POWER Working 

Paper 081, University of California Energy Institute. 

Boswijk, P.H. (2000), “Testing for a Unit Root with Near-Integrated Volatility”, unpublished 

manuscript, Department of Quantitative Economics, Universiteit van Amsterdam. 

Boswijk, P.H., and Doornik, J.A. (1999), “Distribution Approximations for Cointegration Tests with 

Stationary Exogenous Regressors”, Discussion Paper 99-013/4, Tinbergen Institute. 

Carnero, A., Peña, D., and Ruiz, E. (2001), “Outliers and Conditional Autoregressive Heterocedasticity 

-07, Universidad Carlos III. 

Carnero, A., Peña, D., and Ruiz, E. (2002), “Is Stochastic Volatility more flexible than GARCH?”, WP 

01-08, Universidad Carlos III. 

Clewlow, L., and Strickland, C. (2000), Energy derivatives: Pricing and Risk Management, Lacima 

Publications. 

Das, S.R. (2001), “The Surprise Element: Jumps in Interest Rate Diffusions”,  Journal of Econometrics, 

106,  27-65. 

Das, S.R., and Sundaram, R.K. (1999), “Of Smiles and Smirks: a Term Structure Perspective”, Journal 

of Financial and Quantitative Analysis, 34 , 211-239. 

De Vany, A. S., and Walls, D.W. (1999), “Cointegration Analysis of Spot Electricity Prices: Insights on 

Energy Economics, 21, 435-488. 



 33

Dickey, D.A., and Fuller, W.A. (1979), “Distribution of the Estimators for Autoregressive Time Series 

with a Unit Root”, Journal of the American Statistical Association, 74 , 427-31.  

Duffie, D., Gray, S., and Hoang, P. (1998), “Volatility in Energy Prices”, Managing Energy Price Risk , 

RiskPublications, Second Edition. 

Fabra, N. and Toro, J. (2001), “Price Wars and Collusion in the Spanish Electricity Spot Market”, 

working paper, IDEI. 

Federico, G., and Whitmore, A. (1999), “The Importance of Market Structure and Incentives in 

Energy Modelling and the Management of Uncertainty, 

RiskPublications 

Franses, P. H., and Haldrup, N. (1994), “The Effects of Outliers on Unit Root and Cointegration”, 

Journal of Business and Economic Statistics, 12 , 471-478. 

Hogan, W. W. (1998), “Competitive Electricity Market Design: a Wholesale Primer”, unpublished 

manuscript, Harvard Electricity Group. 

Hotta, L. K., and Tsay, R. (1998), “Outliers in GARCH Process”, unpublished manuscript. 

Johnson, B., and Barz, G. (1999), “Selecting Stochastic Process for Modelling Electricity Price

Energy Modelling and the Management of Uncertainty, RiskPublications. 

Jorion, P. (1989), “On Jump Processes in the Foreign Exchange and Stock Markets”, Review of 

Financial Studies, 1, 427-445. 

Karesen, K.F., and Husby, E. (2000), “A Joint State-Space Model for Electricity Spot and Futures 

Prices”, Report no. 965, Norwegian Computing Center. 

Kim, K., and Schmidt, P. (1993), “Unit Root Tests with Conditional Heteroscedasticity”, Journal of 

Econometrics, 59, 287-300. 

Knittel, C. R., and Roberts, M. (2001), “An Empirical Examination of Deregulated Electricity Prices”, 

POWER WP-087, University of California Energy Institute. 

Leon, A., and Rubia, A. (2001), “Comportamiento del Precio y Volatilidad en el Pool Eléctrico 

Español”, Instituto Valenciano de Investig -2001-04, (www.ivie.es) 

Ling, S., Li, W.K. and McAleer, M. (2001), “Estimation and Testing For Unit Root Processes with 

GARCH(1,1) Errors: Theory and Monte Carlo Evidence”, Discussion Paper No 544, Institute of 

Social and Economic Research, Osaka University. 

Lucas, A. (1995), “An outlier robust unit  root test with an application to the extended Nelson-Plosser 

data”, Journal of Econometrics, 66, 153-173. 

Lucas, A. (1995b), “Unit root tests based on M Econometric Theory, 13, 331-346. 

Lucia, J., and Schwartz, E. (2000), “Electricity Prices and Power Derivatives: Evidence from the Nordic 

Review of Derivatives Research, 5 (1), 5-50. 

Melino, A. (1994), “Estimation of Continuous-time Models in Finance”, in Advances in Econometrics, 

Sixth World Congress, Volume II, edited by C. Sims, Cambridge University Press, Cambridge. 

Neely, C. J. (1999), “Target Zones and Conditional Volatility: the Role of Realignments”, Journal of  

Empirical Finance,  6:2, 177-192. 



 34

Nelson, D. B. (1990), “Stationarity and Persistence in the GARCH(1,1) Model”, Econometric Theory, 6, 

318-344. 

Ng, S., and Perron, P. (1998), “Lag Length Selection and the Construction of Unit Root Tests with 

 Working paper 319, Boston University. 

Nieuwland, F., Verschoor, W., and Wolff, C. (1994), “Stochastic Trends and Jumps in EMS Exchange 

Journal of International Money and Finance, 13, 699-727. 

Pantula, S. G. (1989), “Estimation of Autoregressive Models with ARCH Errors”, Sankhya B, 50, 119-

138. 

Peters, T.A. and Veloce W. (1998), “Robustness of Unit Root Tests in ARMA Models with Generalized 

ARCH Errors”, unpublished manuscript, Brock University. 

Pindyck, Robert S. (1999), “The Long-Run Evolution of Energy Prices”, The Energy Journal,  20, 1-27. 

Pirrong, C., and Jermakyan, M. (1999), “The Price of Power: The Valuation of Power and Weather 

Derivatives”, unpublished manuscript, Olin School of Business, Washington University. 

Schwartz, E. (1997), “The Stochastic Behavior of Commodity Prices: Implications for Valuation and 

Hedging”, Journal of Finance, 52, 923-973. 

Schwartz, E., and Smith, J.E. (2000),  “Short-Term Variations and Long-Term Dynamics in Commodity 

Prices”, Management Science, 46, 893-911. 

Verhoeven, P., and McAleer, M. (2000), “Modelling Outliers and Extreme Observations for ARMA-

GARCH Process”, unpublished manuscript. 

Vlaar, P., and Palm, F.C. (1993),  “The Message in Weekly Exchange Rates in the European Monetary 

System: Mean Reversion, Conditional Heterokedasticity and Jumps”, Journal of Business and 

Economic Statistics, 11, 351-360. 

Vogelsang, T.J. (1999), “Two Simple Procedures for Testing for a Unit Root when there are Additive 

Journal of Time series Analysis, 20, 173-192. 

Wolak, F. (1997), “Market Design and Price Behavior in Restructured Electricity Markets: an 

International Comparison”, working paper,   available at www-leland.stanford.edu/~wolak. 

 


