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Abstract 
This paper studies the transmission of monetary policy to industrial output in the UK. In  
order to capture asymmetries, a system of threshold equations is considered. However, 
unlike previous research, endogenous threshold parameters are allowed to be different 
for each equation. This approach is consistent with economic intuition and is shown to 
be of tangible importance after suitable econometric evaluation. Results show evidence 
of cross-sectional differences across industries and asymmetries in some sectors. These 
findings contribute to the debate about the importance of alternative economic theories 
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to the analysis of monetary transmission.  
 

Keywords: vector autoregression, threshold models, impulse-response functions, 
sectoral disaggregation. 
 
JEL Codes: C3, E3, L1. 
 
1 We appreciate the comments by Terry Mills, Alex Cukierman, Zvi Hercowitz, Michel 
Strawchinsky and participants at seminars at The University of Newcastle upon Tyne, Tel-Aviv 
University, Bank of Israel, Central Bank of Chile, Universidad Católica de Chile and The Royal 
Economic Society Annual Conference 2006. We gratefully acknowledge the use of the Gauss 
programs provided by Bruce Hansen in his webpage (http://www.ssc.wisc.edu/~bhansen). Any 
remaining errors are the authors’ responsibility. 
 
2 Corresponding author: Juan de Dios Tena, Universidad de Concepcion, Departamento de 
Economia, Victoria 471 - Oficina 242 - Concepcion, Chile, email: juande@udec.cl and 
Universidad Carlos III, Departamento de Estadística, C/Madrid 126. 28903 Getafe (Madrid), 
Spain, e-mail: jtena@est-econ.uc3m.es; A, R, Tremayne, University of York and University of 
Sydney 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The use of the vector autoregressive (VAR) approach advocated by Sims (1980)
has become a familiar tool in the field of monetary policy; see Christiano et
al. (1999) for a discussion on VAR identification for the linear case and, inter
alia, Sims (1992) and Bernanke and Blinder (1992) for relevant examples. An
important feature of this methodology is that all relevant economic variables in
the system are endogenous. However, a limitation of traditional VAR models lies
in the fact that they are built on the assumption of linearity. In this setting, this
means between monetary policy and other fundamentals. This is a drawback
as economic theory suggests the possibility of asymmetries in the monetary
transmission mechanism.
Attention might be drawn to three different strands of literature in this con-

text. The first of these refers to the presence of ‘frictions’ in credit markets. The
leading contributions in this field have been made by authors such as Green-
wald and Stiglitz (1993), Bernanke and Blinder (1992) and Kiyotaki and Moore
(1997). According to this theory, asymmetric information in the credit market
leads to a difference between the cost of internal and external finance that de-
pends on the financial position of the borrowers. Thus, the effect of monetary
shocks depends largely on the business cycle, as financial restrictions are more
likely in recession periods. Bernanke et al. (1996) suggest that, in periods of
financial restrictions, monetary shocks can have a long lasting effect on real
activity. They call this phenomenon the financial accelerator.
Others, including Ball and Mankiw (1994), consider a theoretical model

based on the assumption of a convex short-run aggregate supply curve. Con-
vexity implies that the slope of this curve is steeper at higher levels of output
and inflation. Asymmetries arise because a shift in aggregate demand induced
by a monetary shock will have a stronger effect on output and a weaker effect
on inflation when the economy is in recession, with the converse holding when
the economy is in expansion.
The third strand of literature highlights the importance of uncertainty and

its effects on investment and production decisions. Abel and Eberly (1999)
present a model where firms only invest if the expected marginal value product
exceeds the user cost of capital which, under irreversibility, depends positively
on uncertainty about future demand. They show that, under general conditions,
economic uncertainty weakens the response of investment to demand shifts.
This paper presents a methodology for estimating asymmetries in the trans-

mission of monetary shocks to industrial output using a system of simultaneous
threshold equations for the UK. We choose threshold models because they are
an obvious way to capture asymmetries in the transmission of monetary shocks.
Moreover, they can be considered a simplification of other, more sophisticated,
nonlinear models. Our work is in similar vein to the recent papers by Balke
(2000) and Atanasova (2003). They propose threshold vector autoregressive
(TVAR) models requiring that the same threshold governs all the equations in
the system. They study monetary transmission and find evidence of asymme-
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tries depending on the state of the business cycle for the US and UK respectively.
In this paper, the assumption of a common threshold is relaxed, allowing

the different equations to have different threshold parameters. There are sound
economic reasons for proceeding in this way. For example, Cukierman and
Muscatelli (2003) and Dolado et al. (2000) find evidence of nonlinearities in the
Taylor rule and suggest that this might be due to the presence of asymmetric
preferences with respect to output and inflation by policy makers. Further,
Schaling (1999) and Dolado et al. (2005) consider the case where the equation
that relates inflation to output and other fundamentals, the so-called Phillips
curve, is nonlinear, but convex, and study how this can generate nonlinearities in
the interest rate equation. In this context, given that economic theory suggests
that different structural equations may have different types of nonlinearities, it
is natural to specify and estimate a structural system that allows each equation
to have its own threshold. More specifically, we consider a VAR system in which
estimated parameters in each equation are allowed to change depending on the
position of aggregate output growth with respect to an endogenous threshold.
The methodology in Hansen (1996, 2000) is used to test the null of linearity

and a common threshold for each of the equations. If all the equations in the
system are nonlinear but have the same threshold, explanatory variables are
split into two different groups according to the value of the common threshold
variable. In this case, slope parameters can be efficiently estimated by ordinary
least squares (OLS) equation by equation. However, when some equations ex-
hibit no threshold effects and/or a common threshold cannot be imposed, the
explanatory variables in each equation are different and OLS no longer provides
efficient estimation of the parameters of the system. Our results suggest that a
common threshold parameter cannot be imposed in all equations of the system
and that the null of linearity can be rejected in all cases except for the inflation
equation. Thus, for efficient estimation, the system should be fitted by gen-
eralized least squares (GLS). The results from this procedure are then used to
obtain reactions to interest rate shocks using the approach of Koop et al. (1996)
for 13 manufacturing sectors in the UK.
Our paper combines two different approaches in the empirical literature on

monetary transmission. On one hand, it is clearly related to the empirical
studies on asymmetries in the transmission of monetary policy mentioned above.
But our analysis is also closely connected to Barth and Ramey (2001) and
Dedola and Lippi (2005) who, respectively, find significant differential effects of
monetary policy shocks across US and OECD industries.
The results here show evidence of both cross-sectional differences and asym-

metric responses to monetary shocks for some sectors, dependent on the business
cycle. A main feature of asymmetric sectors is that they either have low levels of
concentration, or are highly technological in nature. The findings are consistent
with both theories that focus on the role of irreversible investment under uncer-
tainty and explanations based on financial restrictions. Under the first theory,
economic uncertainty affects investment decisions and the responses of investors
to demand shifts. Then asymmetries might be expected to be observed in highly
technological industries, as they usually operate in unstable environments. The
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second theory emphasizes the role of credit constraints to explain asymmetries.
In this context, it is plausible to anticipate the presence of nonlinearities in small
firms as they are more likely to suffer financial restrictions.
The remainder of the paper is organized as follows. Section 2 considers

the main problems in extending the traditional VAR approach to a framework
that allows for nonlinearities in the different equations of the system. The next
section presents the data in the analysis and explains some of their features.
Section 4 discusses the methodology of Hansen (1996, 2000) for the estimation
and testing of threshold models. Based on this approach, for a given equation we
can test the null of nonlinearity and make inference on the estimated threshold
parameters. This is then used for the specification of a simple system of macro-
economic equations. Section 5 considers the sectoral transmission of monetary
policy in the UK. Evidence of asymmetries is mainly found in industries with
low concentration. Some concluding remarks follow in Section 6.

2 Econometric specification
Consider a vector autoregression (VAR) for a n-dimensional vector, Yt

Yt= C+B1Yt−1+...+BpYt−p+at, Eata0t= Σ, (1)

where: p is a positive integer; Yt is a (nx1) vector of jointly determined vari-
ables; Bi is a (nxn) matrix of parameters; and at is a vector of zero mean,
serially uncorrelated disturbances whose symmetric variance-covariance matrix
has typical element σij . Efficient estimates of the parameters of such a system
with common degrees can be obtained by running OLS equation by equation.
From model (1) it is not possible to compute the dynamic response function

of Yt to the fundamental shocks in the economy. This because the elements of
at are, in general, contemporaneously correlated and one cannot presume that
they correspond solely to a particular (single) economic shock. To deal with this
issue, a structural model is typically considered for economic analysis. Such a
model is defined by

A0Yt= Λ+A1Yt−1+...+ApYt−p+εt, (2)

where Eεtε0t= A0ΣA
0
0= I, an nth order identity matrix. The parameter ma-

trices and errors in (1) and (2) are linked by: Bi= A
−1
0 Ai; C = A

−1
0 Λ; and

at= A
−1
0 εt with εt being a (nx1) vector of orthogonal and standarized struc-

tural disturbances.
Once consistent estimators of the Bi’s in (1) are obtained, one can estimate

Σ from the fitted residuals. Information about the matrix A0 is inextricably
linked with that in Σ via the relationship Σ = A−10

¡
A−10

¢0
. However, A0 has

n2 parameters while the symmetric matrix Σ has, at most, n(n+ 1)/2 distinct
elements. Christiano et al. (1999) provide a detailed discussion of this identifi-
cation problem. In order to identify the structural model one usually imposes a
set of linear restrictions across the elements of the individual rows of A0. The
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concomitant order condition, (i), specifies that it is necessary to specify at least
n(n− 1)/2 restrictions, to get a sufficient condition for identification. Together
with this condition, it is necessary, (ii), that the diagonal elements of A0 be
positive. However, these conditions are still not sufficient for identification. It is
also necessary to ensure, (iii), that a neighbourhood of A0 cannot contain other
matrices that fulfil the aforementioned conditions. This is ensured by imposing
the additional restriction that the matrix derivative with respect to A0 of the
equations defining Σ = A−10

¡
A−10

¢0
is of full rank. By doing this, local identi-

fication is established. Global identification must be established on a case by
case basis. As discussed by Christiano et al. (1999) sometimes this can be done
analytically but, in many circunstances, ad hoc numerical search is necessary to
determine if there are different matrices that fulfil the three restrictions (i)-(iii)
in a neighbourhood of A0. However, if the identification problem only involves
systems of linear equations, local identification obtains if, and only if, global
identification obtains.
When the model is identified, assuming Yt to be covariance-stationary, one

can use model (2) to compute the responses of variables in Yt to fundamental
shocks in different periods. Thus, computing impulse response functions in the
linear case is straightforward for: 1) the parameters of the reduced form model
(1) can be estimated efficiently equation by equation by OLS, as the regressors
of the different equations are the same; and 2) dynamic response functions of
Yt to fundamental shocks can be obtained analytically from the moving average
representation of model (2).
However, these two properties would not hold if the different equations in

(1) were nonlinear. In order to see this, consider a specific kind of nonlinearity
given by threshold vector autoregressive (TVAR) models1 . The purpose of such
threshold models is to allow for important nonlinearities in conditional expec-
tations without requiring over liberal parameterizations. Moreover, they are
relatively easy to specify and estimate the parameters of by comparison with
many other nonlinear models for time series. This nonlinear threshold extension
of model (1) is given by

Yt =

⎡⎢⎢⎢⎢⎢⎢⎣
y1t
.
.
.
.
ynt

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

Xt(γ1)
0 0 . . . 0

0 Xt(γ2)
0 . . . .

. . . . . .

. . . . . .

. . . . Xt(γn−1)
0 0

0 . . . 0 Xt(γn)
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
β1
.
.
.
.
βn

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

a1t
.
.
.
.

ant

⎤⎥⎥⎥⎥⎥⎥⎦
(3)

where

Xt(γi)
0 =

¡
X 0
tI(qt−d ≤ γi) X 0

tI(qt−d > γi)
¢
,

X 0
t = (1, y1t−1, ..., y1t−p, ..., ynt−1, ..., ynt−p),

1 See Tong (1983) for an introduction to threshold models. In threshold models one can
allow the relationship to be piece-wise linear but globally nonlinear. Regimes are determined
by the position of a given variable with respect to one, or several, thresholds.
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qt−d and γi denote the threshold variable q with delay d and the threshold para-
meter in equation i, respectively; I(.) is an indicator function; βi is a 2(np+1)
vector of slope parameters in equation i. Notice that, unlike the Bi parameters
at (1), βi has two blocks of size np+ 1 and each block affects yit depending on
whether qt−d is greater or less than (or equal to) γi. Finally, at = (a1t, ..., ant)
is as at (1).
A standard threshold vector autoregressive (TVAR) model can be defined

as a special case of (3) where the threshold parameter in the different equations
is the same, (i.e. γ1 = γ2 = ... = γn). Then, all the regressors in each equation
are the same and OLS is an efficient estimator. However, if this is not the case,
efficiency can be gained by using GLS.
When a model is linear, impulse response functions can be obtained analyti-

cally and are symmetric and independent of the history of the process. However,
with threshold models, a different approach needs to be employed because the
impact of fundamental shocks depends on the sign and size of the shock as well
as on the history of the process. Koop et al. (1996) provide a discussion on
this issue and propose a methodology based on Monte Carlo simulation of an
equation system. Their suggested procedure is essentially based on the average
between the simulation of a nonlinear system with and without imposing a par-
ticular fundamental shock in one of the equations. Impulse response functions
with standard threshold VARs can be found in Balke (2000) and Atanasova
(2003) and the procedure is extended here to permit differential thresholds.
In the remainder of this paper we proceed as follows. First, for a system of

macro-equations for the UK economy, we test the null of linearity and, where
necessary, estimate the threshold parameter in each of the equations. We also
test if a common threshold can be imposed for the whole system. The tests in
Hansen (1996) and Hansen (2000) are, respectively, used to address these two
questions. It transpires that it is not the case that it is valid to impose a common
threshold value across all equations. Consequently, the system parameters are
estimated by GLS and the fitted system is used to simulate output reactions to
interest rate shocks for thirteen manufacturing sectors in the UK.

3 Data description
This section describes some of the important features of the individual time
series used in the analysis. Aggregate as well as sectorally disaggregate monthly
time series are used. The aggregate series are: the Retail Price Index, (RPI)2 ,
as a measure of aggregate price level; the seasonally-adjusted Index of Output
of Production Industries, (OPI), as a measure of real activity3; the overnight
interest rate set by the Bank of England, (r0), as a measure of monetary stance;

2Using seasonally adjusted series of RPI does not lead to any material difference in the
conclusions of this paper.

3There is considerable evidence in the literature that, in the UK, short-term movements in
manufacturing output are strongly correlated with movements in other output components;
see Salazar et al. (1997) for a discussion.
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and the sterling/dollar exchange rate, (E), to measure the external influence in
the UK economy.
Disaggregate seasonally-adjusted series of the OPI are used for the following

manufacturing sectors:
DA- Manufacture of food products: beverages and tobacco;
DB- Manufacture of textiles and textile products;
DC- Manufacture of leather and leather products;
DD- Manufacture of wood and wood products;
DE- Manufacture of pulp, paper and paper products; publishing and print-

ing;
DG- Manufacture of chemicals, chemical products and man-made fibres;
DH- Manufacture of rubber and plastic products;
DI- Manufacture of other non-metallic mineral products;
DJ- Manufacture of basic metals and fabricated metal products;
DK- Manufacture of machinery and equipment not elsewhere classified;
DL- Manufacture of electrical and optical equipment;
DM- Manufacture of transport equipment; and
DN- Manufacturing not elsewhere classified.

This classification is based on the Standard Industrial Classification, SIC(92).
All the series, with the exception of r0, are in natural logarithms and cover
the period 1972:01-2003:12. They are available from the Office from National
Statistics at the following URL: http://www.statistics.gov.uk.

The aggregate series are depicted in Figure 1. Inspection of the figure reveals
that price and output series grow smoothly during the period under considera-
tion and interest and exchange rate variables show little tendency to return to
their mean. Series in first differences, on the other hand, show regular crossing
points and no obvious trend. This suggests that series might be stationary af-
ter differencing. The disaggregate output data series are not presented to save
space. However, like the aggregate OPI, they are clearly affected by the eco-
nomic cycles in the UK during the period. More specifically, most of the series
evidence the recessions of 1973-1975 and 2001-2003 and exhibit strong growth
through the years 1986-1991. After differencing, figures and correlograms of the
disaggregated series suggest that they might be stationary.
More formally, we employ the maximum of the forward and reverse Aug-

mented Dickey-Fuller (ADF) tests advocated by Leybourne (1995) to test for
unit roots on account of its superior power properties. It is, of course, necessary
to choose the number of augmentation lags to account for serial correlation in the
basic Dickey-Fuller regressions and this is done using the sequential approach
of Ng and Perron (1995). The results are shown in Table 1.
For series in levels, the unit root null hypothesis cannot be rejected at con-

ventional significance levels in practically all cases, except for the sectors DA
and DD and even here the evidence against the null is neither strong nor unam-
biguous. However, the unit root null can be rejected at the 0.01 level for series
in first differences for all variables and so we use all series in first differences
in what follows. This approach is also adopted by Balke (2000) and Atanasova
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(2003) and is consistent with the view that monetary policy is neutral in the
long run. More specifically, there is a broad consensus among economists that,
since it cannot affect output growth, monetary policymakers seek only to affect
the fluctuations of cyclical output and inflation.

[INSERT FIGURE 1]

[INSERT TABLE 1]

4 Estimation of a simple UK macro model
We begin by specifying of a system of (potential) threshold equations for the UK
economy and use the methodology of Hansen (1996, 2000) to estimate the para-
meters of the model and conduct inferences on them. A sectorally disaggregated
analysis for manufacturing industry is deferred to the next section.
Macroeconomic models examining monetary policy issues generally involve

the minimization of some quadratic loss function by a central banker subject
to a linear dynamic system describing the economy; see Svenson (1997) and
Clarida et al. (1999) for relevant examples. When the policy instrument is a
short-term interest rate, this combination leads to a linear interest rate equation
(or Taylor rule), whereby the monetary authority adjusts nominal interest rates
to changes in relevant economic variables.
Recently, a number of papers have challenged the linear assumption that

underlies the earlier analyses. They can be classified into two different groups.
Firstly, authors such as Cukierman and Muscatelli (2003) and Dolado et al.
(2000), inter alia, focus their attention on the possibility of asymmetries in the
preferences of policy makers with respect to output and/or inflation. When the
assumption of a quadratic loss function is substituted for by an asymmetric pref-
erence specification, a nonlinear interest rate equation results . Secondly, other
authors consider the presence of asymmetries in the structure of the economy.
For example, Schaling (1999) and Dolado et al. (2005) study the implications
of a nonlinear Phillips curve for monetary policy.
We specify a (T)VAR system of macroeconomic equations in which para-

meter values of the different equations change depending on the position of the
business cycle with respect to an endogenous threshold parameter. To cap-
ture the fact that different forms of nonlinearites may be present in different
equations, the threshold parameter is allowed to be different in the different
equations, though a common threshold variable is assumed throughout. The
following endogenous variables are used: ∆OPI; ∆RPI; ∆E; and ∆r0. The
common number of lags in the four equations is chosen on the basis of conven-
tional specification tests for a linear model. Based on the Schwarz and Akaike
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criteria, the number of lags is set to two. Correlograms of residuals from esti-
mation of the linear specification with two lags show no obvious structure.
Although, these equations have not been derived from a theoretical model,

as typically occur in VAR models, it is straightforward to find an economic
interpretation for them. For example, the first equation (for ∆OPI) relates
output growth to interest rate and other fundamentals. This can be though as
an aggregate demand curve (AD). The second equation explains inflation as a
function of output growth. It can be interpreted in terms of a Phillips curve
(PC). The third is an exchange rate equation that extends a closed model to al-
low for open market considerations (ER) and the fourth defines a Taylor rule set
by the monetary authority (TR). This TR reaction function can be interpreted
as the result of the minimization of the loss function of the monetary authority
subject to the AD, PC and ER curves. In common with all VAR-type systems,
ours is backward looking as it only includes current and past information, but
not expectations variables. However, this can be reconciled if we assume that
expectations about future variables are formed from a combination of current
and past information of the variables in the model. In this way, although we
cannot interpret the slope parameters in the system economically, an analysis
of the effect of structural shocks is still possible.
Given these equations, we make use of Hansen (1996, 2000) to deal with two

fundamental issues: the estimation of each of the parameters in the aforemen-
tioned (T)VAR system; and to test for linearity and for a common threshold
parameter in each of the equations.

4.1 Estimation of a threshold model for a single equation

The use of stationary series is a basic requirement of the tests in Hansen (1996,
2000) that are applied in this section. Hansen develops the statistical properties
of threshold models and shows that, while the threshold model is similar to a
changepoint model from a computational point of view, this is not so from a
distributional standpoint. However, Hansen (1996) in his Theorem 1 shows that
the asymptotic distribution of the threshold estimator takes a similar form to
that found in the changepoint literature under his assumptions. As indicated
by Hansen (2000), the presence of trends can alter the asymptotic distribution
of changepoint tests. Moreover, the asymptotic distribution of such estimates
has not yet been developed for trending variables, but this does not concern
us here as the first difference data modelled here appear free of trends, both
deterministic and stochastic.
In the threshold autoregressive specification for each equation, the threshold

variable, qt−d, is taken to be one of ∆OPIt−d, d = 1, 2 in line with the max-
imum order of lag polynomials set in our analysis. Use of the sum of squares
error criterion (compare Hansen, 1997, Table 4) indicates that qt−d ≡ ∆OPIt−1
should be selected. This seems reasonable on economic grounds as it is an ob-
vious business cycle indicator for the recent past. Different potential values of
the threshold parameter γi can be specified. However, there are, at most, T
possibilities for this value and Hansen (1996) and others have suggested that

9



it is inadvisable to use, perhaps, the extreme 15% at either end of the ranked
values of qt−d, leaving around 0.7T possible values for γi.The possibility that γi
may vary across i = 1, 2, ..., n is not excluded here, though previous papers by
Balke (2000) and Atanasova (2003) only consider the case of a single threshold
value for all equations.
The procedure used by Hansen (1997) is used to estimate the parameters

of the ith equation using sequential conditional least squares. This involves
computing the least squares estimator of βi using

bβi =
Ã

TX
t=1

Xt(γi)Xt(γi)
0

!−1Ã TX
t=1

Xt(γi)yit

!
(4)

for a given value of γi. We obtain residuals of the equation by bait(γi) = yit −bβ0iXt(γi), and compute the residual variance as

bσ2iT (γi) = 1

T

TX
t=1

bait (γi)2 . (5)

Obviously, small sample adjustments to account for degrees of freedom could be
incorporated in the error variance estimator.
The OLS estimator of γi is the value that minimizes (5):bγi = argmin

γ∈Γ
bσ2iT (γi) (6)

For this minimization γi is assumed to be restricted to a bounded set Γ =¡
γ γ

¢
, where, as suggested above, Γ was selected a priori to contain 70% of

the observations, trimming the bottom and top 15% quantiles of the threshold
variable; see Hansen (1997).
Results of the estimation of the slope parameters for each of the reduced

form equations are economically uninteresting and not reported here.

4.2 Inference on the parameters of the model

Once the parameters are estimated two issues need to be addressed: (i) to test
for linearity of the slope parameters (i.e. no evidence of change in slope and
hence no threshold); and (ii) inference about any threshold parameter, γi. With
regard to the test of linearity, as pointed by Hansen (1996), the Wald statistic
for such a test does not follow a standard distribution. This is because γi is not
identified under the null hypothesis. However, appropriate asymptotic critical
values can be found by bootstrap methods using the procedure described in
Hansen (1996, Section 3).
Table 2 exhibits the Wald statistic to test for linearity in each of the equa-

tions. The results show that it is possible to reject the null of linearity in two
cases at conventional significance levels, but not in the cases of the PH and
AD curves. The case of the AD equation is somewhat problematic, as the p-
value of the statistic is 0.08. To deal with this issue, we actually developed the
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subsequent analysis in both situations (with a linear and with a nonlinear AD
equation), but no important differences between these two cases were found.
Given that the case with a nonlinear AD curve is a more general specification,
this is the case reported here.

[INSERT TABLE 2]

Proceeding by acknowledging the existence of a threshold parameter in three
of the equations, the next task is to test if a common threshold parameter ap-
plies to the three nonlinear equations. It is also useful to test H0 : γi = 0 for
each of the nonlinear equation as this is the (exogenous) threshold typically im-
posed in many papers in the literature on real business cycle. To do this we use
the methodology proposed by Hansen (2000). He establishes an asymptotic dis-
tribution for the least squares estimator of the threshold that is free of nuisance
parameters under fairly general conditions. A suitable likelihood ratio statistic
LRit(γ0) for testing the null hypothesis H0 : γ = γ0 in the ith equation of the
system is given by

LRiT (γ0) = T

Ãbσ2iT (γ0)− bσ2iT (bγi)bσ2iT (bγi)
!

(7)

with rejection ofH0 being warranted for sufficiently large values of the calculated
test statistic.
Theorem 2 in Hansen (2000) shows that

LRiT (γ0)
d→ ς

where
ς = max

s∈R
[2W (s)− |s|]

and W (s) is defined as a two-sided Brownian motion on the real line such that

W (s) =

⎧⎨⎩ W1(−s) s < 0
0 s = 0

W2(s) s > 0
,

with W1(s) and W2(s) being two independent standard Brownian motions on
[0,∞]. The distribution function of ς is a standard result and is given by P (ς ≤
x) =

¡
1− e−x/2

¢2
. Critical values can be obtained from the direct inversion of

the distribution function and the p-value of an observed test statistic can readily
be calculated.
Hansen (2000) also proposes the construction of confidence regions based on

the likelihood statistic LRiT (γ). To obtain the desired asymptotic confidence
region at level as 1 − α, let cς(1 − α) be the (1 − α)-level critical value for ς.
Then bΓi = {γi : LRiT (γi) ≤ cς(1− α)}
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provides an asymptotic (1−α)-level confidence region for γi. Typical values for
α are, of course, 0.01, 0.05 and 0.1.

Table 3 shows the estimation of the threshold, bγi, and a 95% confidence
region (α = 0.05) for each of the equations. Note that the estimated threshold
parameter clearly differs across equations.

[INSERT TABLE 3]

The value of the likelihood ratio test statistics, LRiT (γ), for the imposi-
tion the threshold estimated in one of the equations in all the other nonlinear
equations of the system are given in Table 4. This table also includes a test
for a threshold equal to zero in each of the equations. Notice that at the 0.01
significance level we only fail to reject imposing the estimated threshold of the
E in the TR equation.

[INSERT TABLE 4]

It can be concluded from this analysis that threshold estimates are different
across the different equations of the system and only the Phillips curve does
not show evidence of nonlinearity. The failure to detect asymmetries in the
Phillips curve is not uncommon in the literature; see Laxton et al (1999) for
a discussion. Therefore the system of equations can be regarded as a system
of seemingly unrelated equations where one equation is linear and each of the
nonlinear equations has its own threshold.

5 Sectoral transmission of monetary policy shocks
in the UK

This section considers an additional endogenous variable for sectoral output
growth to obtain a new system of equations that includes a particular sec-
toral growth variable and the macroeconomic variables already considered in
the previous section. Thus there are as many systems of equations as number
of manufacturing sectors in the analysis. Each of the systems is used to esti-
mate sectoral output reactions to interest rate shocks using the impulse response
function procedure in Koop et al (1996). The structural models are identified
by imposing a recursiveness assumption. This scheme is simple and has seen
widespread use in previous studies. In this analysis we use the causal ordering
∆OPI, ∆RPI,∆E,∆r0 and, finally, the relevant sectoral output growth. This
ordering assumes that the overnight interest rate does not have a contempora-
neous impact on the other macroeconomic variables, but that these variables do
affect the behaviour of monetary policy makers contemporaneously. For example
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Bernanke and Blinder (1992) and Wright (2002) both have recursive structures
with similar forms. However, investigations not reported here indicate that the
use of alternative plausible orderings makes little difference.
Equations in the reduced form model (3) are estimated with two lags as

in the previous case. Each of the sectoral systems comprises the four macro-
equations specified in Section 4 and an additional equation that relates sectoral
output growth to both its own lagged values and the different (lagged) macro-
variables. This specification is economically plausible, since it is reasonable
to argue that macro-economic variables are affected by aggregate information
but not by sectoral output growth. For example, when central bankers set an
overnight interest rate, they are concerned with fluctuations in aggregate output
rather than output variations in a specific sector. The specification differs from
standard VAR models that impose identical explanatory variables in all the
equations. However, this presents no difficulties in this context as the system
parameters are estimated by GLS.
As in the previous section, we first test the null of linearity in each of the

sectoral equations and the results of the tests can be found in Table 5. Broadly
speaking, the null of linearity cannot be rejected in highly concentrated sectors.
More specifically, the null of linearity can only be rejected in certain sectors
with a market share of the 10 largest firms in the sector at a level below the
average, except for DG (Manufacture of chemicals, chemical products and man-
made fibres). A plausible explanation may be that low concentrated sectors are
dominated by small firms and often they are likely to be affected by financial
constraints and economic uncertainty in downturn periods; these results are
consistent with Canepa and Stoneman (2002). They show that the impact of
financial constraints is bigger in high technological sectors and in those with
small firms. Furthermore, they explicitly mention Chemicals and Machinery
as two technological sectors. Next we test if the estimated thresholds in the
macro-equations can be imposed in the different equations of the system but
the null was rejected in all cases; see Table 6 for details.

[INSERT TABLE 5]

[INSERT TABLE 6]

Once the threshold parameters are estimated (they are given in the leftmost
column of figures in the table), the slope parameters in the thirteen sectoral
systems of equations are estimated by feasible generalized least square. With
each system we estimate the sectoral reactions to unexpected shocks in the
interest rate equation using the approach in Koop et al (1996). A more detailed
explanation of this procedure can be found in the Appendix. In the simulations
some of the equations are linear, e.g. the Phillips curve and output growth in
some of the sectors, and each of the nonlinear equations has its own threshold.
Unsurprisingly, we do not find evidence of asymmetry in the linear sectors.
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Sectoral reactions for the nonlinear sectors are of interest. Figure 2 shows
cumulative reactions to an interest rate shock in low growth and high growth
periods. High and low growth periods are classified according to the position of
∆OPIt with resp ect to the t hres hold parameter in t he TR curve when th e sh o ck
occurs. However, these reactions depend asymmetrically on the size and sign
of the shock in that asymmetries become more evident the smaller is the size
of the shock and negative interest rate shocks have a bigger impact on output
than positive ones. The figures presented are for the case where the size of shock
is 25 basis points as this is a standard interest rate movement by the Bank of
England for the period under analysis. However, the substantive conclusions of
the paper remain unaltered when shocks of different size and sign are used.
It can be seen that an increase in interest rate has a negative effect on sec-

toral output growth in practically all cases which is consistent with economic
theory4. A feature of these reactions is that there are important asymmetries de-
pending on the business cycle in two sectors: Manufacture of textiles and textile
products; and Manufacture Not Elsewhere Classified and, in these industries,
reactions are stronger when the shock occurs in the expansion period.

[INSERT FIGURE 2]

At least two alternative theories may be helpful in explaining the results.
First, the fact that sectors that are more likely to suffer financial constraints are
more sensitive to monetary shocks in the low growth period compared to the
high growth period is consistent with the arguments of Dale and Haldane (1995).
They compare output reactions to monetary shocks in personal and corporate
sectors in the UK finding stronger reactions for the corporate sector. They
suggest that financial restrictions can weaken the effects of monetary policy if
they result in the marginal interest rates on loans becoming sticky in response
to official rate changes. Our results also seem to be consistent with the model in
Abel and Eberly (1999) which shows that uncertainty weakens the response of
investment to demand shocks. It may be the case that periods of low economic
growth are typically associated with higher uncertainty and technological sectors
and low market share sectors are more likely to be affected by this economic
uncertainty.

6 Concluding remarks
This paper reports and analyzes the asymmetric effects of monetary policy in
13 industrial sectors of the UK economy. Unlike recent research on multivariate
threshold systems, we do not impose threshold parameters in the different equa-
tions to be the same. The use of econometric tests proposed by Hansen (1996,

4The only exception to this is in sector Manufacture of Machinery and Equipment Not
Elsewhere Classified. One reason may be that reactions in this sector are very erratic in the
first few months.
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2000) forms an important part of our approach. We find the null of linearity
cannot be rejected for every equation in the system. In particular, there is insuf-
ficient evidence to reject the null in the equation for inflation and in some of the
industrial sectors. Often these sectors are highly concentrated. Based on the
results of using the test in Hansen (2000), an exogenous threshold equal to zero
cannot be imposed in any of the equations. This is a relevant result as many
papers in the previous literature impose this exogenous threshold to analyze
different types of asymmetries. Finally, in general, a common threshold cannot
be imposed for all the equations in the system. These results justify the use
of systems of simultaneous equations that do not require the same specification
for each of the constituent equations.

The estimated the systems of simultaneous equations are used to simulate the
effect of unexpected interest rate shocks on sectoral output. Our results provide
evidence of both cross-sectional differences across industries and asymmetric
effects of monetary shocks for some sectors. We find that industries with low
levels of concentration (termed market share and measured by the share of
the largest 10 firms in an industry), such as Manufacture of textiles and textile
products and Manufacture not elsewhere classified, are more prone to be affected
differently by interest rate shocks depending on the business cycle. The results
strongly support the use of a sectoral approach for the analysis of monetary
transmission as these asymmetries for specific sectors could be masked in an
aggregate approach.
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Appendix

Estimation of the impulse-response function

This appendix describes the procedure to estimate the impulse-response
function along the lines of Atanasova (2003). In this paper, the procedure is con-
sidered for the analysis of sectoral output reactions to interest rate shocks. The
steps followed in order to obtain the (generalized) impulse-response function are
described below.

• The first step is to estimate the parameters for the different equations in
the nonlinear system. This is done using Hansen (1997). Then, conditional
on the threshold parameters chosen, slope parameters in the system of
equations are computed by iterative feasible generalized least squares.

• Pick a starting value wt. If we denote output growth in sector i at time t as
sit then wt can be defined as wt = (∆OPIt,∆RPIt,∆Et,∆r0t, sit)

0. This
vector is used to initiate the simulation of the sectoral (T)VAR system in
the subsequent steps.

• Pick a sequence of of 5-dimensional shocks. This is done by using the in-
verse of a Cholesky factorization of the estimated covariance matrix. This
transforms the estimated errors of the nonlinear model in contemporane-
ous orthogonal shocks (bεt). That is, bεt = P−1bat, where bat are the residuals
of the model and P is the lower triangular Cholesky decomposition of the
residuals. Draw a sequence of these shocks randomly and independently
(with replacement) which is denoted by {bε1,bε2, ...,bεh}, where h = 1, ...,H
. Here h represents the time horizon in the simulation and H is the num-
ber of months we want to simulate after the shock occurs. The residuals
thus obtained are recovered by bat = Pbεt. We also consider the same se-
quence of shocks, except that a shock of size 0.25 is imposed on the fourth
element of bε1. The reason for this is that we need to analyze the effects of
a shock in ∆r0t. The sample of residuals recovered is denoted ba∗t .

• Simulate the evolution of Yt+h using wt and one sample of residuals bat+h.
The values thus obtained were denoted by Yt+h(wt,bat+h), h = 1, ...,H.

• Then simulate the evolution of Yt+h using wt and one sample of residualsba∗t+h. The values thus obtained were denoted by Yt+h(wt,ba∗t+h), h =
1, ...,H.

• The last two steps are repeated R times for each of the samples to form
an average of each individual component.
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Y t+h(wt,bat+h) =
1

R

RX
j=1

Y j
t+h(wt,ba(j)t+h), j = 1, ..., R and h = 1, 2, ...,H

Y t+h(wt,ba∗t+h) =
1

R

RX
j=1

Y j
t+h(wt,ba∗(j)t+h), j = 1, ..., R and h = 1, 2, ...,H

where ba(j)t+h denotes the (5-dimensional) residual used in the jth replication
at time t + h and Y j

t+h(wt,ba(j)t+h) the values of Yt+h obtained using the
resicuals of the jth replication. ba∗(j)t+h and Y j

t+h(wt,ba∗(j)t+h) are defined in a
similar way for the case when an interest rate shock of 25 basis points is
imposed at period t.

• We took the difference of the two averages to form a Monte Carlo estimate
of the reaction function to a monetary shock.

• This process was repeated B times and the estimate reaction is an average
of these. We set: H at 60; B at 500; and R at 500.
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 Table 1. ADF Unit root test of Leybourne (1995). 
 

Series in levels Series in first differences Series n(I) p(II)

ADFtmax(p) ADFmax(p) ADFtmax(p) ADFmax(p) 
OPI 375 9 -2.91 -0.09 -5.80 (**) -5.74 (**) 
RPI 372 12 -1.11 -1.32 -4.41 (**) -2.57 (**) 
R0 381 3 -1.97 -2.02 -12.19 (**) -12.12 (**) 
E 380 4 -2.35 -1.27 -9.62 (**) -9.55 (**) 
DA 372 12 -3.43 (*)  0.01 -6.34 (**) -6.29 (**) 
DB 381 3 -1.15 1.01 -18.26 (**) -18.15 (**) 
DC 374 10 -1.80 0.65 -5.45 (**) -5.29 (**) 
DD 375 9 -2.65 -2.62 (*) -5.69 (**) -5.66 (**) 
DE 376 8 -2.27 -1.02 -5.70 (**) -5.70 (**) 
DG 378 6 -2.89  -0.43 -8.12 (**) -8.13 (**) 
DH 372 12 -2.83 -0.81 -3.60 (*) -3.59 (**) 
DI 377 7 -2.08 -2.08 -8.13 (**) -8.15 (**) 
DJ 374 10 -2.61 -2.23  -5.54 (**) -5.56 (**) 
DK 375 9 -1.25 -1.73 -6.42 (**) -6.42 (**) 
DL 374 10 -2.79 -0.34 -4.61 (**) -4.60 (**) 
DM 372 12 -1.44 -1.18 -6.58 (**) -6.55 (**) 
DN 382 2 -1.55 -1.20 -23.30 (**) -23.33 (**) 

 
ADFtmax(p) and ADFmax(p) denote the maximum Augmented Dickey Fuller tests applied to both forward and reverse data realization in 

a regression with and without trend respectively.  
(I) n indicates the number of observations after adjusting endpoints. 
(II) p indicates the number of lags. 

(**), (*)  denote rejection of the null hypothesis at the 0.01, 0.05 significance levels respectively. 
 
 

 

 

 

 

 

 

 

 



 Table 2. Test for Linearity. 

 AD PH E TR 
Linearity 
test 25.05 16.23 33.45 38.12
p-value (0.083) (0.54) (0.002) (0.003)

 
This table shows the test for linearity in each of the macro-equations. We  use the procedure developed by Hansen (1996). 

 

  

 

 

 Table 3.  Estimation of Threshold Parameters and Threshold Region with a confidence coefficient of 95%. 

 

Equation γˆ  maxˆγ  minˆγ  
AD -0.007 -0.001 -0.008 
E  0.0014 0.0029 0.001 

TR 0.0122 0.013 0.011 
 

This table shows the estimation of the threshold parameter γ  and the maximum and minimum value of γ  in a confidence region at the 
50% following Hansen (2000).  

 

 

 Table 4. Likelihood Ratio Test of Imposing Different Thresholds in each of the Nonlinear Equations. 

 

Equation )ˆ( ADiTLR γ  )ˆ( EiTLR γ  )ˆ( TRiTLR γ  )0(iTLR  
AD 0.00 13.43 (**) 11.33 (**) 14.14 (**)
E 15.95 (**) 0.00 13.38 (**) 9.30 (*) 
TR 21.93 (**) 5.44 0.00 11.27 (**)

 

This table shows the likelihood ratio test of imposing each of the thresholds estimated in the different nonlinear  macro- equations to the 
rest of equations.  

* (**) denotes rejection at the 0.05 (0.01) significance level. 
 



 

 

 Table 5. Test for linearity in sectoral output growth Sectoral Output Growth Equation. 

 

Sector DA DB DC DD DE DG DH 
Wald Statistic 19.34 

 
28.24  
(*) 

20 17.15 
 

45.98 
(**) 

37.13 
(**) 

41.32 
(**) 

Market Share(I) 0.42 0.21 0.41 0.25 0.19 0.44 0.16 
Sector DI DJ DK DL DM DN  
Wald Statistic 25.98 

 
41.80 
(**) 

30.66 
(*) 

17.48 
 

20.78 28.16 
(*) 

 

Market Share(I) 0.45 0.31 0.29 0.50 0.69 0.17  
 

This table shows the test for linearity in each of the industrial equations following the approach indicated by Hansen (1996). 
(**) denotes rejection at the 0.05 (0.001) significance level 
(I) Market Share indicates the market share of the 10 biggest firms in the industry. Source: Annual Census of Production (1993). 

 
  

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 



Table 6. Estimation of the threshold parameter for the sectoral equation and test for imposing different thresholds in 

this equation. 

 

 γˆ  )ˆ( ADiTLR γ  )ˆ( EiTLR γ  )ˆ( TRiTLR γ  )0(iTLR  
DB -0.007 1.66 15.18(**) 15.26(**) 16.97(**) 
DE -0.011 7.15 6.09 17.81(**) 9.01(*) 
DG -0.010 4.92 6.59 4.09 6.89 
DH -0.004 10.10 (*) 16.25 (**) 28.78(**) 13.46(**) 
DJ -0.006 13.23(**) 25.13(**) 22.80(**) 27.07(**) 
DK 0.009 6.24 14.48(**) 7.45(*) 16.22(**) 
DN 0.001 19.71(**) 0.71 4.84 4.92 

 
This table shows the threshold estimated in each of the sectoral equations and the likelihood ratio test of imposing the threshold estimated in each 

of the nonlinear macro-equations to the nonlinear industrial equations.  
* (**) denotes rejection at the 0.05 (0.001) significance level. 

 
 
 
 

  

 



Figure 1. Aggregate series in levels and first differences
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Figure 2a. Sectoral Reactions to Positive Interest Rate Shocks (1)

(1) The figures show the effect of positive interest rate shocks on sectoral output for different months after the shock occurs. The size of the shock is 25 basis points.
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Figure 2b. Sectoral Reactions to Positive Interest Rate Shocks (1)

(1) The figures show the effect of positive interest rate shocks on sectoral output for different months after the shock occurs. The size of the shock is 25 basis points.
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