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Karhunen-Loève basis in goodness-of-fit

tests decomposition: an evaluation

A. Grané(1) J. Fortiana(2)

(1) Departamento de Estad́ıstica. Universidad Carlos III de Madrid.

(2) Departament d’Estad́ıstica. Universitat de Barcelona.

Abstract

In a previous paper (Grané and Fortiana 2006) we studied a flex-
ible class of goodness-of-fit tests associated with an orthogonal se-
quence, the Karhunen-Loève decomposition of a stochastic process de-
rived from the null hypothesis. Generally speaking, these tests out-
perform Kolmogorov-Smirnov and Cramér-von Mises, but we regis-
tered several exceptions. In this work we investigate the cause of these
anomalies and, more precisely, whether and when such poor behaviour
may be attributed to the orthogonal sequence itself, by replacing it
with the Legendre polynomials, a commonly used basis for smooth
tests. We find an easily computable formula for the Bahadur asymp-
totic relative efficiency, a helpful quantity in choosing an adequate
basis.

Keywords: Goodness-of-fit, Orthonormal Functions, Smooth tests,
Asymptotic Relative Efficiency.

AMS subject classification: 62G10, 62G30, 62G20.

1 Introduction

In (Fortiana and Grané 2003) we defined a sequence of statistics, {βnj}j∈N,
based on Hoeffding’s maximum correlation. This quantity, ρ+(F1, F2), for
two univariate probability distributions F1 and F2, is defined as the maxi-
mum of the correlation coefficients of all bivariant probability distributions
having marginals F1 and F2. It is a measure of proximity between both
marginals and, when applied to an empirical and a theoretical distribution,
yields a goodness-of-fit test.
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The sequence {βnj}j∈N appears when this test is decomposed along orthogo-
nal axes, a construction analogous to that of the Cramér-von Mises statistic
(Durbin and Knott 1972, 1975), studied in a general setting by Stephens
(1974). More precisely, let Fn be the empirical cdf of n iid random variables
and let F−

n be its pseudoinverse, then βnj is the j-th Fourier coefficient
of F−

n for the orthonormal (in L2[0, 1]) sequence {βj(t)}j∈N, t ∈ [0, 1], ob-
tained from the eigenfunctions of the covariance kernel of a certain Bernoulli
stochastic process associated with the [0, 1] uniform distribution (see For-
tiana and Grané 2003, Cuadras and Fortiana 1993 and 1995 for details).
Henceforth we will refer to this particular sequence of statistics as the
Karhunen-Loève (KL) sequence. In (Grané and Fortiana 2006) we studied a
class of statistics, linear combinations of β ≡ {βnj}j≥0 (where βn0 ≡ 1), with
adjustable coefficients depending on the alternative distribution or family of
distributions. We found that their power properties were remarkably good,
but for several alternatives their behaviour was rather poor.
In this work we substitute φ ≡ {φj(t)}j≥0, an orthonormal sequence in
L2[0, 1], for β yielding the sequence {Φnj}j≥0 of statistics, as defined in
Section 2. Sections 3 and 4 are parallel to the corresponding ones in (Grané
and Fortiana 2006), with the obvious modifications: power optimization is
translated into an eigenvalue-type problem with quadratic forms, functions
of the first two moments of the order statistic. Some simplifications of the
KL case are not possible, however. As an illustration, we perform the actual
computations for φ = the Legendre polynomials, comparing the power of
the statistic obtained with this basis with that of the KL one. In section 5
we find an easy computable formula for the Bahadur approximate slope, and
we use the Bahadur asymptotic relative efficiency as a criterion to select a
basis. Section 6 contains the concluding remarks.

2 Karhunen-Loève basis and its generalization

Let F be a probability cdf with finite second order moment and let Fn be
the empirical distribution function of n iid∼ F random variables. Given an
orthonormal sequence, φ ≡ {φj(t)}j≥0, in L2[0, 1], we define

Φnj ≡ Φnj(F ) =

∫ 1

0
F−

n (t)φj(t) dt, j ≥ 0,

where F−
n is the pseudoinverse of Fn. They are L-statistics, i.e., linear

combinations of the order statistic x ≡ (x(1), . . . , x(n)), since

Φnj =

∫ 1

0
F−

n (t)φj(t) dt =
n

∑

i=1

∫ i/n

(i−1)/n
x(i) φj(t) dt =

n
∑

i=1

aij x(i),
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where aij =
∫ i/n
(i−1)/n φj(t) dt. We consider the class of all linear combinations

T ≡ T (λ0, . . . , λp) =

p
∑

j=0

λj Φnj , (1)

where λ0, . . . , λp are real parameters. They are L-statistics, too,

T =

n
∑

i=1

cni x(i),

with coefficients

cni =

p
∑

j=0

λj aji.

In matrix notation,
T ≡ T (λ) = xAλ, (2)

where λ = (λ0, . . . , λp)
′, A = (aij), 1 ≤ i ≤ n, 0 ≤ j ≤ p.

Given an alternative cdf F1, we select λ to maximize power for testing
H0 : F = FU , vs. H1 : F = F1, where FU is the cdf of a [0, 1] uniform
random variable. Clearly, the resulting test is less powerful than the optimal
(Neyman-Pearson) one, but its distribution under the null hypothesis is
easily computed, both for large samples, applying the asymptotic theory of
L-statistics, and for small samples, with the exact distribution, as described
in Fortiana and Grané (2003).

3 Computation and optimization of the power

function

To test H0 : F = FU against H1 : F = F1, a known cdf with support
contained in [0, 1], we consider (1) where λ is to be determined. Its asymp-
totic distribution is normal, from the general theory of L-statistics (see,
e.g., Stigler 1974, or chap. 19 of Shorack and Wellner 1986). For a fixed
significance level ε ∈ (0, 1), we are looking for c1, c2 ∈ R, such that

P (T > c1|H0) = ε/2, P (T < c2|H0) = ε/2.

A bilateral test is appropriate in the absence of further information about
F1. Also, we take c1, c2 symmetric with respect to µ0 = E(T |H0), that is,
c1 = µ0 + cε/2 σ0, c2 = µ0 − cε/2 σ0, where σ2

0 = var(Tp|H0) and cε/2 is the
(1 − ε/2) · 100-percentile of the N(0, 1) distribution. The power function
P (T > c1|H1) + P (T < c2|H1) is asymptotically approximated by

Ψ(λ) = 1 − PZ

[(

µ0 − µ1

σ1
− cε/2

σ0

σ1
,
µ0 − µ1

σ1
+ cε/2

σ0

σ1

)]

,
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where µ1 = E(T |H1), σ2
1 = var(T |H1) and Z ∼ N(0, 1). Due to the sym-

metry of this distribution, µ0 − µ1 can be replaced by |µ0 − µ1|, and then

Ψ(λ) = 1 − PZ

{(

[

a(λ)

c(λ)

]1/2

−
[

b(λ)

c(λ)

]1/2

,

[

a(λ)

c(λ)

]1/2

+

[

b(λ)

c(λ)

]1/2
)}

,

in terms of the following quadratic forms:

a(λ) = (µ0 − µ1)
2 = λ′ A′ (M0 − M1)

′ (M0 − M1)Aλ,

b(λ) = c2
ε/2 σ2

0 = λ′ A′ Σ0 Aλ,

c(λ) = σ2
1 = λ′ A′ Σ1 Aλ, (3)

where Mi = E(x|Hi), Σi = Var(x|Hi), i = 0, 1.
Since Ψ(λ) remains invariant when λ is multiplied by an arbitrary constant,
we assume c(λ) = 1, and we compute the extremes of

Υ(λ) = 1 − Φ
(

a(λ)1/2 + b(λ)1/2
)

+ Φ
(

a(λ)1/2 − b(λ)1/2
)

+ ξ (c(λ) − 1) , (4)

where Φ is the standard normal distribution function and ξ is a Lagrange
multiplier.
Degenerate case: If a(λ) = 0, the expectation of T is the same under
both hypotheses, the power function is

Ψ(λ) = 1 − PZ

{(

−
[

b(λ)

c(λ)

]1/2

,

[

b(λ)

c(λ)

]1/2
)}

,

with the constraint c(λ) = 1, and (4) is written as

Υ(λ) = 2 − 2Φ
(

b(λ)1/2
)

+ ξ (c(λ) − 1) .

Equating to zero its gradient we obtain an eigenvalue-type problem,

β(λ)A′Σ0Aλ = ξ A′Σ1Aλ,

where β(λ) = 2 b(λ)−1/2 φ
(

b(λ)1/2
)

, and φ is the standard normal pdf.
General case: If a(λ) 6= 0, differentiating (4) and equating to zero we
obtain:

[

α(λ)A′ (M0 − M1)
′ (M0 − M1)A + β(λ)A′Σ0A

]

λ = ξ A′Σ1Aλ, (5)

where α(λ) = a(λ)−1/2 (φ+(λ) − φ−(λ)), β(λ) = b(λ)−1/2 (φ+(λ) + φ−(λ)),
φ+(λ) = φ

(

a(λ)1/2 + b(λ)1/2
)

, φ−(λ) = φ
(

a(λ)1/2 − b(λ)1/2
)

and ξ has
been redefined. The degenerate case appears when α(λ) = 0.
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To compute λ set u = (A′Σ1A)1/2 λ, G(u) = α(u)E + β(u)F, where α(u),
β(u) are those defined above in (5), now in terms of the new variable u, and

E = (A′Σ1A)−1/2 A′(M0 − M1)
′ (M0 − M1)A (A′Σ1A)−1/2,

F = (A′Σ1A)−1/2 (A′Σ0A) (A′Σ1A)−1/2.

For a given u, we compute eigenvectors and eigenvalues of G(u). The new u
will be the eigenvector for which Ψ(u) is maximum. This process is iterated
until stability. The last step is to recover and normalize λ. The result is
rather robust, leading to a single maximum with a small number of iterations
for a widely diverse choice of the initial u. A Matlab program implementing
this computation may be requested from the authors.

Example: scale alternatives

We consider an alternative distribution belonging to U [0, θ], the uniform on
[0, θ] family, with θ > 0. The expectation vector M0 and the covariance
matrix Σ0 of the order statistic x obtained from n iid∼ U [0, 1] random
variables are (see, e.g., David 1981)

M0 =
1

n + 1
(1, 2, . . . , n), Σ0 = (vij)1≤i,j≤n , (6)

where

vij =
1

(n + 2)(n + 1)2
[(n + 1)min{i, j} − i j].

The corresponding quantities for U [0, θ] are M1 = θ M0, Σ1 = θ2 Σ0. Then
(3) is

a(λ) = (1 − θ)2 λ′ A′ M′
0 M0 Aλ,

b(λ) = c2
ε/2 λ′ A′ Σ0 Aλ,

c(λ) = θ2 λ′ A′ Σ0 Aλ.

We have to maximize the power Ψ(λ), equivalently, to minimize

PZ

(

1 − θ

θ

(

λ′A′M′

0
M0Aλ

λ′A′Σ0Aλ

)1/2

− cε/2

θ
,
1 − θ

θ

(

λ′A′M′

0
M0Aλ

λ′A′Σ0Aλ

)1/2

+
cε/2

θ

)

,

or to maximize λ′A′M′
0M0Aλ

/

λ′A′Σ0Aλ, both problems constrained to
λ′A′Σ0Aλ = 1. The solution is the (unique with non-null eigenvalue) eigen-
vector of the generalized eigenvalue problem: A′M′

0M0Aλ = ξ A′Σ0Aλ,
normalized so that λ′A′Σ0Aλ = 1.
In Grané and Fortiana (2006) we used the orthonormal basis β referred to
above. Explicitly,

β0(t) = 1, βj(t) =
√

2 cos(j π t), j ≥ 1, t ∈ (0, 1),
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and we denoted by βnj the resulting Φnj statistics. In this basis, formula (1)
is Tβ =

∑p
j=0 λjβnj . For a sample of size n = 20, a significance level ε = 0.05

and p = 4, we obtain

Tβ = 0.3554 βn0 − 0.4447 βn1 + 0.4985 βn2 − 0.4373 βn3 + 0.4860 βn4.

In the context of smooth-tests (see, e.g., Rayner and Best 1989, 1990), the
sequence of Legendre polynomials is often used. After adapting them to the
[0, 1] interval and standardizing them, the first two of them are:

φ0(t) = 1, φ1(t) =
√

3(2 t − 1),

and the recurrence relation is:

φj+1(t) =

√

(2j + 3)(2j + 1)

j + 1
(2t− 1)φj(t)−

√
2j + 3√
2j − 1

j

j + 1
φj−1(t), j ≥ 1.

Denoting by ℓnj the resulting Φnj statistics, formula (1) is Tℓ =
∑p

j=0 λnjℓnj .
For a sample of size n = 20, a significance level of ε = 0.05 and p = 4, we
obtain

Tℓ = 0.3095 ℓn0 + 0.4403 ℓn1 + 0.5786 ℓn2 + 0.4193 ℓn3 + 0.4470 ℓn4.

In a practical situation, Tβ and Tℓ should be expressed directly in terms of
the observed order statistic using (2).
We have compared Tβ and Tℓ with the Qn statistic obtained in Fortiana
and Grané (2003), with the Kolmogorov-Smirnov statistic Dn and with the
Cramér-von Mises statistic W 2

n . Figure 1 shows the power curves for the
tests based on these statistics. These curves have been plotted from 20
computed points, for each of which we have generated N = 1000 samples of
size n = 20. We allowed θ to take values below and above 1, thus obtaining
a two sided power curve.

4 Generic alternatives

In this section we develop an algorithm for locating the optimal λ in (2) for
an alternative cdf F whose pseudoinverse has the form:

F−(t) =

q
∑

k=0

γk ψk(t), (7)

where γk are real numbers and {ψk(t)}k≥0 is an orthonormal sequence in
L2[0, 1], possibly different from {φj(t)}j≥0.
Given an arbitrary F the first q Fourier terms of F− yield such an expression.
In the present context this is more natural than expanding F or the pdf,
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Figure 1: Power functions for scale alternatives.
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since the moments of the order statistics can be advantageously expressed
in terms of F−, e.g.,

E(x(i)|H1) = i

(

n

i

) ∫ 1

0
F−(t) ti−1 (1 − t)n−i dt

= i

(

n

i

) q
∑

k=0

γk

∫ 1

0
ψk(t) ti−1 (1 − t)n−i dt. (8)

To solve (5) we must determine the quadratic forms a(λ), b(λ), c(λ) in (3).
M0 and Σ0 are the same as in (6) and (8) gives the entries in M1. In general
an exact Σ1 will not be available. Instead we can determine A′Σ1A from
the asymptotic approximation given in the

Proposition 4.1 Let T be the statistic defined in (1) and (2), where x is
the order statistic from n iid random variables with cdf (7). We have the
following convergences in law

√
n[T − µ]

L−−−−→
n→∞

N(0, σ2
1), (9)

√
n

[T − µ]

σn

L−−−−→
n→∞

N(0, 1), (10)

where

µ =

p
∑

j=0

q
∑

k=0

λjγk

∫ 1

0
φj(t)ψk(t)dt, (11)

σ2
1 = lim

n→∞
σ2

n, σ2
n =

p
∑

j=0

p
∑

l=0

λj λl σn,jl, (12)
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σn,jl =

q
∑

k=0

q
∑

m=0

γk γm Ijklm,

where

Ijklm =

∫ 1

0

∫ 1

0
K(s, t)φj(s)ψ

′
k(s)φl(t)ψ

′
m(t) dtds,

where K(s, t) = min(s, t) − s t and ψ′
k(t) denotes the derivative of ψk(t).

Proof: The T statistic of (1) can be written as

T =
1

n

p
∑

i=1

J(i/n)x(i), (13)

where

J(i/n) =
n

∑

j=0

n λj aij ,

aij =

∫ i/n

(i−1)/n
φj(u)du = bj(i/n) − bj((i − 1)/n),

and bj(i/n) =
∫ i/n
0 φj(u)du. Using these expressions the J(i/n) coefficients

are:

p
∑

j=0

nλjaij =

p
∑

j=0

λj
bj(i/n) − bj((i − 1)/n)

1/n
=

p
∑

j=0

λjBj(i/n)

where

Bj(i/n) =
bj(i/n) − bj((i − 1)/n)

1/n
,

verifying that Bj tends to φj when n tends to infinity. We can use the
asymptotic approximation

J(t) ≈
p

∑

j=0

λj φj(t), t ∈ (0, 1).

Since J(t) is a continuous and bounded a.s. (F−) function, we can compute
the asymptotic expectation of T , under H1, as

µ =

∫ 1

0
J(t)F−(t) dt =

p
∑

j=0

q
∑

k=0

λjγk

∫ 1

0
φj(t)ψk(t) dt

and also its asymptotic variance as

σ2
1 =

∫ 1

0

∫ 1

0
J(s)J(t)K(s, t)dF−(s)dF−(t),
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where K(s, t) = min(s, t)−st, see, e.g. Shorack and Wellner (1986). Substi-
tuting the expressions for function J and for the derivative of F− formulas
(11) and (12) are obtained.
The convergences of (9) and (10) are obtained applying the general theory
for L-statistics described in Shorack and Wellner (1986). 2

These expressions can be simplified when both {φj(t)}j≥0 and {ψk(t)}k≥0

are the KL (trigonometric) basis {1,
√

2 cos(jπt)}j≥1. This is due to the fact
that φj(t) and ψ′

k(t) in Ijklm can be expressed in terms of eigenfunctions of
K(s, t). In this case, the expression of σ2

n is:

σ2
n =

p
∑

j=1

p
∑

l=1

λj λl σn,jl,

σn,jl = 4π2 anj anl

q
∑

k=1

q
∑

m=1

k mγk γm Ijklm,

where anj = −
√

2 (2n/(jπ)) sin(jπ/(2n)),

Ijklm =
1

(4π)2

{

1

(k + j)2
[δm−l,k+j + δm+l,k+j ]

}

, if k = j,

Ijklm =
1

(4π)2

{

1

(k − j)2
[δm−l,k−j + δm+l,k−j ] +

1

(k + j)2
[δm−l,k+j + δm+l,k+j ]

}

,

if k 6= j, and δ is Kronecker’s delta. For a complete proof see Grané and
Fortiana (2006).
Comparing the expression for c(λ) = σ2

1 = λ′ AΣAλ in (3) with (12), we
see that the entries in AΣA are either σn,jl or the limit σjl = limn→∞ σn,jl.
Some computational examples suggest that a better approximation is ob-
tained with σn,jl.

Some examples

To illustrate the method we have chosen four parametric families of alter-
native distributions with support on [0, 1]. We have chosen them so that
either the mean or the variance differs from those of the null hypothesis,
U [0, 1], which in each case is obtained for a value of the parameter. They
are defined by the following probability distribution functions:

A1: Lehmann alternatives,

Fα(x) = xα, 0 ≤ x ≤ 1, α > 0;

A2: symmetric (with respect to 1/2) distributions having U-shaped pdf,
for β ∈ (0, 1), or wedge-shaped pdf, for β > 1,

Fβ(x) =

{

1
2(2x)β , 0 ≤ x ≤ 1/2,
1 − 1

2(2(1 − x))β , 1/2 ≤ x ≤ 1;

9



A3: compressed uniform alternatives,

Fγ(x) =







0, 0 ≤ x ≤ γ,
x−γ
1−2 γ , γ ≤ x ≤ 1 − γ,

1, 1 − γ ≤ x ≤ 1;

0 ≤ γ ≤ 1

2
,

A4: a bimodal locally uniform distribution, with probability mass concen-
trated near both extremes, 0 and 1,

Fδ(x) =







x/(2δ), 0 ≤ x ≤ δ,
1
2 , δ ≤ x ≤ 1 − δ,
1 − (1 − x)/(2δ), 1 − δ ≤ x ≤ 1.

0 < δ ≤ 1/2,

As examples of construction of the test for generic alternatives, we have
considered the families above for several values of the parameters. For each
alternative we determine coefficients γk of (7), for 0 ≤ k ≤ q = 5. For sample
size n = 20 and significance level ε = 0.05 we determine p = 4 coefficients λ

for Tβ (KL test statistic) and for Tℓ (with both {φj(t)}j≥0 and {ψk(t)}k≥0

the Legendre polynomials). Results for Tβ and Tℓ appear in Table 1 and
Table 2, respectively.
Table 3, Table 4, Table 5 and Table 6 contain the power comparisons of the
test based on Tℓ with the tests based on Tβ , Qn, Dn and W 2

n . These powers
have been estimated from N = 10000 samples of size n = 20 as the relative
frequency of values of the statistic in the critical region. Since the UMP
test is easy to compute for the A1 family, we have included these results in
Table 3 for comparison.

5 Bahadur approximate slope

Let us consider the family of alternative distributions depending on a pa-
rameter θ, such that its cdf is Fθ, and let Fθ0

be the cdf of the [0, 1] uniform
random variable.

Proposition 5.1 Let T be the statistic defined in (1) and in (13), and let
{φj}j≥0 be an orthonormal sequence in L2[0, 1]. Then we have the following
convergences:

T −→
n→∞

µ(θ) =

p
∑

j=0

λjΦθ,j , (14)

where Φθ,j =
∫ 1
0 F−

θ (t)φj(t) dt, and

1

n
log pn(t) −→

n→∞
−1

2

(

t − µ(θ0)

σθ0

)2

, (15)

where pn(t) = PH0
(T ≥ t), and µ(θ0) and σ2

θ0
are, respectively, the expecta-

tion and variance of T under H0.
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Table 1: Computations for statistic Tβ for families A1, A2, A3 and A4.

Family Fourier coeff. weights critical values

A1
α = 1/2

γ0 = 1
3

γk = (−1)k 2
√

2
(k π)2

1 ≤ k ≤ q

-0.801406
-0.426894
0.353300
-0.036017
0.222244

c1 = −0.159319

c2 = −0.407395

A2
β = 2

γ0 = 1/2
γ1 = −0.197286
γ2 = 0
γ3 = −0.0448157
γ4 = 0
γ5 = −0.0197851

0
-0.971767
0
-0.235944
0

c1 = 0.327609

c2 = 0.215799

A3
γ = 0.15

γ0 = 1/2
γk = 0,

1 ≤ k ≤ q, k even,

γk = − 2
√

2
(k π)2

(1 − 2 γ),

1 ≤ k ≤ q, k odd.

0
0.837951
0
0.545746
0

c1 = −0.200292

c2 = −0.288662

A4
δ = 0.05

γ0 = 1/2
γk = 0,

1 ≤ k ≤ q, k even,

γk = − 4δ
√

2
(kπ)2

+
(2δ−1)

√
2

kπ sin(kπ/2),
1 ≤ k ≤ q, k odd.

0
0.998779
0
-0.049396
0

c1 = −0.207086

c2 = −0.334052
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Table 2: Computations for statistic Tℓ for families A1, A2, A3 and A4.

Family Fourier coeff. weights critical values

A1
α = 1/2

γ0 = 1/3

γ1 = 1/(2
√

3)

γ2 = 1/(6
√

5)
γk = 0, k > 2

0.866627
-0.389738
0.240569
0.136847
0.143045

c1 = 0.428548

c2 = 0.224193

A2
β = 2

γ0 = 1/2
γ1 = 0.202073
γ2 = 0
γ3 = 0.027822
γ4 = 0
γ5 = 0.006362

0.02226
-0.905230
0.058483
-0.412617
0.079936

c1 = −0.193508

c2 = −0.279914

A3
γ = 0.15

γ0 = 1/2

γ1 =
√

3
6 (1 − 2 γ)

γk = 0 k > 1.

0.000101
0.717871
0.000330
0.696175
0.000592

c1 = 0.226837

c2 = 0.165733

A4
δ = 0.05

γ0 = 1/2
γ1 = 0.418579
γ2 = 0
γ3 = −0.148824
γ4 = 0
γ5 = 0.093280

0.070022
0.970818
0.149801
-0.147607
0.091548

c1 = 0.363615

c2 = 0.239237

Table 3: Power of the test based on Tℓ, Tβ , Qn, Dn, W 2
n and the UMP test

for the A1 family.

α Tℓ Tβ Qn Dn W 2
n UMP

0.25 0.9962 0.9980 0.4411 0.9970 0.9973 1.0000
0.5 0.7615 0.7492 0.1203 0.6550 0.7211 0.9259
0.75 0.2096 0.1973∗ 0.0764 0.1830 0.1987 0.3918
2 0.8792 0.8347 0.3984 0.6730 0.7708 0.9185
3 0.9982 0.9872 0.8779 0.9910 0.9955 0.9998
4 1.0000 0.9991 0.9900 1.0000 1.0000 1.0000
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Table 4: Power of the tests based on Tℓ, Tβ , Qn, Dn and W 2
n for the A2

family.

β Tℓ Tβ Qn Dn W 2
n

0.25 0.9678 0.9447 0.9651 0.8071 0.8597
0.5 0.6600 0.6524 0.7238 0.2879 0.2840
0.75 0.1827 0.1893∗ 0.2203 0.0916 0.0905
2 0.8252 0.8045 0.7523 0.1288 0.1013
3 0.9979 0.9929 0.9955 0.4029 0.5107
4 1.0000 1.0000 1.0000 0.7361 0.8951

Table 5: Power of the test based on Tℓ, Tβ , Qn,Dn and W 2
n for the A3 family.

γ Tℓ Tβ Qn Dn W 2
n

0.05 0.2059 0.1761∗ 0.1016 0.0453 0.0387
0.10 0.7475 0.6049 0.3609 0.0451 0.0426
0.15 1.0000 0.9894 0.8244 0.0677 0.0669
0.25 1.0000 1.0000 1.0000 0.3775 0.6195
0.35 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: Power of the test based on Tℓ, Tβ , Qn,Dn and W 2
n for the A4 family.

δ Tℓ Tβ Qn Dn W 2
n

0.05 0.9639 0.9619 0.9585 1.0000 1.0000
0.15 0.9130 0.8905 0.9309 1.0000 1.0000
0.25 0.7749 0.7951 0.7736 0.8817 0.7533
0.35 0.4351 0.3934∗ 0.3097 0.3321 0.1964
0.45 0.1257 0.0745∗ 0.0697 0.0931 0.0752
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Proof: The T statistic can be written as:

T =

∫ 1

0
J(t)F−

n (t) dt,

where

J(t) =

p
∑

j=0

λj φj(t), t ∈ (0, 1).

Convergence (14) is obtained from the general theory of L-statistics (see
Theorem 3 in chapter 19 of Shorack and Wellner (1986)) which ensures the
following convergence in law:

√
n[T − µ(θ)]

L−−−−→
n→∞

N(0, σ2
θ),

where

µ(θ) =

∫ 1

0
J(t)F−

θ (t) dt, σ2
θ =

∫ 1

0

∫ 1

0
J(s)J(t)K(s, t) dF−

θ (s) dF−
θ (t),

and K(s, t) = min(s, t)− s t. So substituting the expression of J(t) in µ(θ),
we have that

µ(θ) =

p
∑

j=0

λj

∫ 1

0
F−

θ (t)φj(t) dt =

p
∑

j=0

λjΦθ,j

where Φθ,j =
∫ 1
0 F−

θ (t)φj(t) dt.
To prove convergence (15) we have to compute the expectation and variance
of T under H0:

µ(θ0) =

∫ 1

0
J(t)F−

θ0
(t) dt =

p
∑

j=0

λj

∫ 1

0
t φj(t) dt =

p
∑

j=0

λjΦ0,j

where Φ0,j =
∫ 1
0 t φj(t) dt, (note that, since φ0 = 1, Φθ,0 = E(Fθ) and

Φ0,0 = E(Fθ0
)) and

σ2
θ0

=

∫ 1

0

∫ 1

0
J(s)J(t)K(s, t) ds dt =

p
∑

j=0

p
∑

k=0

λj λk Sjk,

where

Sjk =

∫ 1

0

∫ 1

0
φj(s)φk(t)K(s, t) ds dt (16)

=

∫ 1

0

(

(1 − s)φj(s)

∫ s

0
tφk(t)dt

)

ds +

∫ 1

0

(

sφj(s)

∫ 1

s
(1 − t)φk(t)dt

)

ds,

and also we need to use the well-known result for large deviations of a
standard normal random variable, described in p.851 of Shorack and Wellner
(1986):
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Lemma 5.1 Let Z be a standard normal random variable, and consider the
sequences λn → ∞, δn → ∞, then:

P (Z > λn) = exp

[

−λ2
n

2
(1 − δn)

]

, n → ∞.

In our case, we have that:

pn(t) = PH0
(T ≥ t) = P

(

T − µ(θ0)

σθ0
/
√

n
≥ t − µ(θ0)

σθ0
/
√

n

)

= exp

{

−(t − µ(θ0))
2

2σ2
θ0

/n
(1 − δn)

}

.

And

lim
n→∞

1

n
log pn(t) = lim

n→∞
1

n

{

−(t − µ(θ0))
2

2σ2
θ0

n (1 − δn)

}

= −1

2

(

t − µ(θ0)

σθ0

)2

.

2

Proposition 5.2 Let T be the statistic defined in (1) and in (13), and let
{φj}j≥0 be an orthonormal sequence in L2[0, 1]. Then:

(i) The Bahadur approximate slope of T for the Fθ family of distributions
is given by

c⋆(θ) =
λ′ φ φ′ λ

λ′ Sλ
,

where λ = (λ0, . . . , λp)
′, φ = (Φθ,0 −Φ0,0, . . . ,Φθ,p −Φ0,p)

′ and matrix
S = (Sjk)0≤j,k≤p defined in (16).

(ii) For a fixed value of θ, the maximum of the Bahadur approximate slope
of T for Fθ is c⋆(θ) = φ′ S−1 φ.

Proof: Part (i) is obtained applying Theorem 1.2.2. of Nikitin (1995). The
Bahadur approximate slope of T for Fθ is

c⋆(θ) =

(

µ(θ) − µ(θ0)

σθ0

)2

, (17)

which is a quocient of two quadratic forms, since the numerator and denom-
inator of (17) can be written in the following way:

(µ(θ) − µ(θ0))
2 =





p
∑

j=0

λj (Φθ,j − Φ0,j)





2

= λ′ φ φ′ λ,
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where λ = (λ0, . . . , λp)
′, φ = (Φθ,0 − Φ0,0, . . . ,Φθ,p − Φ0,p)

′ and

σ2
θ0

=

p
∑

j=0

p
∑

k=0

λj λk Sjk = λ′ Sλ,

where S = (Sjk)0≤j,k≤p and

Sjk =

∫ 1

0

(

(1 − s)φj(s)

∫ s

0
tφk(t)dt

)

ds+

∫ 1

0

(

sφj(s)

∫ 1

s
(1 − t)φk(t)dt

)

ds.

Note that c⋆(θ) depends on θ through vector φ.
Part (ii): for a fixed value of θ, the maximum of c⋆(θ) is attained for the
eigenvector λ of maximum eigenvalue in

φ φ′ λ = ξ Sλ, with the constraint λ′ Sλ = 1.

Setting λ = S−1/2 u, we have that

S−1/2 φ φ′ S−1/2 u = ξ u,

with the constraint u′ u = 1, whose solution is the (unique with non-null
eigenvalue) eigenvector u = S−1/2 φ with ξ = ‖u‖2 its eigenvalue. Finally,
we recover λ = S−1 φ and the maximum Bahadur approximate slope of T
for Fθ, for a fixed value of θ, is c⋆(θ) = φ′ S−1 φ. 2

Comparing two statistics: Bahadur ARE

Let {φj(t)}j≥0, {ψj(t)}j≥0 be two orthonormal bases in L2[0, 1] with φ0(t) =
ψ0(t) = 1. Let us consider T1 and T2 two statistics constructed in the
following way:

T1 =

p
∑

j=0

λ1,jΦnj , T2 =

p
∑

j=0

λ2,jΨnj ,

where Φnj =
∫ 1
0 F−

n (t)φj(t) dt, Ψnj =
∫ 1
0 F−

n (t)ψj(t) dt, j ≥ 0.
Let c⋆

1(θ) and c⋆
2(θ) be the corresponding Bahadur approximate slopes of T1

and T2 for the Fθ family of distributions. For a fixed value of θ, let λ1 =
(λ1,0, . . . , λ1,p)

′ and λ2 = (λ2,0, . . . , λ2,p)
′ the eigenvectors that respectively

maximize c⋆
1(θ) and c⋆

2(θ).
We will say that T1 is asymptotically more efficient (in the Bahadur sense)
than T2 if

c⋆
1(θ)

c⋆
2(θ)

> 1

or equivalently, if
φ′ S−1

1 φ > ψ′ S−1
2 ψ,
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where

φ = (Φθ,0 − Φ0,0, . . . ,Φθ,p − Φ0,p)
′, S1 =

(

S1
jk

)

0≤j,k≤p
,

ψ = (Ψθ,0 − Ψ0,0, . . . ,Ψθ,p − Ψ0,p)
′, S2 =

(

S2
jk

)

0≤j,k≤p
.

We have used the concept of Bahadur asymptotic efficiency to compare
Tℓ and Tβ statistics. Figure 2, Figure 3 and Figure 4 show the Bahadur
approximate slopes of Tℓ and Tβ for the A1, A2, A3 and A4 families of
distributions introduced in section 4.

Figure 2: Bahadur approximate slope of Tℓ and Tβ (p = 4) for the A1
alternative
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Figure 3: Bahadur approximate slope of Tℓ and Tβ (p = 4) for the A2
alternative
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In order to compare Tℓ and Tβ statistics in terms of their power values and
in terms of their Bahadur approximate slopes, we have constructed them
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Figure 4: Bahadur approximate slope of Tℓ and Tβ (p = 4) for the A3
alternative (on the left) and for A4 alternative (on the right)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

γ

Karhunen−Loève
Legendre

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

δ

Karhunen−Loève
Legendre

for each family of distributions (A1, A2, A3, A4), taking p = 3, 4, 5, 7,
q = 2, 3, 4, 5 and n = 20. The powers have been estimated from N = 10000
samples of size n = 20.
For p = 3, 5, 7, the Bahadur approximate slopes of the two statistics present
the same behaviour described for p = 4 (see Figure 2, Figure 3, Figure 4),
therefor there will be no great changes in terms of Bahadur asymptotic
relative efficiency.
For better comparison we have plotted the power values of Tℓ and Tβ for
q = 2, 3, 4, 5. Figure 5, Figure 6, Figure 7 and Figure 8 contain these plots.

Figure 5: Power of Tβ (on the left) and Tℓ (on the right) for the A1 alterna-
tive, for q = 2, 3, 4, 5 and values of the parameter α = 0.25, 0.5, 0.75, 1, 2, 3, 4.
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As a general comment it can be said that for q = 2, Tβ is preferable to Tℓ,
except for the A3 family. But, in general, when q ≥ 3, Tℓ performs better.
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Figure 6: Power of Tβ (on the left) and Tℓ (on the right) for the A2 alterna-
tive, for q = 2, 3, 4, 5 and values of the parameter β = 0.25, 0.5, 0.75, 1, 2, 3, 4.
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Figure 7: Power of Tβ (on the left) and Tℓ (on the right) for the
A3 alternative, for q = 2, 3, 4, 5 and values of the parameter β =
0.05, 0.10, 0.15, 0.25, 0.35.
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More precisely:
For the A1 family Tℓ is preferable to Tβ , in terms of power and in terms
of Bahadur approximate slopes. Both statistics are, in general, better than
Qn, Dn and W 2

n , but, obviously, the UMP-test is the best.
For the A2 family and when the parameter β > 1, Tℓ is the best. For
very small values of the parameter, Tβ is more efficient than Tℓ. But for
0.2 < β < 1, Tℓ has more power than Tβ , although they are equally efficient.
For the A3 family Tℓ is the best and for the A4 family Tβ is more efficient
than Tℓ but, in general, Tℓ has more power. A possible explanation of this
fact is that the pseudo-inverse of the A4 family, F−

δ (t), is a discontinuous
function. In fact, for A4, Dn is the most powerful statistic.
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Figure 8: Power of Tβ (on the left) and Tℓ (on the right) for the
A4 alternative, for q = 2, 3, 4, 5 and values of the parameter β =
0.05, 0.15, 0.25, 0.35, 0.45.
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6 Practical implementation and

concluding remarks

Given two orthonormal basis in L2[0, 1], {φj}j≥0 and {ψj}j≥0, and a fam-
ily of distributions Fθ, such that Fθ0

is the cdf of a [0, 1] uniform random
variable, we want to construct the statistic

T =

p
∑

j=0

λj Φnj ,

which has maximum power for testing H0 : θ = θ0 vs. H1 : θ 6= θ0.
We recommend:

1. Select the orthonormal basis in which the T statistic is more efficient,
in the Bahadur sense, for Fθ alternative.

2. For this orthonormal basis, select q such that the Fourier expansion of
order q is a good approximation of F−

θ (t). In our examples, q = 4 or
q = 5 were sufficient.

3. Take p = 4 to construct the T statistic and apply the algorithm de-
scribed in section 3 to find coefficients λ0, . . . , λp.
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Grané, A. and J. Fortiana (2006). An adaptive goodness-of-fit test. Com-
munications in Statistics A. Theory and Methods 35 (6).

Inglot, T., W. Kallenberg, and T. Ledwina (1994). Power aproximations
to and power comparison of smooth goodness-of-fit tests. Scandinavian
Journal of Statistics 21, 131–145.

Nikitin, Y. (1995). Asymptotic efficiency of nonparametric tests. New
York: Cambridge University Press.

Rayner, J. C. W. and D. J. Best (1989). Smooth tests of goodness of fit.
New York: Oxford University Press.

Rayner, J. W. C. and D. J. Best (1990). Smooth tests of goodness of fit:
an overview. International Statistical Review 58, 9–17.

Shorack, G. R. and J. A. Wellner (1986). Empirical processes with appli-
cations to statistics. New York: John Wiley & Sons.

Stephens, M. A. (1974). Components of goodness–of–fit statistics. Annales
de l’Institut Henri Poincaré, Section B 10, 37–54.
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