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Abstract

We consider a discrete risk process modelled by a Markov Decision
Process. The surplus could be invested in stock market assets. We
adopt a realistic point of view and we let the investment return pro-
cess to be statistically dependent over time. We assume that follows
a Markov Chain model. To minimize the risk there is a possibility to
reinsure a part or the whole reserve. We consider proportional rein-
surance. Recursive and integral equations for the ruin probability are
given. Generalized Lundberg inequalities for the ruin probabilities are
derived. Stochastic optimal control theory is used to determine the
optimal stationary policy which minimizes the ruin probability. To
illustrate these results numerical examples are included.

1 Introduction

Recently, a large body of work has been devoted to extend risk models to
allow for decisor’s actions thus continuing the classical works from the se-
venties by e.g., H.U. Gerber, H. Bühlman and A. Martin-Löf. Controlled risk
processes are considered by Hipp and Taksar (2000), Hipp and Plum (2000),
Schmidli (2001, 2002), Hipp and Schmidli (2004), among others. Most of the
papers consider continuous-time models and some specific intervention, which
allow them to explicitly obtain the optimal policy. Schäl (2004) discusses
discrete-time risk processes controlled by reinsurance and non-statistically-
dependent over time investment. The effect of stochastic investment returns
minimizing the ruin probability in continuous-time models is considered by
Browne (1995), Hipp & Plum (2000) and Gaier et al. (2003). Several models
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of interes rate on ruin probabilities has been discussed by Sundt and Teugels
(1995, 1997), Yang (1999), Norbert (1997) and more recently for discrete
time risk processes see Cai (2002) and Cai and Dickson (2004) and references
therein.

At first view, the ruin probability is not a classical performance criterion
for control problems. As is pointed out by Schäl (2004) one can write the
ruin probability as some total cost without discounting where one has to pay
one unit of cost when entering a ruin state. After this simple observation,
the results from discret-time dynamic programming apply. Nevertheless ob-
taining explicit optimal solutions is a difficult task in a general setting. An
analytic method commonly used in ruin theory is to derive inequalities for
ruin probabilities (see Grandell (1991), Willmot, et al. (2000) and Willmot
and Lin (2001)).

In this paper we consider the problem of minimization of the ruin proba-
bility in a discrete time risk process with proportional reinsurance and invest-
ment in a financial market. For the surplus process we consider the usual
formulation in Markov decision theory (see Schäl (2004) and Hernández-
Lerma and Laserre (1996)). We assume statistical dependency over time for
the investment process and following a realistic point of view as is sugested
in Cai (2002) and in Cai and Dickson (2004), we modelize the return pro-
cess as a finite or countable state markov chain. This model could be in
fact a discrete conterpart of the most frequently ocurring effect observed in
continuous total return processes, e.g. mean-reverting effect. Our aim is
to choose the reinsurance-investment control strategies in order to minimize
the ruin probability and for sake of simplicity we restrict control policies
to be Markovian and stationary. Thus we garantee optimal control strate-
gies among the admissible control class. First, for this purpose we develop
generalized Lundberg inequalities for the ruin probability that depend on
the decision or control strategy. Previously we derive recursive and integral
equations for the ruin probability. Second, optimality over the admissible
control set can be achieved by the monotonic property of the upper bounds
that we obtain.

The outline of the paper is as follows. In Section 2 the risk model is
formulated. In Section 3 we derive recursive equations for the finite ruin
probability and integral equations for the ultimate ruin probability. In Sec-
tion 4 we obtain probability inequalities for the ultimate probability of ruin.
An analysis of the new inequalities and the comparison with the Lundberg’s
inequality is also included. In Section 5 we report the outcomes of an illus-
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trative application to the ruin probability in a risk process with a heavy tail
(PH-type) claims distribution under proportional reinsurance and Markov
dependency of the return process. Finally, we studying in Section 6 the
optimality of our approximations.

2 Model

A general X-valued discrete-time stochastic process {Xn}n≥0 is considered
which can be observed and controlled at the beginning of each period. The
stochastic development is determined by a sequence of random variables
{Wn}n≥1 on some probability space (Ω,z, P ) with Wn = (Yn, Zn, Rn). Let
{Yn}n≥1 and {Zn}n≥1 be two independent sequences of independent and iden-
tically distributed (i.i.d.) nonnegative random variables with probability
distribution functions F and G respectively. We assume also independency
with respect to the investment return process {Rn}. In risk theory, Xn ∈ X
(usually X = R) describes the surplus (size of the fund of reserves) of an
insurance company after n periods, Yn denotes the total claims during the
n-th period, i.e. from time n-1 to time n, Zn represents the random of period
n, and Rn denotes the total retribution of the financial market during the
n-th period.

A policy is a sequence a = {an}n≥1 of decision functions ϕn : X → A, with
A = [b, 1]× [0, 1]d and 0 < b ≤ 1. For the sake of simplicity we can consider a
subset D ⊂ [0, 1]d for the portfolio values, for example a grid of [0, 1]d. Then
ϕn(Xn) = an = (bn, δn) will represent the action chosen at the beginning
of the period n+1. We denote by δn = (δd

1 , . . . , δ
d
n) the portfolio invest in

d risky assets, and b the proportion of the claim to be paid by the insurer.
We consider Markovian control policies, which depend only on the current
state, and stationary, that is, ϕn = ϕ. Abusing notation, we will identify
functions ϕ : X → A with stationary strategies. The (measurable) function
h(b, y) specifies the part of the claim y paid by the insurer. Then, h(b, y)
depends on the retention level b at the beginning of the respective period
where 0 ≤ h(b, y) ≤ y. In this article, we consider the case of proportional
reinsurance, where

h(b, y) = b · y with retention level 0 < b ≤ b ≤ b ≤ 1. (1)

The premium (income) rate c is fixed. Because the insurer pays a premium
rate to the reinsurer which depends on the retention level b, we consider the
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net income rate c(b) where

0 ≤ c(b) ≤ c = c(b), 0 < b ≤ b ≤ b ≤ 1

and c(b) is an increasing function and may be calculated according to the
expected value principle with and added safety loading θ from the reinsurer:

c(b) = c− (1 + θ) · E[Y − h(b, Y )]/E[Z]. (2)

For an initial state X0 = x and a control policy a, the value of the surplus
process at the beginning of the period n+1, say Xx,a

n = Xn, is given according
to

Xn = Xn−1(1 + 〈δn−1, Rn〉) + c(bn−1)Zn − h(bn−1, Yn) (3)

Note that (3) can be rewritten in the usual form in Markov control theory

Xn = f(Xn−1, an−1,Wn) (4)

with the random perturbation Wn = (Yn, Zn, Rn). In general the process
Xn is not homogeneous because its transition probabilities change in time,
however we get homogeneity if we consider stationary strategies of the form
ϕn = ϕ.

From this fact we can assume that the transition probabilities of Xn are
of the form

P (x, a, [x− u,∞)) = F̂ (a, u) (5)

where F̂ (a, u) is the probability distribution of the amount of net losses in
a single period, provided that a is the action taken by the decisor at the
beginning of the period.
We adopt a realistic point of view, and we let the return process {Rn}n≥1

where Rn = (R1
n, . . . , Rd

n) to be statistically dependent whith the price pro-
cess given by Ia

n = 〈δn−1, Rn〉 for n ≥ 1 provided the action a is take.
Note that Ia

n depends on the decision variable a only through the portfo-
lio δn = (δd

1 , . . . , δ
d
n). Moreover {Ia

n}n≥0 is assumed to follow a Markov chain.
In addition we assume that for all n ≥ 0, Ia

n takes a finite or countable num-
ber of possible values on I. Note that Ia

0 is the state of the price process
before to make the investment in the financial market and the value i0 in
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fact drives the evolution of the process.
It is not hard to check that (3) is equivalent to

Xn = x
∏n

l=1

(
1 + 〈δd

l−1, R
d
l 〉

)
+

∑n
l=1

(
c(bl−1)Zl − h(bl−1, Yl)

∏n
m=l+1

(
1 + 〈δd

m−1, R
d
m〉

)) (6)

where throughout this article we consider

n2∏
i=n1

Xi = 1 and

n2∑
i=n1

Xi = 0 if n1 > n2

That is,

Xn = x
∏n

l=1 (1 + Ia
l )

+
∑n

l=1

(
c(bl−1)Zl − h(bl−1, Yl)

∏n
m=l+1 (1 + Ia

m)
) (7)

we define for all a ∈ A

Pr{Ia
n+1 = j|Ia

n = i, Ia
n−1 = in−1, . . . , I

a
0 = i0, a}

= Pr{Ia
n+1 = j|Ia

n = i, a} = pa
ij ≥ 0

(8)

where
∑∞

j=0 pa
ij = 1 for i = 0, 1, 2, . . . ,. Note that we consider in fact a

collection of transition probability matrices {[pa
ij]}a∈A describing the behavior

of Ia
n. The ruin probabilities with infinite and finite horizon, initial surplus

x, action a and given Ia
0 = i are defined as

ψa(x, i) = Pr{
∞⋃

k=1

(Xx,a
k < 0)} = Pr{

∞⋃

k=1

(Xk < 0)|Ia
0 = i,X0 = x, a} (9)

and

ψa
n(x, i) = Pr{

n⋃

k=1

(Xx,a
k < 0)} = Pr{

n⋃

k=1

(Xk < 0)|Ia
0 = i,X0 = x, a} (10)

where Xk is given by (7). Thus,

ψa
1(x, i) ≤ ψa

2(x, i) ≤ · · · ≤ ψa
n(x, i) ≤ · · ·

and

lim
n→∞

ψa
n(x, i) = ψa(x, i). (11)
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Note that if δk = 0 and bk = 1 for k = 1, . . . the risk model (7) is reduced
to the classical discrete time risk model without investment and reinsurance

Xk = x−
k∑

t=1

(Yt − cZt)

If δk = 0 and bk ∈ (0, 1] for k = 0, 1, . . . the risk model is

Xk = x−
k∑

t=1

(bt−1Yt − c(bt−1)Zt) (12)

and ak ≡ bk, k = 0, 1, . . ..
Let ψb(x) denote the infinite time ruin probability in the risk model given
by (12), namely

ψb(x) = Pr{
∞⋃

k=1

k∑
t=1

(bt−1Yt − c(bt−1)Zt) > x}

If we assume stationary strategies bt = b0, t ≥ 1 and in addition E[b0Y1 −
c(b0)Z1] < 0, if there is a constant R0 > 0 satisfying

E[eR0(b0Y1−c(b0)Z1)] = 1 (13)

we get the classical well-Known Lundberg inequality for the ruin probability

ψb(x) ≤ e−R0x. (14)

Furthermore, if all interest rates are non-negative, i.e. Ia
n ≥ 0 for n =

0, 1, . . ., then it is easy to see that

ψa(x, i) ≤ ψb(x), x ≥ 0 (15)

Finally, note that for a model with dividends (constant case), if dn denotes
the short term dividend rate in the n−th period the discrete-time risk model
with stochastic investment return and dividends is given by

Xn = Xn−1(1 + 〈δn−1, Rn〉) + c(bn−1)Zn − h(bn−1, Yn)− dnXn

and rearranging Xn one obtain

Xn = Xn−1

(
(1 + 〈δn−1, Rn〉)

(1 + dn)

)
+

c(bn−1)Zn

(1 + dn)
− h(bn−1, Yn)

(1 + dn)
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For 1 + R′
n = 1+Rn

(1+dn)
, Z ′

n = Zn

(1+dn)
, and Y ′

n = Yn

(1+dn)
, and with conditions

that guarantee that {R′
n}, {Z ′

n} and {Y ′
n} are independent processes with

similar distributional characteristics as the original processes, then the model
becomes

Xn = Xn−1(1 + 〈δn−1, R
′
n〉) + c(bn−1)Z

′
n − h(bn−1, Y

′
n)

which is the same as the model without dividends (3) and it can be
analyzed in the same way.

3 Recursive and integral equations for ruin

probabilities

Throughout this article, we denote the tail of a distribution function F by
F (x) = 1− F (x). We first give a recursive equation for ψa

n(x, i) in (10) and
an integral equation for ψa(x, i) in (9). These equations hold for any interest
rate.

Lemma 1. For n = 1, 2, . . . and any X0 = x ≥ 0,

ψa
n+1(x, i) =

∞∑
j=0

pa
ij

∞∫

0

τ∫

0

ψa
n(x(1 + j)− u, j)dF (y)dG(z) +

∞∑
j=0

pa
ij

∞∫

0

F (τ)dG(z)(16)

with u = b0y − c(b0)z, b0 is the initial retention level, τ = x(1+j)+c(b0)z
b0

and
pa

ij as in (8),

ψa
1(x, i) =

∞∑
j=0

pa
ij

∞∫

0

F (τ)dG(z)

then

ψa(x, i) =
∞∑

j=0

pa
ij

∞∫

0

τ∫

0

ψa(x(1 + j)− u, j)dF (y)dG(z) +
∞∑

j=0

pa
ij

∞∫

0

F (τ)dG(z)(17)
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Proof. Let Uk = bk−1Yk − c(bk−1)Zk, given Y1 = y, Z1 = z, the control
strategy a, and Ia

1 = j, from (7), we have U1 = b0Y1−c(b0)Z1 = b0y−c(b0)z =
u, then X1 = x(1 + Ia

1 )− U1 = h1 − u, where h1 = x(1 + j).
Thus, if u > h1 then

Pr{X1 < 0|Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a} = 1,

which implies that for u > h1

Pr{
n+1⋃

k=1

(Xk < 0)|Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a} = 1

while if 0 ≤ u ≤ h1, then

Pr{X1 < 0|Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a} = 0 (18)

Let {Ỹn}n≥1, {Z̃n}n≥1, and {Ĩa
n}n≥0 be independent copies of {Yn}n≥1, {Zn}n≥1,

and {Ia
n}n≥0, respectively. Suppose that Ũk = bk−1Ỹk − c(bk−1)Z̃k.

Thus, (18) and (7) imply that for 0 ≤ u ≤ h1,

Pr{
n+1⋃
k=1

(Xk < 0)|Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a}

= Pr{
n+1⋃
k=2

(Xk < 0)|Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a}

= Pr{
n+1⋃
k=2

((h1 − u)
k∏

l=1

(1 + Ia
l )−

k∑
l=1

Ul

k∏
m=l+1

(1 + Ia
m) < 0)|Ia

1 = j, a}

= Pr{
n⋃

k=1

(h1 − u)
k∏

l=1

(1 + Ĩa
l )−

k∑
l=1

Ũl

k∏
m=l+1

(1 + Ĩa
m) < 0)|Ĩa

0 = j, a}

= ψa
n(h1 − u, j) = ψa

n(x(1 + j)− u, j)

(19)

where the second equality follows from the Markov property of {Ia
n}n≥0, and

independence of {Yn}n≥1, {Zn}n≥1 and {Ia
n}n≥0.

Let consider condition A = {Z1 = z, Y1 = y, Ia
1 = j, Ia

0 = i, a}. Suppose
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that F (y) = Pr(Y ≤ y) and G(z) = Pr(Z ≤ z). From equation (7) we
obtain

ψa
n+1(x, i) = Pr{

n+1⋃
k=1

(Xk < 0)|Ia
0 = i, a}

=
∞∑

j=0

pa
ij

∞∫
0

∞∫
0

Pr{
n+1⋃
k=1

(Xk < 0)| condition A }F (y)dG(z).

Then

ψa
n+1(x, i) =

∞∑
j=0

pa
ij

{∞∫
0

τ∫
0

Pr{
n+1⋃
k=1

(Xk < 0)|condition A}dF (y)dG(z)

+
∞∫
0

∞∫
τ

Pr{
n+1⋃
k=1

(Xk < 0)|condition A}dF (y)dG(z)

}

=
∞∑

j=0

pa
ij

{∞∫
0

τ∫
0

ψa
n(x(1 + j)− u, j)dF (y)dG(z) +

∞∫
0

∞∫
τ

dF (y)dG(z)

}

=
∞∑

j=0

pa
ij

{∞∫
0

τ∫
0

ψa
n(x(1 + j)− u, j)dF (y)dG(z) +

∞∫
0

F (τ)dG(z)

}

(20)

where τ = x(1+j)+c(b0)z
b0

. Next by letting n →∞ in (20), and by the Lebesgue
dominated convergence theorem, we obtain lim

n→∞
ψa

n+1(x, i) = ψa(x, i), i.e.

ψa(x, i) =
∞∑

j=0

pa
ij





∞∫

0

τ∫

0

ψa(x(1 + j)− u, j)dF (y)dG(z) +

∞∫

0

F (τ)dG(z)





In particular,

ψa
1(x, i) =

∞∑
j=0

pa
ij

∞∫

0

F ((x(1 + j) + c(b0)z)/b0)dG(z).

Note that if we consider the classical risk model without investment and
reinsurance, i.e. δn = 0 and b = 1 for n ≥ 0, we obtain similar results as in
Cai & Dickson [2].
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4 Inequalities for ruin probabilities

In this section we assume that the return process is nonnegative, i.e. Ia
n ≥ 0

for n = 0, 1, . . . and all a ∈ A. We will use the results obtained in the last
section to find upper bounds for the ruin probability taking into account the
information contributed by the Markov chain of the price process.

4.1 Inequalities for ruin probabilities by the inductive
approach

Theorem 1. Suppose that R0 is a constant satisfying (13) then

ψa(x, i) ≤ β
∞∑

j=0

pa
ijE[e−R0x(1+Ia

1 )|Ia
0 = i, a], x ≥ 0, i ∈ I

= βE[e−R0[x(1+Ia
1 )]|Ia

0 = i, a]

(21)

where

β−1 = inf
t≥0

∫∞
t

eR0bydF (y)

eR0btF (t)
with b ∈ (0, 1].

Proof. We apply induction method. For n = 1 we can write

F (θ) =
( R∞

θ eR0bydF (y)

eR0bθF (θ)

)−1

e−R0bθ
∫∞

θ
eR0bydF (y)

≤ βe−R0bθ
∫∞

θ
eR0bydF (y) ≤ βe−R0bθE[eR0bY1|a],

(22)

for any θ ≥ 0. Which implies that for any x ≥ 0, i ≥ 0 and b0 ∈ [b, 1]

ψa
1(x, i) = Pr{X1 < 0|Ia

0 = i, a} = Pr{Y1 > x(1+j)+c(b0)Z1

b0
|Ia

0 = i, a}

=
∞∑

j=0

pa
ij

∞∫
0

F (x(1+j)+c(b0)z
b0

)dG(z),
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which, in turn, implies by (22) that

ψa
1(x, i) ≤

∞∑
j=0

pa
ij

(
βE[eR0bY1|a] ·

∞∫
0

e
−R0b0

�
x(1+j)+c(b0)z

b0

�
dG(z)

)

= βE[eR0bY1|a]
∞∑

j=0

pa
ij

∞∫
0

e−R0[x(1+j)+c(b0)z]dG(z)

= βE[eR0bY1|a] ·
∞∑

j=0

pa
ijE[e−R0[x(1+j)+c(b)Z1]|Ia

0 = i, a]

= βE[eR0bY1|a]E[e−R0c(b)Z1|a]E[e−R0x(1+Ia
1 )|Ia

0 = i, a]

= βE[eR0[bY1−c(b)Z1]|a] · E[e−R0x(1+Ia
1 )|Ia

0 = i, a]

= βE[e−R0x(1+Ia
1 )|Ia

0 = i, a].

Under an inductive hypotheses, we assume for any x ≥ 0 and any i ∈ I,

ψa
n(x, i) ≤ βE[e−R0x(1+Ia

1 )|Ia
0 = i, a] (23)

thus, for 0 ≤ y ≤ x(1+j)+c(b0)z
b0

, with x and i replaced by x(1+j)+c(b0)z−b0y
and j respectively in (23), and Ia

1 ≥ 0, we have

ψa
n(x(1 + j) + c(b0)z − b0y, j) ≤ βE[e−R0[x(1+j)+c(b)z−by](1+Ia

1 )|Ia
0 = j, a]

≤ βe−R0[x(1+j)+c(b0)z−b0y]

(24)
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therefore, replacing (24) in (16), we get

ψa
n+1(x, i) ≤

∞∑
j=0

pa
ij

(
β

∫∞
0

e−R0[x(1+j)+c(b0)z]
∫∞

τ
eR0b0ydF (y)dG(z)

)

+
∞∑

j=0

pa
ij

(
β

∫∞
0

e−R0[x(1+j)+c(b0)z]
∫ τ

0
eR0b0ydF (y)dG(z)

)

=
∞∑

j=0

pa
ij

(
β

∫∞
0

e−R0[x(1+j)+c(b0)z]
∫∞

0
eR0b0ydF (y)dG(z)

)

= βE[eR0bY1|a]
∞∑

j=0

pa
ij

∫∞
0

e−R0[x(1+j)+c(b0)z]dG(z)

= βE[eR0bY1|a] · E[e−R0c(b)Z1|a] · E[e−R0x(1+Ia
1 )|Ia

0 = i, a]

= βE[e−R0x(1+Ia
1 )|Ia

0 = i, a].

Hence, for any n = 1, 2, . . ., (23) holds. Therefore, (21) follows by letting
n →∞ in (23).

Next we consider the case when the claim distribution belongs to the
particular class of NWUC distributions (see (35) in appendix A for details).

Corollary 1. Under the hypothesis of Theorem 1, and assuming that E[eR0bY1|a] <
∞ for all b ∈ (0, 1] and in addition if F is a NWUC distributions, then

ψa(x, i) ≤ (E[eR0bY1|a])−1E[e−R0x(1+Ia
1 )|Ia

0 = i, a], x ≥ 0. (25)

Proof. Following Willmot & Lin [19] in pp. 96–97, and defining r = R0b0 > 0,
we have

β−1 = inf
t≥0

∫∞
t

erydF (y)

ertF (t)
=

∫ ∞

0

erydF (y) (26)

that is, β−1 = E[eR0b0Y1 ] = E[eR0bY1|a]. Finally replacing this equality in
(21), then (25) holds.
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4.2 Inequalities for ruin probabilities by the martin-
gale approach

Another tool for deriving inequalities for ruin probabilities is the martingale
approach. The ruin probabilities associated with the discounted risk process
{Vn, n = 1, 2 . . .}, i.e.

ψa
n(x, i) = Pr{

n⋃

k=1

(Xk < 0)|Ia
0 = i, a} = Pr{

n⋃

k=1

(Vk < 0)|Ia
0 = i, a}

where Vn = Xn

n∏
l=1

(1 + Ia
l )−1, n = 1, 2, . . ..

In the classical risk model, {e−R0Xn , n = 1, 2, . . .} is a martingale. However,
for model (7), there is no constant r > 0 such that {e−rXn , n = 1, 2, . . .} is a
martingale. Still, there exists a constant r > 0 such that {e−rVn , n = 1, 2, . . .}
is a supermartingale, which allows us to derive probability inequalities by
the optional stopping theorem. Such a constant is defined in the following
proposition.

Proposition 1. Assume that E [bY1 − c(b)Z1] < 0. In addition we suppose
that for i ∈ I, there exists ρi > 0 satisfying

E
[
eρi[bY1−c(b)Z1](1+Ia

1 )−1|Ia
0 = i, a

]
= 1. (27)

Then,

R1 = min
i∈I

ρi ≥ R0 (28)

and for all i ∈ I

E
[
eR1[bY1−c(b)Z1](1+Ia

1 )−1|Ia
0 = i, a

]
≤ 1. (29)

Proof. Note that the function

li(r) = E
[
er[bY−c(b)Z](1+Ia

1 )−1|Ia
0 = i, a

]
− 1

r > 0, for each i ∈ I is a convex function with li(0) = 0

l
′
i(0) = E [(bY − c(b)Z)] E

[
(1 + Ia

1 )−1|Ia
0 = i, a

]
< 0.

13



Therefore, ρi is the unique positive root ρ of the equation li(r) = 0 on
(0,∞). Further,

E
[
eR0[bY−c(b)Z](1+Ia

1 )−1|Ia
0 = i, a

]
=

∞∑
j=0

pa
ijE

[
eR0[b0Y−c(b0)Z](1+j)−1

]

by Jensen’s inequality

=
∞∑

j=0

pa
ij · E

[
e[R0[b0Y1−c(b0)Z1](1+j)−1]

]
≤

∞∑
j=0

pa
ijE

[
eR0[b0Y1−c(b0)Z1]

](1+j)−1

=
∞∑

j=0

pa
ij = 1 =⇒ E

[
eR0[bY−c(b)Z](1+Ia

1 )−1|Ia
0 = i, a

]
≤ 1

which implies that li(R0) ≤ 0. Here R0 ≤ ρi and

R1 = min
i∈I

ρi ≥ R0.

Thus, (28) holds. In addition Ri ≤ ρi, for all i ∈ I, which implies that
li(R1) ≤ 0, i.e. (29) holds.

Theorem 2. Under the hypothesis of Proposition 1, for all i ∈ I,

ψa(x, i) ≤ e−R1x, x ≥ 0. (30)

Proof. For the surplus process {Xk} given by (7), we have

Vk = Xk

k∏

l=1

(1 + Ia
l )−1 = x−

k∑

l=1

(
(bl−1Yl − c(bl−1)Zl)

l∏
t=1

(1 + Ia
t )−1

)
(31)

and Sn = e−R1Vn . Then Sn+1 = Sne
−R1(bnYn+1−c(bn)Zn+1)

n+1Q
t=1

(1+Ia
t )−1

. Thus, for

14



any n ≥ 1,

E[Sn+1 | Y1, . . . Yn, Z1, . . . , Zn, Ia
1 , . . . Ia

n]

= SnE

[
e
−R1(bnYn+1−c(bn)Zn+1)

n+1Q
t=1

(1+Ia
t )−1

| Y1, . . . Yn, Z1, . . . , Zn, Ia
1 , . . . Ia

n

]

= SnE

[
e
−R1(bnYn+1−c(bn)Zn+1)(1+Ia

n+1)
−1

nQ
t=1

(1+Ia
t )−1

| Ia
1 , . . . Ia

n

]

≤ SnE
([

e−R1(bnYn+1−c(bn)Zn+1)(1+Ia
n+1)

−1 | Ia
1 , . . . Ia

n

]) nQ
t=1

(1+Ia
t )−1

SnE
([

e−R1(bnYn+1−c(bn)Zn+1)(1+Ia
n+1)

−1 | Ia
n

]) nQ
t=1

(1+Ia
t )−1

≤ Sn

which implies that {Sn, n = 1, 2, . . .} is a supermartingale.
Let Ti = min{n : Vn < 0 | Ia

0 = i} where Vn is given by (31). Then Ti is a
stopping time and n ∧ Ti = min{n, Ti} is a finite stopping time. Thus, by
the optimal stopping theorem for martingales, we get

E(Sn ∧ Ti) ≤ E(S0) = e−R1x.

Hence,

e−R1x ≥ E(Sn∧Ti
) ≥ E((Sn∧Ti

)I(Ti≤n)) ≥ E((STi
)I(Ti≤n))

= E(e−R1VTiI(Ti≤n)) ≥ E(I(Ti≤n)) = ψa
n(x, i),

(32)

where (32) follows from VTi
< 0. Thus, (30) follows by letting n → ∞ in

(32).

5 Numerical results

We present a numerical example to illustrate the bounds given by Theorems
1 and 2 and for the purpose Matlab and Maple implementations are deve-
loped.
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We consider claim distribution of the PH type because they and their mo-
ments can be written in a closed form, various quantities of interest can be
evaluated with relative ease, and finally, the set of PH distributions is dense
in the set of all distributions with support in [0,∞).

Suppose that the claim size Y has a phase-type density (PH(α, T )) with
α = (1/2, 1/2), e = (1, 1),

T =

( −1 0
0 −2

)
, I =

(
1 0
0 1

)
, and t = −Te =

(
1
2

)

then

MY (s) = E[es·Y ] = α (−sI − T )−1 t

thus, E[Y ] = d
ds

MY (s) |s=0= α(T )−2t = 0.75, and Y is NWUC.

We denote the length of periods by Zk. Let Z ∼ Exp(1), E[Z] = 1, thus
MZ(s) = E[es·Z ] = (1− s)−1.

We consider an interest model with three posible interest rates: I = {6%, 8%, 10%}.
In addition we suppose two portfolio investment δ ∈ {1, 2}. Thus the corres-
ponding transition probability matrices of the price process Ia

n for a1 = (b, 1),
a2 = (b, 2) are

P1 =




0 0.9 0.1
0.8 0.2 0
0.9 0.1 0


 and P2 =




0.3 0.7 0
0 0.2 0.8
0 0.1 0.9


 .

We fixed the premium income rate (2) c = 0.975 and the safety loading of
the reinsurer θ = 0.1.

Lundberg bound: In this example we can guarantee that (14) holds
for each b ∈ (0, 1]. First, it is easy to see that for b fixed E[bY1− c(b)Z1] < 0.
Second, for each b ∈ (0, 1] there exist a constant R0 such that (13) is achieved.
Note that solving

E[eR0bY1 ] · E[e−R0c(b)Z1 ] = 1

16



is equivalent to solve

(1 + c(b)R0) = α(−bR0I − T )−1t

The Lundberg bound for the ruin probability is

ψb(x) ≤ e−R0x, for x ≥ 0.

Figure 1 shows the non-linear relation between R0 and b which is the solution
of the preceding equation. Table 1 present numerical values of the bounds
obtained for several admissible decision policies

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

b

R 0

Figure 1: Relation between R0 and b.

Induction bound: In this example the claim distribution is a NWUC
(see [19], page 24) and such that E[eR0bY1|a] = MY (R0b) < ∞ for each
b ∈ (0, 1]. Then Corollary 1 applies and for each i ∈ I

ψa(x, i) ≤ (E[eR0bY1|a])−1E[e−R0x(1+Ia
1 )|Ia

0 = i,a]

≤ [
α (−bR0I − T )−1 t

]−1 ∑
k∈{6,8,10}

pike
−R0x(1+k) for x ≥ 0.

Numerical values of this bound obtained for several admissible decision poli-
cies are presented in Table 1. As it is expected we get induction bounds

17



smaller than the Lundberg bounds for the same decision policies.
Martingale bound: In this example we can guarantee that hypothe-

ses of Proposition 1 follow. Then Theorem 2 holds and we get bound (30).
Condition (27) of Proposition 1

E
[
eρi(bY1−c(b)Z1)(1+Ia

1 )−1|Ia
0 = i, a

]
= 1,

is equivalent to the following condition for each i ∈ I

∑

k∈{6,8,10}
pike

ρi(1+k)−1

MY

(
bρi

1 + k

)
MZ

(
−c(b)ρi

1 + k

)
= 1

or

∑

k∈{6,8,10}
pike

ρi(1+k)−1

α
(−bρi(1 + k)−1I − T

)−1
t ·

(
1 +

c(b)ρi

1 + k

)−1

= 1.

In our example we solve R1 = min
i∈I

ρi ≥ R0 and then we obtain ψa(x, i1) ≤
e−R1x, x ≥ 0. Numerical results of this bound are reported in Table 1. And it
is obvious that this martingale bound improves the results for the induction
bound.

Finally, we find of special interest the case of small reinsurer for which
the retention level could be restricted by economic considerations. Thus we
run numerical experiments in order to compare for a fixed retention level b
the ruin probability bounds that could be achieved, or conversely depending
on the type of the claim distribution for a fixed ruin probability level we can
evaluate the admissible investment/reinsurance policies.
Figure 2 shows the bounds for different approaches with x = 5 and i = 8%
while b ∈ (0, 1].
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Figure 2: Bounds of ruin probability by different approaches vs b.

Pδ b Lundberg bound Induction bound Martingale bound R0 R1

P1 0.01 0.223e− 427 0.934e− 453 → 0 196.94 →∞
P1 0.25 0.516e− 15 0.125e− 15 0.199e− 18 7.039 8.611
P1 0.5 0.323e− 7 0.239e− 7 0.448e− 9 3.449 4.304
P1 0.75 0.111e− 4 0.118e− 4 0.586e− 6 2.280 2.869
P1 0.85 0.434e− 4 0.504e− 4 0.317e− 5 2.008 2.532
P1 0.95 0.1261e− 3 0.157e− 3 0.120e− 4 1.794 2.265
P1 1 0.2e− 3 0.255e− 3 0.212e− 4 1.703 2.152
P2 0.01 0.22e− 427 0.653e− 462 → 0 196.94 →∞
P2 0.25 0.5166e− 15 0.411e− 16 0.144e− 18 7.039 8.675
P2 0.5 0.323e− 7 0.138e− 7 0.382e− 9 3.449 4.336
P2 0.75 0.111e− 4 0.824e− 5 0.527e− 6 2.280 2.891
P2 0.85 0.434e− 4 0.366e− 4 0.288e− 5 2.008 2.550
P2 0.95 0.126e− 3 0.118e− 3 0.110e− 4 1.794 2.282
P2 1 0.2e− 3 0.194e− 3 0.195e− 4 1.703 2.168

Table 1: Numerical bounds of ruin probability.
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6 Optimality

In the preceding Section probability inequalities for the ultimate probability
of ruin are derived. Our goal is to minimize the ruin probability ψ∗(x) =
infa ψa(x), that is hitting ∆ = (−∞, 0]. Following Gajek (2005) the idea is
to use our Lundberg-type upper bounds as initial approximations and then
iteratively apply an integral operator. Groniowska and Niemiro (2005) use a
similar approximation provided that the risk model follows a random walk.
Our approximations are closely related to the well-known in stochastic control
theory Policy Iteration Algorithm, (see Hernandez-Lerma and Laserre (1996),
Section 4.4), which provides decreasing approximations to the minimum, over
all possible decision strategies, of the ultimate probability of ruin.

Assume that the transition probabilities of Xn are given by (5).
We consider the Bellman operator defined as follows. For v ∈ V , the set

of all measurable functions v : X \∆ → [0, 1],

Bv(x) = inf
a∈A

[P (x, a, ∆) +

∫

X\∆

P (x, a, dx′)v(x′)]

If ϕ : X → A, we consider the following operator

Tϕv(x) = P (ϕ(x), x, ∆) +

∫

X\∆

P (ϕ(x), x, dx′)v(x′)

We state now some results essentially standard but necessary for the
sequel. They are known as the measurable selection conditions for the Bell-
man’s Principle of Optimality.

Proposition 2. Let A be a compact set and let assume that the stochastic
kernel P is strongly continuous with respect to a

u(x, a) =

∫

X

P (x, a, dx′)w(x′)

i.e.the measurable function u : X × A → [0, 1] is continuous in a for every
fixed x ∈ X and for every measurable function w : X → [0, 1].

Then the Bellman operator has the following properties:
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• i) Attainability: for every v ∈ V there exist a measurable ϕ : X → A
such that Bv = Tϕv. Therefore, Bv ∈ V .

• ii) Monotonicity: if v1 ≤ v2 then Bv1 ≤ Bv2.

• iii) Monotone continuity: if vk ↗ v then Bvk ↗ Bv.

Proof:

Note that in the definition of operator B, the function under the infi-
mum is continuous with respect to a. Because the kernel is assumed to be
strongly continuous. Attainability of the infimum over the compact set A
holds, and consequently the infimum is also measurable. Result ii) is tri-
vial. The Lebesgue monotone convergence theorem and interchange results
of limits and minima on continuous functions over compact sets imply iii).

For further details see Hernandez-Lerma and Laserre (1996).
2

We turn now to the Lundberg-type inequality probabilities for the ruin pro-
bability developed in Section 4. The existence of this bounds means that for
at least one strategy the probability distribution F̂ (a, .) has the adjustment
coefficient as we assume in the following.

Proposition 3. Let consider the upper bound v(x) = exp{−R1x} given by
(30) in Theorem 2. Assuming that there exist a ∈ A such that

∫
X

eR1x,

F̂ (a, dy) = 1, where the distribution function F̂ is given by (5) then the
function v(x) satisfies T av ≤ v.
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Proof:

Because the function v(x) ∈ V and satisfies Proposition 2, we can state

T av(x) = P (x, a, ∆) +
∫

X\∆ P (x, a, dx′)v(x′)

=
∫
(x,∞]

F̂ (a, dx′) +
∫
(−∞,x]

F̂ (a, dx′)v(x− x′)

= F̂ (a, dx′) +
∫
(−∞,x]

exp(−R1(x− x′)) · F̂ (a, dx′)

≤ ∫
(x,∞]

exp(−R1(x− x′)) · F̂ (a, dx′) +
∫

(−∞,x]

exp(−R1(x− x′)) · F̂ (a, dx′)

∫
R

exp(−R1(x− x′)) · F̂ (a, dx′)

= exp(−R1(x))
∫

R
exp(R1x

′) · F̂ (a, dx′)

= exp(−R1(x)) = v(x)

Theorem 3. Let assume that Proposition 3 holds. Let the distribution func-
tion F̂ verify that there exist h > 0 and ζ > 0 such that (1 − F̂ (a, h)) ≥ ξ,
for every a ∈ A. Then

• i) If we define recursively v̄k = Bv̄k−1, starting with v̄0 = v, we obtain
the monotone-decreasing convergence v̄k ↘ ψ∗.

• ii) Moreover we have that v̄k → ψ∗ where the convergence may be non-
monotonic.

Remark: Note that the condition for F̂ seems to be satisfied for all
reasonable risk models. It is worth noting that if the conditions is fulfilled,
then for every strategy a and every initial state x the surplus process verify
P a

x (T < ∞ or Xn →∞) = 1 and consequently almost every trajectory either
goes infinity or falls below zero at least once.

Proof:
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• i) By induction it can be proved that v̄k−1 ≥ v̄k, starting with v̄0 ≥
T av̄0 ≥ Bv̄0 = v̄1. Because Bψ∗ = ψ∗ by induction we obtain v̄k ≥ ψ∗.

• ii) Note that ψ∗ ≤ ψa ≤ v̄0 implies ψ∗ ≤ v̄k because B is a mono-
tonic operator and has a fixed point which is ψ∗. Because P a

x (T <
∞ or Xn → ∞) = 1 holds, then provided that v(x) = exp{−R1x}
verifies limx→∞ v(x) = 0 and the dominated convergence theorem we
obtain

∫

X\∆
P (x, a, dx′)v(x′) =

∫

(−∞,x]

F̂ (a, dx′)v(x− x′)

= Ea
x(I(T > k)v̄0(Xx) → 0

This is true for every strategy a, in particular for a∗. Then we have

v̄k(x) ≤ P a∗
x (T < ∞) + Ea∗

x (I(T > k)v̄0(Xx)

The first term tends to ψa∗ and the second term goes to zero. It follows
that lim v̄k ≤ ψa∗ = ψ∗. Combining with i) then the convergence
v̄k → ψ∗ is obtained.

Remark: By the attainability property of the Bellman operator there is
a stationary strategy a such that Bv̄k−1 = T av̄k−1. It is not difficult to prove
that considering this stationary strategy T av̄k−1 ≤ v̄k−1 implies ψa ≤ v̄k.
If we compute the stationary strategy simultaneously with v̄k, we obtain a
stationary strategy for which at each stage the ruin probability is at most v̄k.
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A Stochastic orders and phase-type distributions

DFR ⇒ NWU
⇓ ⇓

IMRL ⇒ 2-NWU ⇒ NWUC

¦ The df F is DFR (Decreasing Failure Rate): if F (x+y)

F (y)
is nonde-

creasing in y for fixed x ≥ 0, i.e. F (y) is log-convex. Then µ(y) = f(y)

F (y)
is

nonincreasing in y.

Let F (y) phase-type distribution with parameters (α, T ), we want to
see under what condition the phase-type distributions are DFR. That is

equivalent to satisface that ∂
∂y

F (x+y)

F (y)
is non-negative in y for fixed x ≥ 0. In

this case F (x+y)

F (y)
= αeT (x+y)e

αeTye
, then

∂

∂y

F (x + y)

F (y)
=

αTeT (x+y)α̂eTye− αeT (x+y)α̂T eTye

(αeTye)2

is non-negative, if only if the numerator is non-negative, i.e,

αTeT (x+y)α̂eTye− αeT (x+y)α̂T eTye
= α{TeT (x+y)α̂− eT (x+y)α̂T}eTye = α{TA− AT}eTye ≥ 0

(33)

where A = eT (x+y)α̂ and α̂ = e · α =
−→
1 · (α1, . . . , αn) = (α1 · −→1 , . . . , αn · −→1 ).

The previous condition (33) is only posible if TA−AT is non-negative defi-
nite. The equality is when T commute with A = eT (x+y)eα.
So that, The phase-type distribution are DFR if only if TA − AT is non-
negative definite.
¦ The df F is IMRL (Increasing Mean Residual Life): if

r(y) = E[Ty] =
R∞

y (t−y)dF (t)

F (y)
dt

=
R∞
0 F (t+y)dt

F (y)
= E(Y )F 1(y)

F (y)

is increasing. Where F1(y) =
R y
0 F (x)dx

E[Y ]
with y ≥ 0 and E[Y ] =

∫∞
0

F (y)dy.

Let F (x) = PH(α, T ), always T−1 exist. En this case E[Y ] = −αT−1e, then
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F1(y) =
R y
0 αeTxedx

E[Y ]
= αT−1{eTy−I}e

E[Y ]
and F 1(y) = αT−1eTye

αT−1e
. So r(y) = −αT−1eTye

αeTye

and ∂
∂y

r(y) = α(−eTybα+T−1eTybαT )eTye
(αeTye)2

.

F (y) is IMRL if only if ∂
∂y

r(y) is non-negative, i.e, F (y) is IMRL iff −eTyα̂+

T−1eTyα̂T is non-negative definite.
¦ The df F is NWU (New Worse than Used): if

F (x + y) ≥ F (y) · F (x), ∀x ≥ 0, ∀y ≥ 0. (34)

Let F (x) = PH(α, T ), we say that F is NWU if only if F (x+y)−F (y)·F (x) =
αeTx(I − eα)eTye ≥ 0, i.e, the phase-type distribution is NWU iff I − α̂ is
non-negative definite.
¦ The df F is 2-NWU (Second New Worse than Used): if

F 1(x + y) ≥ F 1(y) · F 1(x), ∀x ≥ 0, ∀y ≥ 0.

Let F (x) = PH(α, T ), in this case F 1(x) = 1 − F1(x) = αT−1eTxe
αT−1e

. We say
that F is 2-NWU iff

F 1(x + y)− F 1(y) · F 1(x) =
αT−1(eαT−1eTy − eTyeαT−1)eTxe

(αT−1e)2
≥ 0.

The phase-type distribution is 2-NWU iff T−1(BeTy − eTyB) is non-negative
definite, where B = eαT−1.
¦ The df F1 is NWUC (New Worse than Used in Convex ordering):
if

F 1(x + y) ≥ F 1(y) · F (x), ∀x ≥ 0, ∀y ≥ 0. (35)

Let F (x) = PH(α, T ), we say that F is NWUC iff

F 1(x + y)− F 1(y) · F (x) =
αT−1eTy(I − eα)eTxe

αT−1e
≥ 0.

The phase-type distribution is NWUC iff T−1 and T−1eTy(I − eα) are non-
negative or non-positive definite both simultaneously.
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