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Abstract

This paper describes a methodology for the simulation of multivariate out of control situations

using in-control data. The method is based on finding the independent factors of the variability

of the process, and shifting these factors one by one. These shifts are then translated in terms

of the observed variables. The shifts provoked by the most important factors are called principal

alarms. The principal alarms are plotted, visualizing the main deviations of the process. Also, a

resampling procedure for ARL estimation using principal alarms is proposed. An application using

a real industrial process, illustrates the usefulness of the methodology.
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1 Introduction

The quality assessment of a production process is often attained by the joint monitoring of several

correlated characteristics. It is of course possible to monitor the individual characteristics using

univariate control charts. However, to the extent that the characteristics are correlated, a multivariate

monitoring of the vector of characteristics can be more effective. A number of multivariate control

charts have been proposed in statistical literature. One common method of constructing multivariate

control charts is based on Hotelling’s T2 statistics (Hotelling, 1947; Alt, 1985). This T2 chart can

be considered as the multivariate extension of the univariate Shewart control charts, based on the

monitoring of the means in independent samples. Multivariate CUSUM charts have been proposed

by Woodall and Ncube (1985), and Croisier (1988). A multivariate extension of the exponentially

weighted moving average (MEWMA), can be found in Lowry et al. (1992).

The use of multivariate control charts is, however, subject to practical drawbacks. The main

problem of the multivariate control chart is the interpretation, in terms of the original quality variables,

of an out of control signal. As a result, further diagnostic detective work would be needed in order
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to know which of the original variables caused the alarm signal. This problem of interpreting an out

of control situation in multivariate control charts is an important issue. Failure to quickly find the

correct cause of the alarm makes the control impractical.

The identification of the cause of the alarm can be a complex issue, since it can be related to

a single variable or to a subset of variables. This identification problem has been addressed by a

number of authors. Murphy (1987) proposes a partitioning procedure using the overall T2 of the

observation that triggers the alarm, and comparing it to a T2 value based on a subset of variables.

The best subset is then searched based on this criterion. Doganaksoy et al. (1991) propose ranking

the variables according to their relative contribution to the alarm using a univariate t statistic as a

criterion. Hawkins (1993) and Wade and Woodall (1993) use regression adjustments for individual

variables to help identify the single variable that is responsible of a the mean shift. Mason et al.

(1995,1997) use some orthogonal decomposition of the T2 value of the out of control observation to

lead the interpretation.

It is important to note that the above mentioned procedures are based on the analysis of the T2

statistics when the process is already out of control. Before the alarm, these procedures do not supply

information about potential alarms. In this article, we propose a procedure aimed at identifying the

main changes in the mean of the process that are expected to be observed in an out of control situation.

These main changes in the mean of the process will be denoted as principal alarms. These principal

alarms intend to summarize the most likely alarms that will appear in a multivariate control chart.

Once the principal alarms are identify, it can be easier to find the physical causes of those alarms.

Then, when a multivariate control chart triggers an alarm, we can start the identification of the causes

using these principal alarms. The principal alarms are obtained by simulating alternative vector mean

shifts so that they preserve the covariance structure of the observed data. The use of the proposed

principal alarms analysis can be seen as an ex ante analysis of the out of control situation, whereas

the traditional use of the out of control signals can be seen as an ex post analysis. Both approaches

are complementary and help to make an effective statistical control.

The outline of the article is as follows. Section 2 describes the procedure to obtain the principal

alarms of a multivariate process. Section 3 proposes a resampling procedure that uses the principal

alarms to simulate the performance of alternative multivariate control charts. This procedure helps to

select the best multivariate control chart. Section 4 shows an application of the proposed procedures

to a real data set. Finally, Section 5 discuses some concluding remarks.

2 Simulation of Principal Alarms

2.1 General Considerations

In this section we describe the procedure to simulate the so called principal alarms. Let X =

(X1,X2, ...,XK)
0 be the vector of the K variables of interest that are used for statistical process
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control. Let X be the n ×K matrix of observed data. The vector of n observations of variable k is

denoted as xk = (xk1, ..., xkn)0. Let us assume that E(X) ≡μ = (μ1, μ2, ..., μK)0 and Cov(X) =Σ.
One goal in statistical process control is to detect a multivariate mean shift μ∗ = μ+ δ, but the

covariance Σ remains constant. The vector δ =(δ1, δ2, ..., δK)
0 represents the shift in each original

variable. The purpose of a multivariate control chart is to detect that such deviation δ has taken

place. Once a deviation is detected, the next goal is to investigate which elements of the vector δ

holds δk 6= 0, and interpret it. Our goal here is different in that the interest is not in the analysis of
observed mean shifts, but in the identification of potential mean shifts.

In order to investigate potential mean shifts, we should not think that each mean μk changes in an

independent fashion. For instance, let X represent a vector of measurements of a conformed steel profile
at K selected points. The production process itself will make those measurements dependent. Then,

a deviation in the conformation process will probably provoke a shift δ in all the K measurements. As

a result, the individual shifts δk will be dependent, since they are physically related. Then, in order

to simulate a realistic mean shift we can not propose a deviation vector δ with uncorrelated elements

δk. We should keep in mind that practitioners will use multivariate control charts instead of a set of

univariate ones just because the variables of interest are closely related. We should therefore design

procedures for that context.

To simulate a realistic mean deviation, we can translate the problem of a mean shift in the set of

related variables X to a problem of a mean shift in a set of independent variables Y = (Y1, Y2, ..., YJ)0,
where J could be equal to K. This vector Y can be interpreted as the original or primary independent
sources of variability. Then, the vector X is just a set of measurables magnitudes whose variability
comes from Y (apart from some specific variability like measurement errors).

The vector Y could be obtained using an appropriate transformation Y = f (X). Since Y is

independent, we can easily simulate a mean shift just by adding a vector of constants γ = (γ1, ..., γJ)
0;

where now the individuals γj , j = 1, ..., J do not need to be related between each other. This

change will provoke a mean shift in Y. Then, to translate this mean shift in terms of the original
variables X we just have to apply the inverse of the transformation, f−1 (Y+γ) and obtain δ such that
X+δ = f−1 (Y+γ) . Hence δ = E

£
f−1 (Y+γ)

¤
− μ.

In the literature there are alternative procedures to project a set of dependent variables X into a
set of independent ones Y like, for instance, Independent Component Analysis (see, i.e. Hyvärinen
et al, 2001). Under normality, a simpler procedure is the principal component analysis (PCA). Our

proposed procedure will use PCA to find the transformation Y = f (X). We will not assume any
particular distribution for X. However, we will assume that X is some transformation X = h (W) ,
where W are the original non-normal variables, so that X is normally distributed. In practice, some
Box-Cox type transformation can help to improve the normality of the data. In our context, since we

are interested in the mean of the variables, a convenient transformation to improve the normality could

be grouping the data in subsamples of size m. Then, instead of working with a set of n observations,
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we would work with a set of [n/m] observations. The advantage of this transformation is that the

mean of the grouped variables is the same as the original ones. As a consequence, a mean shift in the

grouped variables is the same as in the original variables. In the rest of the article, and in order to

avoid further notation, we will assume that X is normally distributed.

2.2 Computation of Principal Alarms

Let X be a n×K matrix of observations of X. Assuming that the process has been in control during
these observations, they can be used to obtain the estimates μ̂ and Σ̂ of the mean and covariance

matrix of X respectively. We can also estimate the correlation matrix of X, that will be denoted as
R̂. To obtain the transformation Y = f (X) mentioned in the previous section, we could use the PCA
based on the singular value decomposition of Σ̂ or R̂. We will develop here the procedure using R̂.

The decomposition using Σ̂ follows the same arguments. The singular value decomposition of R̂ holds

R̂ = CDC
0
, (1)

where C is the matrix with the eigenvectors of R̂ and D is a diagonal matrix with the corresponding

eigenvalues λk, k = 1, ...,K. Hence, the transformed data Y can be obtained as

Y = eXC, (2)

where eX is the standardization of X, that is,

X̃ =
¡
X− 1bμ0¢ diag ³Σ̂´−1/2 , (3)

where 1 is a vector of ones of appropriate dimension, and diag(M) is the matrix with the diagonal

elements of M.

Under normality of X, the transformed variables Y are independent. Once we have the (n ×K)

values Y we can introduce some mean shift in each column of Y independently. The first column of

Y, denoted as y1, is the linear combination with maximum variance. The correponding eigenvalue λ1

is its variance. As it is well known, and using that
P

λk = K, the larger the correlation between the

original variables X the larger λ1, and hence, the smaller λk, k > 1. As a result, if we are dealing

with a set of correlated variables, the first principal components can be seen as the main sources of

variability of the process. For instance, if K = 2, we have from (2) that

y1 = c11x̃1 + c21x̃2,

where cij is the (i, j) element of the matrix C, and x̃k is the k-th column of eX. From this expression,

we can write the variance of y1 as

λ1 =
y01y1
n

= c211
x̃01x̃1
n

+ c221
x̃02x̃2
n

+ 2c11c21
x̃01x̃2
n

. (4)
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Since the eigenvectors have unity norm and x̃k are standardized, we obtain from (4) that

λ1 = 1 + 2c11c21r, (5)

where r is the correlation between x1 and x2. Since λ1 ≥ λ2 and λ1 + λ2 = 2, it holds from (5) that

c11c21r ≥ 0. Then, it can be checked that as |r| → 1 then λ1 → 2 and λ2 → 0. The interpretation of

this result is that the first columns of Y are a good approximation of the primary independent sources

of variability of X. Therefore, if we want to predict a realistic mean shift in the process, it suffices to

simulate a mean shift in the first columns of Y. As a consequence, the resulting multivariate mean

shift in terms of the X, that is a shift μ∗ = μ+ δ, will be coherent with the structure of the data and

will have practical meaning.

Let us denote as Y∗ to the matrix obtained after adding a constant term in some columns of Y;

that is

Y∗ = Y + 1γ0. (6)

The shifted original variables are

X∗ = Y∗C0diag
³
Σ̂
´1/2

+ 1bμ0. (7)

Since bμ = n−110X, we can write the mean shift of the original variables as

δ =
1

n
(X∗ −X)0 1. (8)

This shift in the process obtained from a shift in the principal components of X will be denoted as

principal alarms (PA). Note that a PA is a deviation in the process that has not been observed yet.

Therefore, it is a piece of information that would be difficult to achieve just exploring the observed data.

It will hence be very illustrative to make a graphical representation of the PA that compares μ and

μ∗. This representation will help us to understand the process better. Since the principal components

are assumed to be independent, it will be more practical to simulate a PA shifting the principal

components one by one. For instance, a PA of the first principal component will use γ =(γ1, 0, ..., 0)
0.

This PA will be denoted as the first PA. Usually, in SPC, the mean shifts are defined in terms of

the standard deviation of the process. In the present context, we can define the k-th PA as the one

obtained with the shift

γ =
³
0, ..., 0, b

p
λk, 0, ..., 0

´0
, (9)

where b determines the size of the shift.

This procedure to simulate mean shifts using the PA can also be used to simulate shifts in the

covariance matrix of the X, maintaining the mean constant. In this case, instead of adding the

constant γk = b
√
λk to the k-th column of Y, we will multiply that column by γk =

p
(1 + b). Then,

the variance of that column will be var(y∗k) = (1 + b)λk, whereas the mean remains constant. This

shift in the variance of yk will change the whole covariance matrix of X according to the distortion
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introduced by γk. Note that, as also exposed in the mean shift case, a realistic change in the covariance

matrix of X can not be attained by changing the elements of Σ̂ arbitrarily. If we still assume that

the principal components Y are the independent and original sources of variability of our production
process, then changes in the variance of such original sources should also be considered independently.

Therefore, realistic changes in Σ (or R) that have practical meaning should be restricted to those that

maintain its eigenvectors. A change in the eigenvectors is only possible if a radical and drastic change

has happened in the process. For instance, the independent sources of variability become dependent.

It does not seem reasonable to design control charts based on those situations.

3 Estimation of the Average Run Length using PA

The PA can also be used to evaluate the performance of alternative multivariate control charts, helping

to chose the most appropriate for our process. In order to evaluate such performance we will use the

so called average run length (ARL). The ARL is the average number of samples needed to obtain an

out of control signal. For a given in-control ARL (related to Type I error) the best control chart is

the one that minimizes the out-of-control ARL.

This section shows a procedure to simulate the ARL curve of a multivariate control chart as a

function of b in (9). The proposed methodology is based on a resampling scheme from the data that

permit to easily reproduce both in control and out of control situations, when the out of control

situation is due to a PA. The proposed procedure can be applied to any multivariate control chart. In

this article, for convenience, we will expose the procedure for the T2 and MEWMA charts.

Let us denote as τ(θ) to the statistic represented in the multivariate control chart, where θ is the

set of parameters of the multivariate distribution (μ or Σ) that we want to control. Let UCL and LCL

be the upper control limit and lower control limit, respectively, of the control chart. Let us suppose

that we are interested in monitoring μ.When the process is in control, the multivariate distribution of

the K variables has μ = μ0. When the process is out of control due to a mean shift, the multivariate

distribution has μ∗ = μ0 + δ. The mean shift δ due to the k-th PA is originated by a mean shift

γ =(0, ..., 0, γk, 0, ..., 0), as in (9) where k will usually be k = 1 or k = 2. Therefore we can write

μ∗≡ μ∗(γk). Given a value of in-control ARL, the best control chart to detect such PA is the one

with minimum ARL(μ∗(γk)). For economy of notation, we will denote the ARL curve as ARL(γk).

3.1 ARL for the T2 chart

The T2 chart displays the evolution of the Hotelling’s T 2 statistics built using subgroups of g observa-

tions. We will denote as x̄t to the vector of sampling averages of the g observations at time t. Then,

the T 2 statistics is

T 2t = g (x̄t − bμ)0 Σ̂−1 (x̄t − bμ) . (10)
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If we could assume that the vector x̄t is normal, the (asymptotic) control limits of the T2 chart

are LCL=0, and UCL=χ2K,α. Then, the ARL curve could be calculated analytically under the shifts

μ∗(γk) using the χ
2
K distribution. Alternatively, the ARL curve can be obtained in a easy way by

using resampling methods similar to those in the literature (Bagjier, 1992; Seppala et al. 1995; Liu

and Tang, 1996; Jones and Woodall, 1998). The asymptotic correctness of the bootstrap applied to

the empirical distribution of the T 2 statistics has been verified in Beran (1986).

The proposed multivariate resampling procedure to estimate the in-control ARL, that is ARL(0),

of the T2 is the following:

1. Obtain the estimates bμ and Σ̂, using all the data (we should make sure that the process is in
control).

2. Select randomly g observations fromX (with replacement), and compute x̄t and the T 2t statistics

(10).

3. If T 2t ≤ h1, where h1 > 0 is a specified UCL, we repeat step 2 extracting a new set of g

observations. If T 2t > h1 we stop and then compute the run length as RL=t.

The ARL(0) is estimated by averaging the RL’s obtained after repeating the previous procedure

a large number of B times. The value of h1 is chosen to achieve a specified ARL(0). Since in this T2

chart, the T 2t are independent, it holds that Type I error (false alarm probability) is α = 1/ARL(0).

The procedure to estimate the out-of control ARL due to the k-th PA, that is ARL(γk), is the

following:

4. Select a desired value of b in (9) and compute γ. Then compute Y∗ as in (6), and X∗ as in (7).

5. Do steps 2 and 3 using X∗ instead of X and obtain the RL.

In a similar fashion as in ARL(0), the ARL(γk) is estimated by averaging the RL’s obtained after

repeating the previous procedure a large number of B times. An ARL curve can be draft using a set

of alternative values of b. For instance, we could move b in the range (0,3) to analyze a positive shift.

As mentioned in Section 2.1, in the case of non-normal data, the matrix X would be the transfor-

mation X = h(W), withW being the original data, and h(W) some transformation aimed at reaching

normality. In this case, the random selection in steps 2-3 above are made fromW instead of X. The

step 4 should add the computationW∗ = h−1 (X∗) . Then, step 5 is made withW∗ instead of X∗.

Since we are estimating an empirical percentile in the tail of a distribution, we should have a

large enough dataset, especially if we are going to build a control chart for individual observations

(g = 1). For instance, if we want to estimate the the usual percentile α = 0.0027 (ARL(0) = 370) for

an individual observations chart, we should have a dataset larger than 1000/2.7 = 370 observations.

An alternative way to see this problem is in terms of the ARL. If we want to estimate the event

so that the ARL is 370 by averaging empirical run lengths, we should have a dataset larger than 370.
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Otherwise, we would be asking the data set about events that has not been observed yet. When we

use a subgroup size g > 1, this problem is alleviated, and we can obtain results from resampling using

smaller datasets. First, the averages of g > 1 observations have smaller variance. Hence, extreme

percentiles will be closer to the mean (in terms of standard deviations). Also, with g > 1 we are

increasing the number of different averages x̄t’s obtained from resampling by the power of g, which

also ease the estimation of extreme percentiles.

3.2 ARL for the MEWMA chart

The MEWMA chart is implemented as in Lowry et al. (1992). Lowry et al. (1992) compute the

statistics

Zt = r (x̄t − μ̂) + (1− r)Zt−1, (11)

where xt = (x1t, x2t, ..., xkt)
0 is the vector of observations at period t, Z0 = 0, and 0 < r ≤ 1 is the

parameter of the chart used to downweight the past. The MEWMA chart gives an alarm signal if

D2
t = Z

0
tΣ
−1
Zt
Zt > h2, (12)

where h2 is and UCL chosen to achieve a specified ARL(0); and ΣZt is the covariance matrix of Zt,

that is,

ΣZt =
n
r
h
1− (1− r)2t

i.
(2− r)

o
Σ̂/g. (13)

Since the sequence of D2
t is not independent, the ARL should be obtained using a variation of the

procedure used for the T2 chart. The proposed procedure is the following:

1’. As in step 1, we obtain the estimates bμ and Σ̂, using all the data (assuming that the process is in
control).

2’. In order to assure a steady-state behavior of D2
t , we extract an initial set of N subgroups of size g,

where for each subgroup we extract randomly g observations from X (with replacement). Then,

for each subgroup, compute x̄s, s=1,...,N, and Zs, using Z0 = 0. We set t = 1.

3’ Select randomly g observations from X (with replacement), and compute x̄N+t, and ZN+t, and the

D2
t statistics as

D2
t = Z

0
N+tΣ

−1
ZN+t

ZN+t (14)

4’. If D2
t ≤ h2, we repeat step 3’ extracting a new set of g observations (t = t + 1). If D2

t > h2 we

stop and then compute the run length as RL=t.

The ARL(0) is estimated by averaging the RL’s obtained after repeating the previous procedure

a large number of B times. Note that, since the D2
t are are not independent, then α 6= 1/ARL(0).

The procedure to estimate the out-of control ARL of the MEWMA chart due to the k-th PA,

ARL(γk), is the following:
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5’. Repeat steps 1’ and 2’ and obtain x̄N , and ZN .

6’. As in step 4, select a value of b in (9) and compute γ. Then compute Y∗ as in (6), and X∗ as in

(7).

7’. Do steps 3’ and 4’ using X∗ instead of X and obtain the RL.

The ARL(γk) is estimated by averaging the RL’s obtained after repeating the previous procedure

a large number of B times. In EWMA type charts, it is easier to build charts based on resampling

from a dataset of moderate or small size than in T2 type charts. In order to see this point, we can

rewrite expression (11) as

Zt = r
tX

s=0

(1− r)s (x̄t−s − μ̂) , (15)

which shows that the information of s periods ago is downweight by the factor (1 − r)s. From (15),

it can be interpreted that the effective number of observations used in the computation of Zt is,

asymptotically,

Nt =
1

r
.

Then, with the usual values of r (like r = 0.1) EWMA charts can be seen as an average of Nt

observations. As a result, using (13), it can be verified that the smaller the parameter r the smaller

the variance of Zt. Extreme percentiles of Zt will then be closer to its mean than the extreme

percentiles of X from its mean. Therefore, if the dataset is not large enough, we can still estimate an

empirical percentile for ARL(0) = 370 if r is small enough.

4 Application to real data

4.1 General description

In this section we will apply the proposed methodology to analyze the PA using data from a real

production process. The process is the manufacturing of the window frame for the door of a vehicle.

The shape of this frame has very restrictive dimensional tolerances. On the one hand, this window

frame must be fitted into the bodywork. On the other hand, it should allow the allocation of the

window. Figure 1 shows this frame. Figure 1 (a) shows the profile of the frame where the 7 circles

represent the 7 points that are measured to control the dimensions. The magnitudes of interest (among

others) are the gaps between the frame and a special gauge built for this purpose. Figure 1 (b) shows

the window frame fitted in this gauge. The gauge has a set of 7 holes that allow the introduction of

a measurement instrument to measure the 7 distances to the frame.

We have a total of 250 measured frames. After some statistical analysis, 16 frames were discarded

for being outliers, which leave with a total of 234 available frames. We will denote as W to the set of

7 variables representing the 7 measured points andW to the matrix of 234 × 7 measurements. The
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(a) (b)

Figure 1: Window frame of the front door of a vehicle. (a) Profile with the seven measured

control points. (b) Picture of the window frame fitted in the gauge used to measure the seven

control points.

analysis ofW revealed that the variables were not normally distributed, due to different patterns of

asymmetry. In order to improve the normality of the data, we have grouped the data in subgroups of

size m = 3 and computed the mean of each subgroup. We denote as X to the set of 7 transformed
variables and X to the matrix of 78× 7 observed means. An analysis of univariate normality of each
column of X by Kolmogorov-Smirnov did not reject normality. Also, an analysis of multidimensional

normality of X, based on the multivariate skewness and the multivariate kurtosis, did not reject the

normality assumption (at 5% significance level). Note that E(X) = E(W) and cov(X) =cov(W)/m.

Therefore, it is easy to analyze changes in the mean and covariance of W using X.
Since the 7 variables are of similar nature and similar order of magnitude, the PCA of X has been

made using the sampling covariance matrix of X, denoted as Σ̂. The matrix C of eigenvectors of Σ̂

holds Σ̂ = CDC
0
. The first three principal components account for 70% of the variability in X. The

first component accounts for 39% of the variability, the second one 19% and the third one 12%. In

order to obtain the principal alarms, we will modify only these three principal components.

4.2 Estimating mean shifts with principal alarms

In this section we will generate the first three PA by modifying each one of the first three principal

components, respectively. Each principal component is modify by adding a shift γk , k = 1, 2, 3,

respectively, as in expression (9), with b ranging in the interval [−2, 2]. Then, the shift is expressed
in number of standard deviations of each component. Let Y be the 78 × 7 matrix of projections
on the principal components. That is, Y = eXC; where now X̃ =

¡
X− 1bμ0¢ and C is the matrix of

eigenvectors of Σ̂. To generate the first PA, we change the first column of Y adding a shift γ1 = b
√
λ1,

where λ1 = 0.176, and the remaining columns of Y are unaltered. This transformation produces Y∗,

which leads to X∗ = Y∗C0+1bμ0. Then, the sampling average of the columns of X∗ are the new means
10
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Figure 2: Simulated mean shifts provoked by the first PA in each measured point for different

values of b. (a) Mean shift at each point. (b) is a simulated deformations (dotted line) fron the

nominal frame (solid line) provoked by a large value of b>0.

μ̂∗.

We will make a graphical representation of the frame with the distorted μ̂∗. This graphical repre-

sentation will be a useful tool to the quality practitioner to understand the main potential deformations

of the window frame, and therefore to design a more efficient management system of the manufacturing

process.

Figure 2 (a) shows the mean shift μ̂∗− μ̂ obtained as a function of b, for some values of b ≥ 0. For
b < 0 the mean shifts are the same but with opposite sign. We see in this figure that the main shifts

due to the first PA will be seen in the points P1, P3, and P7, whereas P4 and P5 will have very little

distortion. Figures 2 (b) displays the original mean frame (solid line) with the simulated deformed

frame using a large value of b > 0. This figure suggests that the first PA will be produced by a wrong

curvature in the mechanical bending between the points P1 and P5.

To generate the second PA, we change the second column of Y adding a shift γ2 = b
√
λ2, where

λ2 = 0.086, and proceed as in the first PA. Figure 3 (a) shows the mean shift μ̂∗ − μ̂ obtained as a
function of b > 0. We see in this figure that the main shifts due to the second PA will be seen in the

points P1 and P6. Figure 3 suggests that the second PA will be produced by a wrong curvature in the

right side of the profile, between points P5 to P7, that will alter the position of the remaining points

accordingly, especially P1.

To generate the third PA, we change the third column of Y adding a shift γ3 = b
√
λ3, where

λ3 = 0.053, and proceed as in the previous PA. Figure 4 (a) shows the mean shift μ̂∗ − μ̂ obtained
as a function of b. We see in this figure that the main shifts due to the third PA is in P3. Figure 4

suggests that the third PA will be produced by a wrong mechanical bending of the elbow formed at

P3.
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Figure 3: Simulated mean shifts provoked by the second PA in each measured point for different

values of b. (a) Mean shift at each point. (b) is a simulated deformations (dotted line) fron the

nominal frame (solid line) provoked by a large value of b>0.

-0.2

-0.1

0

0.1

0.2

0.3

M
ea

n 
sh

ift
 ( 
μ* -μ

 )

Measured Points

b=0 
b=0.5 

b=1

b=1.5 
b=2 

P1 P2 P3 P4 P5 P6 P7

(a) (b)

Figure 4: Simulated mean shifts provoked by the third PA in each measured point for different

values of b. (a) Mean shift at each point. (b) is a simulated deformations (dotted line) fron the

nominal frame (solid line) provoked by a large value of b>0.

4.3 Selection of the best multivariate control chart

In this section we will obtain the ARL curves for T2 and MEWMA. The curves describe the ARL when

a mean shift provoked by the first PA takes place. The ARL curves are built using the methodology

proposed in Section 3. The comparison of the curves of the two charts will help to select the best

multivariate control chart for real time operation of this process. This methodology can also be applied

to the shifts provoked by other PA’s. For the sake of brevity, the analysis of the second and third PA’s

are omitted.

We will analyze the performance of three alternative charts. The first is a T2 chart implemented

as in (10) using subgroup size g = 3. The other two charts are MEWMA charts implemented using

r = 0.10, N=1000 initial subgroups, and subgroup sizes g = 1 and g = 3, respectively. In each of

12



these three competing charts, the control limits h1 and h2 have been obtained to achieve an in-control

ARL(0) = 370. This ARL is the usual value for T2 chart, which corresponds to a Type I error of

α = 0.027 in this chart. The values of h1 and h2 are obtained after some search. This search has

been initiated using the value χ27;0.9973 as initial value for h1 and h2. Then, these values are modified

according to the resulting ARL. As in Croiser (1988) and Lowry et al. (1992), the search of the

appropriate h1, h2 that produces ARL(0) = 370 can be helped using the regressing of log(ARL) on

hi, i = 1, 2. The ARL’s for different hi‘s are obtained with the proposed resampling procedure using

B=100,000 replications. Once h1 and h2 are established, we estimate each ARL(γ1) using B=10,000

replications.

Figure 5 (a) shows the ARL curves for the first PA as a function of b, where the shift of the first

PA is γ1 = b
√
λ1. This figure reveals that the MEWMA charts are more efficient than the T2 chart,

and therefore they are the recommended ones. The decision of the value of g in the MEWMA chart

depends on the inspection procedures. Figure 5 (a) shows that, as expected, the larger the subgroup

size g the better the ARL. In the present example, the measurement of the control points is costly

and time consuming. The current inspection procedure is limited to one inspected article at each

period. Then, if we want to build a chart using g = 3 we should wait three times as much, delaying

the computation of the new point of the chart. Figure 5 (b) helps us to select g in this situation.

This figure displays the values of ARL×g, which represent the average number of inspected articles,
also known as average time to signal. Figure 5 (b) shows that the recommended chart is then the

MEWMA with g = 1. We can continue using this methodology to check alternative values of r and

find the optimal one.
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Figure 5: ARL curves of T 2 and MEWMA for the fisrt PA. (a) Estimated ARL curves for different

values of b and with ARL(b=0)=370. (b) Estimated number of inspected articles to get an out of

control signal (ARL× g).
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5 Discussion

Traditionally, the identification of causes in multivariate control problems is made when the process

is actually out of control. This practice can be harmful, since the out of control situation is not a

desiderable one. This article proposes a methodology that helps to predict the main shifts (both in

mean or scale), denoted as principal alarms, that can be expected in the process using the available

in-control data. The outcome of the procedure can be used to improve the quality of the process in

many ways. First, it helps to identify the weakest elements of the process, which will be responsible

of most of the variability. This result can lead to quality engineers to implement some modifications

in the process. This capacity to improve the process is especially appealing in the initial stages of the

production process, where the engineers need to adjust the machinery.

Second, it allows to improve the SPC activity because: (i) it allows to choose the best type of

control chart for the process, and (ii) it eases the search for responsible variables when an alarm

already takes place.

The method is based on finding the independent factors that explain the variability of the process.

Once these factors are estimated, a mean shift is introduced in them, one by one. The translation

of these shifts, in terms of the original observed variables, is finally obtained. These shifts can be

interpreted as a simulation of out of control situations provoked by each independent factor. The

shifts provoked by the most important independent factors are called principal alarms.

These principal alarms can be represented graphically, allowing the practitioner to visualize the

main expected deviation of the process. The principal alarms can also be used to select the best

multivariate control chart. This comparison is made by estimating the ARL, of each competing chart,

for shifts of different size. A resampling procedure for ARL estimation using principal alarms is

proposed.
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