
 
 
Working Paper 06-01 
Statistics and Econometrics Series 01 
Enero 2006 
 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

 ARE FEEDBACK FACTORS IMPORTANT IN MODELLING FINANCIAL 
DATA? 1

Helena Veiga2

 
 
Abstract 
 
This paper provides empirical evidence that continuous time models with one factor of 
volatility are, in some circumstances, able to fit the main characteristics of financial data 
and reports insights about the importance of introducing feedback factors for capturing 
the strong persistence caused by the presence of changes in the variance. We use the 
Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate and to 
select among logarithmic models with one and two stochastic volatility factors (with 
and without feedback).  
 
 

Keywords: Volatility Factors, Feedback, Persistence, Changes in Variance, Efficient 
Method of Moments and Reprojection. 
 
 
 
 
1 Supported by PRAXIS XXI-FCT. I thank Michael Creel for introducing me to the idea of 
Efficient Method of Moments and for his constant advice. I am also grateful to seminar 
participants at the Symposium of Economic Analysis in Salamanca 2002 and at the Universitat 
Autònoma de Barcelona for helpful remarks. The usual disclaimer applies. 
2 Departamento de Estadística, Universidad Carlos III de Madrid. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29427337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Are feedback factors important in modelling

financial data?

Helena Veiga∗

Statistics Department,

Universidad Carlos III de Madrid,

C/ Madrid 126, 28903 Getafe (Madrid), Spain

Abstract

This paper provides empirical evidence that continuous time models
with one factor of volatility are, in some circumstances, able to fit the main
characteristics of financial data and reports insights about the importance
of introducing feedback factors for capturing the strong persistence caused
by the presence of changes in the variance. We use the Efficient Method of
Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic
models with one and two stochastic volatility factors (with and without
feedback) and to select among them.
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1 Introduction

Gallant and Tauchen (2001) and Chernov et al. (2003) propose several models
in continuous time and evaluate the importance of several volatility factors to
the modelization of equity returns. Both papers provide empirical evidence that
continuous time stochastic volatility models with one volatility factor are not
able to capture simultaneously extra kurtosis and volatility persistence. They
argue that the introduction of a second factor leads to specialization: one factor
is going to be slow mean reverting while the other accommodates the fat tails
of returns distribution.

This paper provides empirical evidence that continuous time models with
one factor of volatility are, in some circunstances, able to fit the main charac-
teristics of financial data. The success of these models in fitting the features of

∗Financial support Fundação para a Ciência e Tecnologia. I thank Michael Creel for
introducing me to the idea of Efficient Method of Moments and for his constant advice. I am
also grateful to seminar participants at the Symposium of Economic Analysis in Salamanca
2002 and at the Universitat Autònoma de Barcelona for helpful remarks. The usual disclaimer
applies. Email contact: mhveiga@est-econ.uc3m.es.
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data is due to the introduction of a feedback feature that is able to capture the
strong persistence caused by the presence of changes in variance. The estimated
models are direct extensions of Gallant and Tauchen’s (2001) model, by includ-
ing the feedback feature. Chernov et al. (2003) also present logarithmic models
in continuous time but our specifications differ from the previous because we
do not allow for stochastic instantaneous expected returns. One advantage of
these logarithmic specifications is that they allow the volatility to be state de-
pendent and the pricing formulas may be computed by simulation. Chernov
et al. (2003) consider this an advantage when compared to the risk-neutral
measure transformations used by the affine models.

The empirical results report the one factor logarithmic volatility model with-
out feedback does not fit the Microsoft data which confirms the previous find-
ings. Nevertheless, we get a new result with the introduction of the feedback
factor. The model, now, does pass the specification test. This feature reveals
to be of extreme importance because it allows not only to capture the low vari-
ability of the volatility factor when the factor is itself low, volatility clustering,
but also to fit the increase in volatility persistence that occurs when there are
apparent changes in variance. The introduction of a second factor of volatility
with feedback does not seem relevant for the Microsoft data.

This paper uses EMM (Efficient Method of Moments) by Gallant and
Tauchen (1996) that is based on two compulsory phases: Projection that con-
sists of projecting the observed data onto a transition density that is a good
approximation of the distribution implicit in the true data generating process,
and Estimation that consists of estimating the parameters of the model with
the help of the score generator. This score enters the moment conditions in
which we replace the parameters of the auxiliary model by their quasi-MLEs
obtained in the projection step and the estimates of the proposed model are
obtained by minimizing the GMM criterion function. Since the minimized cri-
terion function scaled by the number of observations follows asymptotically a
chi-square distribution, we can apply diagnostic tests that help explaining the
reasons for the failure of the model. Finally, the optional step called reprojec-
tion, is a post-estimation simulation analysis that allows to filter volatility, to
obtain the density implicit in the model and to forecast volatility, see Gallant
and Tauchen (1998).

The reason for the choice of EMM is the presence of unobserved variables
in the proposed model, which makes the likelihood for the entire state vector
frequently not feasible. Nevertheless, the simulation of the evolution of the state
vector is quite possible and the EMM is based on this. Aït-Sahalia (1996a,
1996b) also develop an alternative estimation strategy for estimation stochastic
differential equations. This method differs from the EMM because the moment
functions are computed directly from the data rather than simulated and the
full observation of the state is necessary in order to estimate all the parameters.
Brandt and Santa-Clara (2002) also apply the simulated likelihood estimation
procedures to multivariate diffusion processes. Nevertheless, these procedures
have difficulties to deal with latent variables and moreover, the simulations have
to be performed for every conditioning variable and for every parameter value.
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The paper is organized as follows. Section two presents and characterizes
the models we study. Section three covers the projection, estimation and repro-
jection steps and reports the empirical results for the Microsoft data. Section
four concludes the paper.

2 Continuous Time Stochastic Volatility Loga-
rithmic Models

Consider the following specification:

dPt
Pt

= α10dt+ exp(β10 + β12U2t + β13U3t)dW1t (1)

dU2t = (α20 + α22U2t)dt+ (β20 + β22U2t)dW2t (2)

dU3t = (α30 + α33U3t)dt+ (β30 + β33U3t)dW3t, (3)

where Pt is an asset price that evolves in continuous time andWi with i = 1, 2, 3
are three independent wiener processes. This specification extends the model in
Gallant and Tauchen (2001) since it includes the feedback features β22U2 and
β33U3 in the equations 2 and 3, respectively and it can be seen as a general
specification that nests several others. The first is the one volatility factor
logarithmic model, denoted L1, where β13 = 0 and β22 = 0, the second is the
two volatility factor logarithmic model denoted L2, where β13 �= 0, β22 = 0 and
β33 = 0, the third is the one factor logarithmic volatility model with feedback,
L1F , with β13 = 0 and β22 �= 0, and finally, the logarithmic model with two
factors of volatility and feedback denominated L2F , where β13 �= 0, β22 �= 0
and β33 �= 0. Looking at the system, we observe that the volatility factors of
equation 1 present drifts and volatilities that are linear functions of themselves,
respectively. Moreover, the drifts in equations 2 and 3 allow for mean reversion
when αii �= 0 for i = 2, 3. A small value for αii means that a shock to volatility
takes time to dissipate. Finally, β10 is also an important parameter because it
takes care of the long-run mean of the volatility of the price equation.

The empirical results reveal that the feedback feature is crucial in capturing
the strong persistence in volatility observed for the very last part of the sample
(see Figure 1), where at least a change in variance seems to occur. In order
to investigate the truth of our suspicions we apply the Inclán and Tiao (1994)
test for the detection of changes in variance. There are several alternatives in
the literature, such as: Kokoszha (2000) that is, as the previous, a CUSUM
type test for single breaks and differs from the first because it assumes strongly
dependent returns with finite fourth order moments and Lavielle and Moulines
(2000) that propose a Least Squares type test for multiple breaks. Andreou and
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Ghysels (2002) analyze the finite sample properties of these tests and show they
can have important distortions in terms of size and/or power. We choose Inclán
and Tiao (1994) test because it performs better, in finite samples, comparatively
to the previous tests even in non-independent settings. Inclán and Tiao (1994)

test statistic is defined as:
√

T
2maxk

|Dk|, where Dk = Ck
CT
− k

T
, Ck =

k∑

j=1

xj and

x is, in our case, the sample volatility in the daily price of a share of Microsoft,
adjusted for stock splits, from 13th of March, 1986 till 23rd of February, 2001,
including 3778 observations, see Figures 1 and 2. If we are interested in finding
multiple changes in the variance, the solution is an iterative scheme based on
successive applications of Dk to pieces of the series, splitting consecutively after
finding a change point.1 Figure 3 gives an idea how the algorithm works and
Table 1 resumes the changes in variance found in the series. We observe that
the Inclán and Tiao (1994) algorithm detects eight change points in the last
part of the sample and according to Beine and Laurent (2003), Diebold and
Inoue (2001) and Granger and Hyung (1999) these change points are going to
generate extra persistence if we discard them in the specification of models.

To achieve identification it is necessary to impose some restrictions. In this
concrete case for the logarithmic specification we set

α20 = 0, α30 = 0, β20 = 1, β30 = 1.

These restrictions are the minimum necessary to achieve identification, they
are common in previous similar SDE and they provide flexibility and numerical
stability in the estimation phase. After imposing the restrictions, the system
becomes:

dPt
Pt

= α10dt+ exp(β10 + β12U2t + β13U3t)dW1t (4)

dU2t = α22U2tdt+ (1 + β22U2t)dW2t (5)

dU3t = α33U3tdt+ (1 + β33U3t)dW3t. (6)

3 Efficient method of moments (EMM)

In this Section we estimate our model and the benchmark models using EMM
by Gallant and Tauchen (1996). EMM is based on two compulsory phases: Pro-
jection that consists of projecting the observed data onto a transition density,

1See Appendix B for details on the ICSS algorithm.
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that is a good approximation of the distribution implicit in the true data gen-
erating process. The simulated density is denominated the auxiliary model and
its score is called "the score generator for EMM". The advantage is that the
score has an analytical expression. The second phase consists of estimating the
parameters of the model with the help of the score generator. This score en-
ters the moment conditions in which we replace the parameters of the auxiliary
model by their quasi-MLEs obtained in the projection step. Then, the estimates
of the proposed model are obtained by minimizing the GMM criterion function.
Finally, we can apply diagnostic tests that help explaining the reasons for the
failure of a model.2

In the projection step, we proceed carefully along an expansion path with
tree structure and the selected model comes out to be a semiparametric GARCH
(auxiliary model), as in Gallant and Tauchen (2001).3

3.1 EMM Estimation Results

All the estimated results are obtained using the computer package EMM pro-
grammed by Gallant and Tauchen (1996) with Fortran 77 available at ftp.econ.
duke.edu. The global minima of equations 4 and 6 are found through an ex-
haustive search grid of the starting values and the help of randomization.

Table 2 provides a summary of the specifications and shows the value of the
diagnostic test, which follows an asymptotic chi-square with pθ − pρ degrees of
freedom. From the Table and in particular from the chi-square test, we observe
that the results for the model with one volatility factor and without feedback
confirm prior findings in the literature. The model is sharply rejected at a 5%
significance level; but a new result appears when we introduce the feedback
factor. The model does pass the specification test and the feedback feature is
not only significant but also vital for fitting the moment conditions, see Tables 2
and 4. The conditional variance is now much better accommodated. Moreover,
the coefficients are statistically significant and the feedback factor has a negative
value, implying the variability of the volatility factor to be low when itself is
low (volatility clustering). Another interesting estimate is α22, the parameter
of mean reversion. Looking at Table 3, we observe that its value is inferior to
unity which implies that shocks to volatility take time to dissipate.

2See appendix A for asymptotic distributions of EMM estimators.
3The auxiliary model has the following parametrizationLu = 1, Lr = 1, Lg = 1, Lp =

1,Kz = 6 and Kx = 0. The values taken by Lu, Lg , Lr , Lp, Kz and Kx were determined
by going along a expansion path and the selection criterion used was the BIC (Bayesian
Information Criterion), Schwarz (1978). As always, models that present a small value for the
BIC criterion are preferred to the ones with higher values. The expansion path has a tree
structure. As Gallant and Tauchen (1996) suggested, better than expanding the entire tree
structure is to start expanding Lu keeping Lr = Lp = Kz = Kx = 0 till the BIC increases
value. The following step is to expand in Lr with Lp = Kz = Kx = 0. Next, we expand Kz

with Kx = 0 and finally Lp and Kx. Sometimes it can happen that the smallest value of the
BIC is somewhere inside the tree. So, it is convenient for this reason to expand Kz , Lp and
Kx at a few intermediate values of Lr. For more details in the selection of a auxiliary model
check the Gallant, Rossi and Tauchen (1992).
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Through Figure 1 we also observe possible changes in volatility, specially for
the last part of the sample, that are confirmed by the Inclán and Tiao (1994)
test. Recent studies, for instance: Beine and Laurent (2003), Diebold and
Inoue (2001) and Granger and Hyung (1999) report that there is an increase in
volatility persistence if we do not account for the possibility of change points. In
order to investigate this, we consider the sample used in Gallant and Tauchen
(2001) that ranges from March 13, 1986 till November 16, 2000 and our sample.
We compute the autocorrelation functions of the squared observations and of
the absolute values and we observe specially for the latter sample that the ACF
decays slowly towards zero, see Figures 5 and 6. We also compare their L1
model estimates with ours, and we verify that the parameter of mean reversion,
α22, in their case is greater than one in absolute value, which means fast mean
reversion and consequently low persistence in volatility. In contrast, the same
specification estimated considering the sample used in this paper reports an
empirical result for that parameter of -0.902 much smaller in absolute value
than the previous one (see Table 3). Both evidences are signals of an increase
in persistence in the presence of changes in volatility.

Although the frequency of data is daily, it is scaled so that the coefficients
are on an annually basis. That is, a value of 0.4102 for α10 represents an annual
average rate of return equal to 41.02%. The step size is ∆ = 1/6048, which
corresponds to 24 steps per day and 252 trading days per year.

Since the feedback factor reveals itself of extreme importance we estimate a
two factor logarithmic volatility model incorporating this feature. Analyzing the
results we can say that the parameter β13 is not significant, and consequently,
the second factor of volatility. Finally, we estimate the L2 specification as in
Gallant and Tauchen (2001) and the empirical results show that this model is
another possible candidate to modelize the data. Here, the extra persistence is
capture by the first volatility factor which is extremely slow mean reverting.

From the estimation step, we get two candidates, L1F and L2 that are going
to be tested in the reprojection step.

3.2 The reprojection step

The reprojection step allows us to filter the volatility factors U2t and U3t for
any desired sampling frequency. In fact, as a by-product of the estimation step
we obtain a long simulation of the volatility factors {Û2t}Nt=1 and {Û3t}Nt=1 and
{ŷt}Nt=1 at the estimated vector of parameters ρ̂. Then, we impose the same
SNP-GARCH model founded in the projection step, on the simulated values ŷt.
According to Gallant and Tauchen (2001), this provides a good representation
of the one-step ahead conditional variance σ̂2t , given the past information. We

proceed by running regressions of Û2t and Û3t on σ̂
2
t , ŷt and |ŷt| and lags of

these series:

Û2t = α0 + α1σ̂
2
t + α2σ̂

2
t−1 + ....+ αpσ̂

2
t−p + θ1ŷt + θ2ŷt−1 + ...

+θqŷt−q + π1|ŷt|+ π2|ŷt−1|+ ...+ πr|ŷt−r|+ ut,
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Û3t = β0 + β1σ̂
2
t + β2σ̂

2
t−1 + ....+ βpσ̂

2
t−p + γ1ŷt + γ2ŷt−1 +

...+ γq ŷt−q + λ1|ŷt|+ λ2|ŷt−1|+ ...+ λr|ŷt−r|+ µt.

With this procedure we obtain calibrated functions inside the simulation that
gives predicted values of U2t and U3t given {yτ}tτ=1. In fact, given the length of
the simulation, these regressions are as Gallant and Tauchen (2001) say analytic
projections. Finally, we evaluate these functions on the observed data series
{ŷτ}tτ=1 to obtain reprojected values of the volatility factors, Ũ2t and Ũ3t.

Figures 7, 8 and 9 show the reprojected volatility factors of models L2 and
L1F , respectively. As it was expected, Ũ3t for the L2 is quite choppy while
Ũ2t is sightly slower moving, see Figures 7 and 7.1. Moreover, the increase in
volatility, in the last part of the sample and the crash of 1987 are attributed
in its majority to the fast mean reverting factor, U3t, which suggests that both
events are temporary. Finally, the reprojected volatility factor of L1F model is
the most ”alive” of the three, it tracks quite well the volatility pattern and it
is also able to capture some extra noise. Therefore, we can conclude that for
the data and sample used, the L1F specification works quite well in modelling
volatility.

4 Conclusion

This paper studies four systems of SDE : L1, L1F , L2 and L2F . From the
diagnostics at the estimation step two models seem to fit the data, L1F and L2.
One possible reason for the failure of the model with one volatility factor and
without feedback could be its inadequacy to model the strong persistent caused
by changes in variance. This drawback, however, is overcome by introducing
feedback. It allows for volatility clustering and consequently it is able to capture
the strong persistence. The model, now, seems to fit all the score moment
conditions associated with the GARCH parameters, as well as, the score moment
conditions corresponding to the Hermite parameters responsible for the tail
behavior. The second selected candidate in the estimation step is the logarithm
model with two factors of volatility.

Reprojection assumes an important role in the model selection since it gives
more tools for comparing among models. By computing the reprojected volatil-
ity factors implied by the previous specifications, we observe that there is no
advantage in estimating the two factor stochastic volatility model for this sam-
ple. The L1F model is able to reproject volatility quite well and without missing
the stock market crash of 1987.

Relatively to the more complicated specification, L2F, the empirical results
show that the second factor is not significant when we introduce feedbacks into
the specifications of volatility factors.

Appendix A: the estimation step
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The EMM estimator ρ̂n is determined as follows: first, we use the score generator
determined in the projection step

f(yt|xt−1, θ) θ ∈ �pθ

and the data {ỹt}nt=−L in order to obtain the quasi-maximum likelihood estimate

θ̃n = argmax
θ∈Θ

1

n

n∑

t=0

log[f(ỹt|x̃t−1, θ)],

with information matrix

Ĩn =
1

n

n∑

t=0

[
∂

∂θ
log f(ỹt|x̃t−1, θ̃n)

] [
∂

∂θ
log f(ỹt|x̃t−1, θ̃n)

]′
.

In the literature it is assumed that f(y|x, θ̃n) is a good approximation to
the true density of the data. Otherwise, more complicated expressions for the
weighting matrix should be used.4

Defining the moment conditions by

m(ρ, θ̃) = Eρ

{
∂

∂θ
log f(yt|xt−1, θ̃)

}
,

which are obtained by averaging over a long simulation

m(ρ, θ̃n) =
1

n

N∑

t=0

[
∂

∂θ
log f(ŷt|x̂t−1, θ̃n)

]
,

the EMM estimator is given by

ρ̂n = argminm
′

(
ρ, θ̃n

)
(Ĩn)

−1m(ρ, θ̃n). (7)

The asymptotic properties of the estimator are derived in Gallant and Tauchen
(1996) and are presented below. Defining ρ0 as the true value of the parameter
ρ and θ0 as an isolated solution of the moment conditions m(ρ0, θ) = 0. Then
under regularity conditions it can be shown that

lim
n→∞

ρ̂n = ρ
0 a.s.,

4See Gallant and Tauchen (1996) and Gallant and Tauchen (2001). However, Gallant and
Long (1997), Gallant and Tauchen (1999) and Coppejans and Gallant (2002), proved if the
auxiliary model corresponds to the SNP density the information matrix above will be the
adequate.
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√
n(ρ̂n − ρ0)

D→ N
{
0, [(M0)′(I0)−1(M0)]−1

}
,

lim
n→∞

M̂n =M
0 a.s. and

lim
n→∞

Ĩn = I
0 a.s.,

where M̂n = M(ρ̂n, θ̃n), M
0 = M(ρ0, θ0), M(ρ, θ) =

(
∂
∂ρ′

)
m(ρ, θ) and I0 =

Eρ0
[
∂
∂θ
log f(y0|x−1, θ0)

] [
∂
∂θ
log f(y0|x−1, θ0)

]′
. These asymptotic results allow

testing the specification. Therefore under H0, p(y−L, ......, y0|ρ) is the correct
model and L0 = nm

′(ρ̂n, θ̃n)(Ĩn)
−1m(ρ̂n, θ̃n) follows asymptotically a chi-square

with pθ − pρ degrees of freedom. Finally, it is also possible to test restrictions
on the parameters, i.e.,

H0 : h(ρ
0) = 0,

where h is a mapping from R into �q and the test statistic is given by

Lh = n[m
′(̂̂ρn, θ̃n)(Ĩn)−1m(̂̂ρn, θ̃n)−m′(ρ̂n, θ̃n)(Ĩn))

−1m(ρ̂n, θ̃n)]
a∼ χ2(q)

and

̂̂ρn = argmin
h(ρ)=0

m′(ρ, θ̃n)(Ĩn)
−1m(ρ, θ̃n).
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Appendix B: Iterated Cumulative Sums of Squares
(ICSS) Algorithm (Inclán and Tiao(1994))

Step0. Let t1 = 1.
Step1. Calculate Dk (a [t1 : T ]). Let k∗ (a [t1 : T ]) be the point at which

maxkDk (a [t1 : T ]) is obtained, and let

M (t1 : T ) = max
k

t1�k�T

√
(T − t1 + 1)

2
|Dk (a [t1 : T ])| .

If M (t1 : T ) > D∗, consider that there is a change at k∗ (a [t1 : T ]) and
go to step 2a. Otherwise, there is no evidence of changes in variance and the
algorithm stops.

Step 2a. Let t2 = k∗ (a [t1 : T ]). Evaluate Dk (a [t1 : t2]). If M (t1 : t2) >
D∗, there is a new change point and we should repeat step 2a till M (t1 : t2) <
D∗.

Step 2b. Now we should do the same search starting from the first change
found in step 1 till the end of the series. Define a new value for t1 and let
k∗ (a [t1 : T ]) + 1. Evaluate Dk (a [t1 : T ]) and repeat step 2b until M (t1 : T ) <
D∗. See Inclán and Tiao (1994) for more details.
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Figure 3. a) Cumulative sum of squares, b) Dk plot with k=1,...,3777: the

estimate of the change point is k*= 528 and corresponds to 1988/04/14,

c) Dk plot with k=1,...,528: the estimate of the change point corresponds

to 1987/09/18 and d) Dk plot with k= 529,...,3777: the estimate of the

change point corresponds to 1998/08/26.

Detected changes in variance

At the beginning of the sample 1986/10/03; 1987/05/12;1987/09/18; 1988/04/14

In the middle of the sample 1992/07/02; 1994/08/01; 1995/04/13; 1996/01/19

1996/03/26; 1996/07/10; 1996/08/02; 1996/12/06

At the end of the sample 1998/08/26; 1999/04/27; 1999/12/10; 2000/03/03

2000/04/25; 2000/07/24; 2000/10/13; 2001/01/03

Table1
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Model α10 α22 α33 β10 β12 β13 β22 β33 N χ2 df p-val

L1 * * * * 100k 16.65 7 0.02

L1F * * * * * 100k 10.64 6 0.10

L2 * * * * * * 100k 6.70 5 0.24

L2F * * * * * * * * 100k 2.02 4 0.73

Table 2: *is used for free parameters. 100k refers to a simulation of length
100,000 at step size ∆ = 1/6048, corresponding to 24 steps per day and
252 trading days per year.

Model α10 α22 α33 β10 β12 β13 β22 β33
L1

Estimate 0.42 -0.90 -0.12 0.43

Std. Dev. 0.07 0.10 0.003 0.04

95% Lower 0.27 -1.05 -0.13 0.37

95% Upper 0.57 -0.76 -0.12 0.49

L1F

Estimate 0.41 -0.16 -0.11 -0.16 -0.22

Std. Dev. 0.04 0.002 0.003 0.003 0.004

95% Lower 0.33 -0.16 -0.12 -0.17 -0.23

95% Upper 0.50 -0.16 -0.10 -0.15 -0.22

L2

Estimate 0.42 -0.0003 -89.2 -0.12 0.006 -4.63

Std. Dev. 0.07 0.0002 3.93 0.0087 0.001 0.08

95% Lower 0.27 -0.0005 -97.2 -0.12 0.004 -4.78

95% Lower 0.58 -0.0001 -81.4 -0.097 0.008 -4.48

L2F

Estimate 0.42 -2.16 0.21 -0.13 0.72 -0.50 0.73 7.19

Std. Dev. 0.08 0.08 2.69 0.09 0.04 6.67 0.62 0.64

95% Lower 0.41 -2.16 0.17 -0.13 0.72 -0.61 0.73 7.18

95% Lower 0.42 -2.16 0.25 -0.12 0.727 -0.41 0.74 7.20

Table 3: Estimates, Standard Deviations and Confidence Intervals.
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Coefficient L1 L1F L2
Location Function:

b0 0.07 0.36 0.10

b1 1.69 0.84 1.24

Scale Function:
τ0 1.82 0.38 0.76

τgz 2.54 0.13 1.03

τgx 2.32 0.28 0.92

Hermite Polynomial:
a0,1 0.08 0.45 0.36

a0,2 1.87 1.21 -0.02

a0,3 -0.07 0.54 0.50

a0,4 1.81 1.98 0.15

a0,5 -0.42 0.50 0.42

a0,6 1.23 1.86 -0.03

Table 4: Scores Diagnostic.
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Figure 5: Autocorrelation functions of squared observations. a) shorter
sample and b) larger sample.
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Figure 6: Autocorrelation functions of squared observations. a) shorter
sample and b) larger sample.

18



-1

0

1

2

3

4

5

6

7

86 88 90 92 94 96 98 00

U2 (L2)

Date

Figure 7

-1

0

1

2

3

4

5

6

7

86 88 90 92 94 96 98 00

U3 (L2)

Date

Figure 8

19



-1

0

1

2

3

4

5

6

7

86 88 90 92 94 96 98 00

U2(L1F)

Date

Figure 9

20


	page1.pdf
	 
	Abstract 
	 
	This paper provides empirical evidence that continuous time models with one factor of volatility are, in some circumstances, able to fit the main characteristics of financial data and reports insights about the importance of introducing feedback factors for capturing the strong persistence caused by the presence of changes in the variance. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate and to select among logarithmic models with one and two stochastic volatility factors (with and without feedback).  

	paper1.pdf

