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Bayesian inference for the half-normal and half-¢
distributions
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Abstract

In this article we consider approaches to Bayesian inference for the half-
normal and half-¢ distributions. We show that a generalized version of the
normal-gamma distribution is conjugate to the half-normal likelihood and
give the moments of this new distribution. The bias and coverage of the
Bayesian posterior mean estimator of the half-normal location parameter
are compared with those of maximum likelihood based estimators. In-
ference for the half-¢ distribution is performed using Gibbs sampling and
model comparison is carried out using Bayes factors. A real data example
is presented which demonstrates the fitting of the half-normal and half-¢
models.

KEY WORDS: Bias-correction; Gaussian-modulated gamma distribution;
Gibbs sampling; likelihood based inference; model selection; right-truncated
normal-gamma distribution.

1 Introduction

The half-normal distribution has been used as a model for (left) truncated
data from application areas as diverse as fibre buckling (Haberle 1991), blowfly
dispersion (Dobzhansky and Wright 1947), sports science physiology (Pewsey
2002, 2004) and, in particular, stochastic frontier modelling (Aigner et al., 1977,
Meeusen and van den Broeck, 1977). Likelihood based inference for the half-
normal distribution has been considered by Pewsey (2002, 2004).

However, for heavy-tailed data, the half-normal distribution will not be an
adequate model and then a half-¢ distribution might be considered as a more
flexible alternative. For one of the few applications of this latter model, see
Tancredi (2002).

The principal objective of this article is to illustrate that fully conjugate
Bayesian inference can be carried out for the half-normal model and that Gibbs
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sampling techniques can be used to perform Bayesian inference for the param-
eters of the half-f model.

The article is structured as follows. In Section 2, we review the definition of
the half-normal distribution and comment on likelihood based inference for its
parameters. In Section 3, we illustrate how conjugate Bayesian inference for the
half-normal distribution can be undertaken. Results for the posterior moments
of the location and scale parameters are also given. In Section 4, we compare
the properties of Bayesian point and interval estimators with those of their
likelihood based counterparts. In Section 5, in which Bayesian inference for the
half-t model is considered, we present a simple Gibbs sampling algorithm that
can be used to sample the posterior parameter distributions. Section 6 focuses
on model selection, and in Section 7 the half-normal and half-t two models are
fitted to a real data set. Finally, in Section 8, we discuss our findings and
contemplate some extensions to the work presented here.

2 The half-normal distribution and likelihood
based inference

X has a half-normal distribution, with location and scale parameters £ and 7,
that is X|&,n ~ HN (&, 1), if

seleon) =2 e sa e, o

where x > £, —00 < £ < o0 and n > 0. Then X = & + n|Z|, where Z has a
standard normal distribution. The moments of the half-normal distribution can
be derived from general results for the truncated normal distribution, see e.g.
Johnson et al. (1994). In particular,

E[Xlﬁm]—é”rn\/; (2)

Suppose that we observe a random sample of size n, x = (z1,...,2,), from
the half-normal distribution and wish to carry out inference for the unknown
parameters of the model. Clearly, the maximum likelihood estimate (MLE) of
the location parameter is given by & = x(1) = min{z;}. Pewsey (2002) gives the
MLE of the scale parameter as ) = {1 3" (z;—x(1))?}/2, while Pewsey (2004)
demonstrates the superior sampling properties of the the bias-corrected estimate
fBc = (/757. In the latter paper it is also shown that point and interval

estimation based on the bias-corrected estimate éBc = é— ﬁBC<I>_1 (% + %),

where ®(-) denotes the standard normal distribution function, outperforms that

based on £. The asymptotic, two tailed, 100(1 — «)% confidence interval for &,



incorporating bias-correction for 7, proposed by Pewsey (2004) is

ay . _ 1 1 N L _ 1 1
z(1)+log (5) Hpc® ! (5 + %> <& < x(q)t+log (1 — 5) Hpc® ! (5 + %> )
) (3)
This interval does not contain the MLE £ = (1) as an endpoint and a one
tailed interval is given by

. _ 1 1
51y + log (@) fpe® ! (5 n %) <€ <aq). (1)

An alternative to the use of classical inference is to use a Bayesian approach
which has the advantage that if prior information is available, then this could
also be incorporated. We explore this option in the following section.

3 Bayesian inference for the half-normal distri-
bution

In order to undertake Bayesian inference for the half-normal model, it is first

useful to reparameterize the distribution in terms of £ and 7 def niz

can write the half-normal model as

X|g, T ~ HN<£,%> if

. Then, we

T

flzlg,r) = @exp{—a(x—ﬁy}, x>¢ —oo< € <oo,T>0.

In Bayesian inference for the mean and precision parameters of an untrun-
cated normal distribution, the natural conjugate prior distribution is a normal-
gamma distribution; see e.g. Box and Tiao (1992). Here, we propose a general-
ization of this distribution which we shall call the right-truncated normal-gamma
(RTNG) distribution which is defined below.

Definition 1 We say that &, 7 have a right-truncated normal-gamma distribu-
tion, £,7 ~ RTNG( o, m, a,a,b), where —oo < &y < 00, —00 < m < 00, @ > 0,
a >0, and b >0, if

fl&m) = ( 1 >(§fj>;/;\/§#¥”exp{; b+ale—m?l}, )
o, [ o=m

&o—m

Vb/(aa)

for & < &, T > 0, where ®4(-) denotes the distribution function of the Student’s
t distribution with d degrees of freedom, that is

Dy(2) / ¢a(y) dy, where

M) 1 L e




represents the density of the Student’s t distribution at y, and obviously

lim ®4(z) = &(2) V2.
d—oo
Clearly, when &y — oo, this distribution converges to the usual normal-gamma
distribution.
It can easily be seen that this distribution results on assuming that x =
E™_ has a Student’s ¢ distribution (with a degrees of freedom) truncated

\/b/(acr)

onto the region £ < &y, and that 7 given £ has a gamma distribution, i.e.

atl
2\ T2
1 (<) [a 1 -m
& = ( 2 ) el R Lom
o () T Ve T T
@ b/(ac)
()
= ? AC) , for &< &, and
o, &o—m
()
a b+ a(&—m)? .
TIE ~ 9(5772 , that is
(b+a(€27m)2 ) % ( )2
a bta(E—m
f(7§) = ——7—" T2t 2 T, forT>0.
r'(3)

Noting that & given 7 has a right-truncated normal distribution, we can
derive the marginal density of 7. Thus,

@ (Var(e —m) (8)° 41 4
om ) T(5) '
®a (,/gb/(aa)>

This is a non-standard distribution which we shall refer to as a Gaussian-
modulated gamma (GMG) distribution. We denote the fact as

7~ GMG (Va(é — m),a,b) .

The density for n can be derived from the density of 7 via the usual change
of variables formula. Thus, we have
_ b

(b(\/a(fo—m)) (é)%
’ L2y (e (6)
()
b/(acx)

Although the distributions of £, 7 and 7 are non-standard, it is possible to
derive their moments. The following theorem gives mean and variance formulae
derived from the results in the appendices at the end of the paper.

flr) =

fn) =

~—




Theorem 1 Suppose that &,7 ~ RTNG(&y,m,a,a,b), and let n = 1//7.
Then

2
o—m &o—m
p ot ( b/(aa>> (b“( b/(aa))
El¢§] = m—4/— fora>1,
aq a—1 o to—m
“ \ Wb/ (aa)

v - g o () (o () o ()
) ) )

So—m
P2 (\/b/<a<a+2>>> a
Elr]

P fo—m b’
“\ Wb/ (aa)

So—m

Vi = \/b/(a(a+4))> ala+2) (B

So—m b?
Vb/(a)

b
=
©

Proof
The moments of £ follow from Theorem 4 in Appendix 1, noting that £ =

m—+ 4/ %K, where x has a right-truncated ¢ distribution with parameters 5\0/_—"’

b

ac

and a. The moments of 7 follow from Theorem 5 in Appendix 2, writing v =

Va(&y —m). Similarly, the moments of 1 can be derived directly from Theorem
5 by noting that n =77 2.

o

Recalling that the normal-gamma density is conjugate to the normal likeli-

hood, it can be seen immediately that the RTNG distribution is conjugate to

the half-normal likelihood. Thus we have the following theorem.



Theorem 2 If X|¢, 7 ~ HN (f, %) and &, 7 ~ RTNG(&, m, a,a,b) then:
1. The marginal density of X is

min{éo,z} - amie

a+1
Dot b 52 (e—m)?
ac Gy r—m
f(x) =2 Pa
blaw+1) o €o—m b(a+t1)
“\Vb/(aa) aa

The mean of this density is

2
a+< 507m ) (ba( EOim ) ¢a1< go_zn ) - 3
b/(ac b/(ac T (2 2
BIX] = moy] L /(aa) /(aa) +\/§ e (3)<§)
7T =
2

aq a—1 o to—m
@ b/(ac)

2. Giwen a random sample of data, x = (1, ...,xy), then the posterior den-
sity of £, 7|x is also RTNG,

ETIx ~ RTNG(ES, m*, a*,a*, b"),

fora>1.

where

E* = min{x(l)a€0}7

x _ am+nx

™S ey

* a+n,

a* = a+n,

b o= b+ (n—1)s*+ 2 (m— 7).
a+n

where s* = 2= 3" (z; — &),
Proof
1. The formula for the predictive density follows by writing

f@) = [ [ sl s dean

and noting that the integrand is proportional to a RTNG density, that is
am +1 o
RT. i —_— 1,b4+ ——(m — z)?
NG (minfeas b L 0k 10+ -0

and then equating terms. The formula for the predictive mean follows by

noting that
[ 2
g + _] )
T

and then using the results of Theorems 1 and 5 (in Appendix 2).

E[X] = E[E[X|¢,7]| = E




2. This follows immediately from the usual normal-gamma updating formu-
lae; see e.g. Box and Tiao (1992).

<

Often, prior information may not be available and in such cases a non-
informative prior should be used. As £ represents a location parameter and 7 is
a scale parameter, then the natural non-informative prior is given by f(£,7)
1/7. The posterior distribution given this prior is identified in Theorem 3.

Theorem 3 The joint posterior distribution of £, T is
§,7lx ~ RTNG(xny, Z,n,n—1,(n — 1)s?).

Proof

The form of the distribution follows immediately on multiplying the likeli-
hood and prior, and the parameters follow from Theorem 1.

o

Henceforth, we shall consider Bayesian inference for the half-normal distri-
bution using the improper prior defined above.

For the untruncated normal distribution, the maximum likelihood estimators
and confidence intervals for the mean and variance coincide with the Bayesian
estimators and highest posterior density intervals when the non-informative
prior distribution described above is used, although this is no longer true when
Bayesian credible and frequentist confidence regions for both parameters are
considered. However, for the half-normal distribution, the classical and Bayesian
estimators and intervals are clearly different. In the following section, the prop-
erties of Bayesian point and interval estimates are compared with those of their
bias-corrected, likelihood based counterparts described in Section 2.

4 Simulation based comparison of estimators

In this section we present the results from a simulation experiment designed to
compare the sampling properties of bias-corrected likelihood based and Bayesian
point and interval estimators of £ and 7. Specifically, we investigate the bias
and root mean square error (RMSE) of the point estimators, and the coverage
and length of the interval estimators.

Thus, we undertook a Monte Carlo study in which, for various values of n,
100,000 samples of size n were simulated from a half-normal distribution with
parameters ¢ =0 and n = 1.

Table 1 presents the estimated biases and root mean squared errors of the
uncorrected maximum likelihood estimator X(;), the bias corrected estimator

£pc and the Bayesian posterior mean, E[¢]X].
From Table 1, it can be seen that the bias of the posterior mean estimator
is consistently lower than that of the maximum likelihood estimator X(;) but



Table 1: Estimated biases and RMSE’s of the uncorrected and bias corrected
maximum likelihood estimators and the Bayesian posterior mean estimator.

X {Bo E[¢[X]

n bias RMSE bias RMSE bias RMSE

5 0.2156 0.2882 —0.0031 0.2229 —0.0628 0.2440

10 0.1153 0.1575 —0.0015 0.1157 —0.0111 0.1192
20 0.0591 0.0823 —0.0011 0.0591 —0.0029 0.0597
50 0.0246 0.0345 —0.0001 0.0245 —0.0005 0.0245
100 0.0125 0.0176 3 x 1075 0.0125 —0.0002 0.0125
1000 0.0012 0.0018 9x 107 0.0012 2x10=% 0.0012

slightly higher than that of the bias corrected estimator. The bias corrected
estimator has lower RMSE for small sample sizes (n < 20) and the Bayesian
and bias corrected estimators have lower RMSE’s for larger sample sizes.

Table 2 gives the estimated coverage probabilities and lengths of the nomi-
nally 95% two sided confidence interval as given in Equation 3, the alternative,
one sided interval given in Equation 4 and the Bayesian 95% highest posterior
density interval for &.

Table 2: Estimated coverage probabilities and lengths of likelihood based and
Bayesian nominally 95% intervals for &.

Frequentist intervals Bayesian interval

2 sided 1 sided
n coverage length coverage length coverage length
5 0.911 0.801 0.902  0.655 0.951  0.910
10 0.935 0.428 0.931 0.349 0.950  0.398
20 0.944 0.222 0.943 0.181 0.951 0.191
50 0.948  0.091 0.947  0.074 0.950  0.076
100 0.948  0.046 0.947  0.037 0.950  0.038
1000 0.951  0.005 0.951  0.004 0.949  0.004

It can be seen from Table 2 that the coverage of the highest posterior density
interval for £ is identical to, or very close to, the nominal coverage of 0.95, even
for small samples. The two sided interval has slightly worse coverage in small
samples and is, in general somewhat wider. The coverage of the one sided
interval is poorer although this interval is slightly narrower than the Bayesian
interval.

We also considered the bias and coverage properties of estimators of 7. Table
3 gives the biases of the two likelihood based estimators of 1 and the Bayesian
posterior mean. One can see that, in general, the posterior mean slightly over-



estimates the value of 1 whereas the likelihood based estimators give slight
underestimates.

Table 3: Estimated biases and RMSE’s of the maximum likelihood, bias-
corrected and Bayesian posterior mean estimators of 7.

U fiBC En|X]
n bias RMSE bias RMSE bias RMSE
5 —0.2278 0.3738 —0.1366 0.3584 0.2019 0.5035
10 —0.1184 0.2483 —0.0707 0.2407 0.0694 0.2737
20 —0.0602 0.1678 —0.0359 0.1646 0.0298 0.1742
50 —0.0240 0.1028 —0.0140 0.1020 0.0114 0.1043
100 —0.0121 0.0718 —0.0071 0.0715 0.0055 0.0722
1000 —0.0012 0.0224 —0.0007 0.0224 0.0005 0.0224

Finally, Table 4 gives the estimated coverages and lengths of the classical,
nominally 95%, confidence interval for 7, a Bayesian credible interval with a
nominal 2.5% in each tail and the highest posterior density interval.

We can see from Table 4 that the coverages of the Bayesian and classical
intervals are very close to the nominal values, although generally the Bayesian
intervals are slightly wider than the classical interval.

Thus, we can conclude that, Bayesian point and interval estimates of the lo-
cation and scale parameter of the half-normal distribution have relatively good
classical properties comparable with those of maximum likelihood based esti-
mators.

In the following section, we now consider a more general model than the
half-normal distribution, that is the half-¢ distribution.

Table 4: Estimated coverage probabilities and lengths of likelihood based and
Bayesian nominally 95% intervals for 7.

Frequentist interval Credible interval HPD interval
n  coverage length coverage length coverage length
5 0.943 1.937 0.949 2.321 0.938 2.308
10 0.944 1.057 0.949 1.156 0.940 1.148
20 0.947 0.675 0.949 0.707 0.939 0.701
50 0.948 0.405 0.949 0.417 0.941 0.413
100 0.949 0.282 0.949 0.284 0.947 0.281
1000 0.950 0.088 0.950 0.088 0.950 0.088




5 The half-¢ distribution

The random variable X has a half-¢ distribution, X |, 7,d ~ HT 4(§,1/7), if

_ L)V L el T
falemd) = 25y [ g (Ve =€)

2V7¢a (VT(z =€) forz>¢ —0co<{<o0,7>0,d>0.

As d — 0, the right-hand tail of the distribution becomes increasingly heavier
relative to that of the limiting half-normal distribution, obtained as d — oc.

Little work on inference for the half-¢ distribution appears to have been
published, but see Tancredi (2002). In addition, there is no simple way of
conducting Bayesian inference directly for the half-¢ distribution. However,
latent variables can be introduced so as to define a Gibbs sampling algorithm
similar to the one of Geweke (1993) designed to perform Bayesian inference for
the ¢ distribution.

Suppose that X|&, 7,d ~ HT 4(§,1/7) and let 6;|d be independently gamma
distributed, G (g, %), fori=1,...,n. Then

Xi|§a7-a 91' ~ HN <§a %) .

(3

Suppose now that x is a random sample of size n from the half-¢ distribu-
tion. Given the non-informative improper prior' f(£,7) o< £ as earlier, and an

T

independent prior f(d), we have the following conditional posterior distributions
n nd
2 T d/2)=

H@i%_l eXP{—g 291} f(d),
i=1
Sy 0w — f)2>

T|X,£70,d ~ G ga

" 91 i 1
éx, 71,0 ~ TN (Zi:il e‘j s 9i> , a truncated normal with § < z(y),
i=1 i=1

L 2
Ot rd ~ g(d+1 d+71(z; — &)

) , independently for i =1,...,n,

Fldx,€,7,0) MHG;TIeXp{—gZ&}f(d), for d > 0.

i=1

Note that, as observed by Geweke (1993), it is important to use a proper
prior distribution for d because an improper prior essentially implies the half-
normal model, due to the fact that the prior mass as d — oo always infinitely

1Tt is straightforward to extend the inference to the case where a RTNG prior is used.

10



exceeds the mass for any finite d. Suppose then that, as suggested by Geweke
(1993), we use an exponential prior with parameter 5. In this case,

(d/2)% o 4 d -
f(d|x,£,7',0)o<%n9i exp{—§<ﬁ+;91>}.

i=1

We can now use a Gibbs sampling algorithm to simulate a sample from the
joint posterior parameter distribution as follows.

1. t=0. Select initial values £©, 70 40 =100.
2. sample 0"V ~ 6,|x, 60, 7® d®) for i=1,...,n.

3. Sample 7D ~ 7]x, @) gtHD,

4. Sample €(t+1) N€|X,T(t+1)70(t+1).

5. Sample d(™V) ~ d|x,00F1)

6. t=t+1. Go to 2.

Some aspects of this algorithm deserve commentary. Firstly, the starting
values for the algorithm could be chosen, for example, by setting some large
initial value for d and then using the posterior modal or mean estimates for £
and 7 calculated assuming the half-normal model. Secondly, in order to sample
the truncated normal distribution for &, a rejection algorithm developed by
Geweke (1991) which uses the fact that the tail of a normal distribution behaves
similarly to an exponential distribution can be used. Robert (1995) also provides
a simple algorithm. Thus, the only part of this procedure that is problematic
is the sampling of d. One simple method is to use a Metropolis Hastings step
with a candidate distribution having mean the current value of d, for example
sampling d ~ G (k, %) for some suitably chosen value of k. Then the candidate
is accepted with probability

i J £l € 7.0) 9(d, d)
Fldx,€,7,0) g(d,d) [

where g(d, d) is the generating density.

6 Model Selection

From a Bayesian perspective, an informal way of comparing the half-normal and
half-t models would be to examine the posterior distribution of the degrees of
freedom parameter d given the half-t model. If most of the mass of the posterior
distribution of d is centred on large values of d, this would provide evidence in
favour of the half-normal model.

11



A more formal approach is to use Bayes factors, see e.g. Jeffreys (1961) or
Kass and Raftery (1995). Given the data, x, the Bayes factor for comparing
two models M7 (here the half-normal model) and My (half-t) with prior prob-
abilities P(M;) and P(My3) is defined as

P(Mi|x) P(Mz)
P(Ma|x) P(My)
f(xIM;y)

f(x[Mz)

That is, the Bayes factor is the ratio of the predictive densities of the data under
the two models.

Usually, when improper prior distributions are used under the different mod-
els, the Bayes factor does not exist. However, in our case, the parameter space
and prior distribution for &, 7 (f(§,7) o« 1/7) is the same under both models
which implies that the Bayes factor is well defined as long as the prior distribu-
tion for d under the half-t model is proper.

In order to calculate the Bayes factor, note first that under the half-normal
model, the marginal density of the data (up to the integrating constant of the
prior) can be calculated analytically. Thus, for the data, x, we have

Bio

fod) o [ s My arae

- 2Ff/nﬁTl) (s/w(nz— 1)s> _ Pt (i()/;ﬁf)

For the half-t model, we can use an algorithm of Chib (1995) and Chib
and Jeliazkov (2001) to calculate an approximate marginal likelihood from the
output of the Gibbs sampler. For given values of the parameters d,&, 7, for
example the posterior modes, we have, from Bayes Theorem,

IOg f(X|M2) = 1Og f(x|d7§a T, MQ) - 1OgT + 1Og f(dlMQ) - 1Og f(d)€7T|Xa M2)7

where the first term on the right hand side is the log-likelihood, the next two
terms represent the log-prior and the last term is the log-posterior. The log-
likelihood and log-prior can be directly evaluated for given values of d, &, 7, and
the log-posterior can be expressed as

IOg f(da€7T|Xa MQ) = 1Og f(f'xa MQ) + 1Og f(T|X7§a MQ) + 1Og f(dlx7§7T7M2)-

Now, log f(&|x, Mz) can be directly estimated from the Gibbs sampler output
and log f(7]x,£, M3) can be estimated by fixing &, running the Gibbs sam-
pler for a further set of iterations and applying the algorithm of Chib (1995).
log f(d|x,&, 7, M2) can be estimated either directly by simple, unidimensional
numerical integration, or by running the sampler through a further set of iter-
ations with & and 7 fixed and using the method of Chib and Jeliazkov (2001).

12



7 Example

In this section, we re-analyze the data considered in Pewsey (2002, 2004). These
data consist of the body fat measurements of 102 elite Australian athletes.

First of all, we fitted a half-normal distribution model to the data using both
bias-corrected likelihood based and Bayesian techniques. In this case, é =5.63
and the Bayesian posterior mean is 5.57. The latter is identical to éBc. The
bias-corrected and Bayesian 95% intervals for £ are [5.41,5.63) and [5.44,5.63),
respectively.

When joint credible and confidence regions for £ and 7 are calculated, we
can see further differences between the classical and Bayesian results. Figure
1 illustrates a classical 95% confidence region as given in Pewsey (2004) and
Bayesian 50%, 95% and 99% contours along with the posterior mean and mode
of (§,m). We can see that the area of the Bayesian 95% region is somewhat
smaller than that of the classical region.

5.5¢

(6]

3.5} ‘ ‘ ‘ ‘ ‘
5.1 5.2 5.3 5.4 5.5 5.6

Figure 1: A classical 95% confidence region (rectilinear region) and Bayesian
50%, 95% and 99% credible regions (parabolic regions) for (£,7) together with
the posterior mean (grey dot) and mode (black dot) for (&,n).

The HN (é BC, iBc) and Bayesian predictive distribution functions are com-
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pared in Figure 2. As might be expected given a sample size as large as 102,
the fitted distribution functions are almost identical. However, this plot also
suggests that the half-normal model does not provide a particularly good fit to
the data.

0.9 4

07h % .

F()

05 i : 4

0.3 .

0.1+ = Empirical cdf | |
A - Bayes_ian
Classical

Figure 2: Empirical and fitted cumulative distribution functions.

In an attempt to more adequately describe the distribution of the data,
we considered the fit of the half-t model. The prior for d was assumed to be
exponential with mean FE[d] = 20, and we ran a Gibbs sampler for 100,000
iterations (plus a burn in of 10,000 iterations) with starting values for £, 7 close
to posterior means under the half-normal model and a large initial value for d.

In Figure 3, we present a relative frequency histogram of the values of d
generated by the Gibbs sampler together with a superimposed kernel density
estimate of the posterior distribution. Clearly, the distribution of d is very
heavy-tailed, although the posterior probability of d exceeding 50 is somewhat
less than 0.05. Moreover, the posterior mean of d is around 10.

In order to compare the two models, the Bayes factor was calculated. The
Bayes factor in favour of the half-normal model was estimated to be By &~ 1/4.
According to the scale of evidence of Kass and Raftery (1995), this corresponds
to positive evidence in favour of the half-t model, and suggests that the half-¢
model should be preferred to the half-normal.

Finally, we explored the effects of fitting the half-t model using different
values of the prior mean for d. In Figure 4, the predictive cdf’s under a variety
of different prior means are given. We can see that the predictive cdf under
the half-normal model (E[d] = oo) is markedly different from the predictive
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Figure 3: Relative frequency histogram of the posterior density of d together
with a superimposed kernel density estimate.

cdf’s under the half-t model, these latter cdf’s being very similar for values of
E[d] ranging between 20 and 50. Furthermore, 95% highest posterior density
intervals for £ were calculated for each of the priors. These intervals varied
between [5.47,5.63) (for E[d] = 20) and [5.46,5.63) (for E[d] = 50), in each
case being marginally narrower than the limiting interval [5.44,5.63) under the
half-normal model. Thus, at least in terms of the estimation of £, there appears
to be relatively little sensitivity to the choice of prior mean for d.

8 Discussion

In this paper we have illustrated how Bayesian inference can be carried out
for the half-normal and half-¢ distributions. In particular, we have shown how
conjugate inference can be implemented for the half-normal model and, further,
that Bayesian methods assuming the usual non-informative or objective prior
perform well in terms of frequentist properties such as bias and coverage.

A number of extensions to the work presented here are of interest. For
instance, two generalizations would be to consider Bayesian inference for the
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Figure 4: Empirical distribution function of the body fat data together with
predictive half-t distribution functions for various prior mean values of d.

truncated normal and folded normal distributions. Interest in the latter distri-
bution dates back to the work of Elandt (1961). In addition, the half-normal
and half-¢ distributions are limiting cases of the skew-normal (Azzalini, 1985)
and skew-t (Mukhopadhyay and Vidakovic, 1995; Jones and Faddy, 2003; Az-
zalini and Capitanio, 2003) distributions, respectively. Bayesian inference for
the skew-normal distribution, as well as for the more general context of skew-
elliptical distributions, is considered by Liseo (2004). Given the focus of this
paper, it is of interest to note that an extension of the skew-normal distribution
was originally proposed by O’Hagan and Leonard (1976) as a potential skew
prior when there is uncertainty about an inequality constraint in the Bayesian
estimation of the mean of the normal distribution.

Finally, whilst we have informally explored sensitivity to the choice of prior
for the degrees of freedom of the half-¢ distribution, it would also be possible
to undertake a more formal sensitivity analysis, see e.g. Berger (1994) or Rios
Insua and Ruggeri (2000) for a review of this area.
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Appendix 1: The right-truncated Student’s ¢ dis-
tribution

In this appendix, we outline the properties of the marginal distribution of £. As
noted in Section 3, if £, 7 ~ RTNG (&, m, o, a,b), the marginal distribution of

k= —="_ is a standard ¢ distribution with a degrees of freedom, truncated
v/ b/(acx)
for £ < &y. In this subsection, we define this distribution and give its properties.

Definition 2 We say that a random wvariable T has a right-truncated t dis-
tribution with a > 0 degrees of freedom and truncation parameter ¢ where
—00 < ¢ < oo, e Tla,e~t; (c), if

1 r(eh) 2T ga(t)
f(ﬂa’c)i(ba(c) I (2] m(”;) = Do) fort < c.

The following theorem gives the odd and even moments of the right-truncated
t distribution.

[ V)

Theorem 4 If T|a,c ~t,(c) then for s =0,1,2,... the odd moments of T are
given by

a +1_.7)
ET23+1 d) ¢ 2(9 7,) i S
[ 0, = ~(a+¢* CZ s—|—1 H a—25—])—1)

for s < “Tfl
Also, for s =1,2,..., the even moments of T are given by
E[T?*|a c]:asﬁ%_l—(a—i—cQ)(’ba—(c)szi 2s—i)=141 H 2s—g)+1
’ tla—2i Dy (c) = 25+1 ey a—2(s—j)’
Jors < 3.
Proof

In the following, we drop the dependence on a and ¢ throughout. Firstly, we
calculate the formulae for E[T] and E[T?] directly.

E[T] = /j tizg?)dt
1 F(a-‘,—l) L

5 a 2 7
= - 14 — ifa>1
Du(c) T(2) Va a—1 ( * a) . na
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- Hiwe [ 5) o]

2
_axe balc) ,  which is the odd moment formula for s = 0.
a—1 P4(c)
2 ‘ a(t)
E[T?] = (c dt and integrating by parts, we find, for a > 2,
a c
= t
t2

- E[TQ] _ a a o C)C <1

= E[T? = -

which is the even moment formula corresponding to s = 1. More generally, for
any r < a, we have:

E[T"] = /C t“lxt%(t) dt

et 7 (e L0 I
—_— (I)al(c) /_;(r — 1)t (1 + g) ba(t) dt

" Ha + 2) ¢u(c a(r — _ r—
-y - Claeigle de b

Now we can use induction to obtain the result. In the case of the odd moments,

assuming the formula given in the theorem is correct for £k = 0,...,s — 1, we
have
B — AT a 4 €2) dale) N a(2s) B[]
a—2s—1 ®,(c) a—2s—1
(a+c?) dalc)  a(2s) 2y bale)

- _a—2s—1<I>a(c) a—2$—1( + )<I>a(c)
1 Lo2s—1+41—j)
2(s—1—1) z
ZC S—l—l—l)Ha—Q(s—l—j)—l

a(c) C2s
- _(a+62)¢>a(c) {a— 2s — 1+

20



_ 2\ @a(€) = a(smiy i L i 2(s+1-)
- -<a+c>m§c‘ )“2<s+1>£[0<a—2<s—j>—1>’

which proves the result.
Now, for the even moments, assuming the general formula is valid for k& =
1,...,s—1, we have

25—1 2 _
E[TQS] — _C (a'+ c ) d)a(c) a(28 1)E[T2872)]
a—2s—1 ®P,(c) a—2s
B _Czs—l(a +c2) da(c)  a(2s—1) g1 i—[l 2i—1
B a—2s—1 ®4(c) a—2s sa—2
s—1 i .
2y Palc) 2(s—1—i)—1 i 1 2(s—1—-j)+1
(a+c)@a(c)§c a2(s—1)+1ga—2(s—1—j)
2~ 1 ®a(C) el
_ s _ 2
B azzla—Zi ( +C)<I>a(c){a—25—1

7

s—1
a a(s—1-i)—1 i 7T 26 —1—j) +1
+a—2s;C ag —2(s—=1-3j)

S

_ s 2i—1 2 d)a(c) 2(s—i)—1 z S_])+1
- IS e R e 1

<

Appendix 2: The Gaussian-modulated gamma dis-
tribution

Here we examine the properties of the distribution of 7.

Definition 3 We say that a random variable 7 has a Gaussian-modulated gamma
(GMG) distribution with parameters —oo < v < oo and a,b > 0 if

b)2 ,
firy = 2OV G) gy

In this case, we write T ~ GMG(7,a,b).

The following theorem gives the non-central moments of this distribution.
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Theorem 5 If 7 ~ GMG(v,a,b), then

o oo (V) 1 () 238
- T ()

Proof
Consider the expression

b)? ate b
Tif(T) = _ (2) P (/1) o lem3T,

P (VW) T (5)

Ignoring constant terms, this is proportional to a GMG density with param-
eters v, a + ¢, b. Equating terms gives

gy T (V) e
POV T ()

and the result follows immediately.

Note that as the tail behaviour of the density close to zero is the same as
that of the gamma density, the integration is finite if and only if @ + ¢ > 0, that
isif ¢ > —a.

Nle

<
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