provided by Universidad Carlos Ill de Madrid e-Archivo

' working

] % UNIVERSIDAD CARLOS [ DE MADRID papers

Working Paper 05-39 Departamento de Estadistica

Statistics and Econometrics Series 06 Universidad Carlos 111 de Madrid

June 2005 Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

MARGINAL PRODUCTIVITY INDEX POLICIES FOR SCHEDULING A
MULTICLASS DELAY-/LOSS-SENSITIVE QUEUE

José Nifno-Mora *

Abstract

We address the problem of scheduling a multiclass M/M/1 queue with a finite dedicated
buffer for each class. Some classes are delay-sensitive, modeling real-time traffic (e.g.
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indices, we deploy the theory of marginal productivity indices (MPIs) and PCL-
indexability we have introduced in recent work, and further introduce significant
extensions to such theory motivated by phenomena observed in the model of concern.
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1 Introduction

Motivated by applications involving the dynamic controltadterogeneous traffic flows vying for access to
service resources, e.g. in manufacturing or computer-aomication systems, researchers have investigated
in a variety of models the problem of finding a policy for dyriarecheduling of a multiclass queue which
optimizes a performance objective of concern. Due to aitalytractability, most of such studies have ad-
dressed models where queues have infinite buffer spaceasththobjective to optimize is a measure of
average delay or congestion. Fruits of such work includeogitamality of static index policiesn a variety

of settings. The earliest result in such vein concerns ttienap scheduling of a multiclasd//M /1 queue,
where traffic of clasé has arrival and service ratag anduy, respectively, and accrues holding costs at rate
¢ per unit time per customer in system. Itis proven in Cox andtlsfR] that the now classieu-rule, which
services at each decision epoch a nonempty élastaining the largest value afdexv;, = cgux, minimizes

the (long-run) average cost rate.

In contrast, corresponding models where queues have firfiterlspace have received remarkably scarce
research attention, despite their obviously higher ptattielevance. Finite buffers bring the possibility of
customer losses, as arrivals find buffers full. This createaplicated boundary effects, which typically
render such models intractable to analysis. Thus, e.g€vadhiation on the above model where there is a
finite dedicated buffer for each class, even the structutbebptimal policy remains elusive, being known
only in exceptional cases.

The incorporation of linear holding cost rates and rejection cost rates;, along with finite buffers
of sizen;, for each traffic clas#, allows us to model different relative sensitivities toaled and losses.
This is particularly relevant in models for modern compwtemmunication networks. Thus, traditional
Internet traffic, such as e-mail and FTP, is primaldlgs-sensitivetolerating relatively long delays, and hence
their requirements are accommodated by provisioning larféeis. In contrast, emerging Internet traffic,
generated by interactive and multimedia applications sisdP telephony, video conferencing and networked
games, is primarilglelay-sensitivehaving a higher relative tolerance for losses. Their nemments thus call
for use of shorter buffers. This raises the issue of how t@dasactable policies for dynamically scheduling
a given mix of traffic types, consistently with performantgeztives.

In this paper we investigate such issue in the setting of diclags) /M /1 queue with finite dedicated
buffers, under both discounted and average cost critegforB discussing our approach and results, we next
briefly review the scarce previous work on such model. Méitwl Levy [6] consider thpure loss-sensitive
casewherer;, > 0 = ¢ for each clas# in a two-class system, under the symmetry conditipa= p2. They
show that a discount-optimal policy is characterized by aotone increasing switching curve. Namely, if
it is optimal to serve claskin state(i1, i2) (joint queue length), then so it is to serve it in stéte+ 1, i2),
and similarly for clas®. Sparaggis et al. [12] assume the stronger symmetry conditiat rejection costs,
arrival and service rates are each identical across clés$dle the amount of buffer space may differ by
class). They prove that thdynamic index rulevhich services at each decision epoch a nonempty class with
theleast number of empty buffer spacasiimizes the average loss rate. See also Wasserman ancoBamb
[13]. Kim and Van Oyen [4] extend Milito and Levy’s [6] restit the case where the cost parameters of each
of two classe$: satisfy the condition

ary > c, 1)

wherea > 0 is the exponential discount factor. Condition (1) will ajslay a central role in our results. It
means that the cost of rejecting a customg} {s greater than or equal to the total discounted cost ofihgld
it forever in the systemcf,/«). Kim and Van Oyen [4] further show by examples that, if cdioadi (1) is
violated, the optimal policy need not be given by a monotoeedasing switching curve.

Our approach is based on viewing the model as a special cae adstless bandit problem This
concerns the optimal dynamic scheduling of a collectiorteélsastic projects, modeled eesstless bandits
i.e. binary-action (work/rest) Markov decision proceg3¢BPs), which can change state under either action,
and at most one of which can be engaged at a time. While theestdess case —where rested projects do
not change state— is solved optimally by Gittins’ [3] indetipy, the restless case is, in general, intractable.
Whittle [14] introduced an index for restless bandits, whieduces to Gittins’ in the nonrestless case, and
proposed as a heuristic the corresponding index policy kwbreach time on a bandit with largest index
value. However, th&Vhittle indexonly exists for a restricted class of bandits, ternmedkexable In Nifio-
Mora [7, 8, 10] we have developed a theoryirmdexabilityfor restless bandits, which includes: the general
concept of a bandit'marginal productivity index (MP|)which significantly extends the scope of the Whittle
index; an intuitive characterization of indexable bandighose obeying the economics law of diminishing
marginal returns (to work), consistently with a family ofélshold policies; sufficient indexability conditions,



based on satisfaction giartial conservation laws (PCLsyand a one-pass index-computing algorithm. In
short, a bandit's MPI measures the marginal value of workaahestate. Thus, the MPI policy seeks to
engage at each time a bandit where work is most productiugg tise MPI as a proxy productivity measure.
In this paper we both draw on such theory to obtain new MPIggsifor scheduling a multiclass queue with
finite dedicated buffers, and extend it to accommodate nexag@mena observed in the model.

We next outline and discuss our results. Our analyses lead csnsider the following (not mutually
exclusive) five types of traffic classes, relative to a distdactora > 0: we say that a clagsis

e «-discount loss-sensitiier, > 0 andar, > cg;
e pure loss-sensitivi r, > 0 = cy;

e o-discount delay-sensitivear, < ¢ > 0;

delay-sensitivef c; > 0;

pure delay-sensitivié ¢, > 0 = ry.

Consider am-discount loss-sensitive clags with a > 0. We establish that it satisfies o&CL-
indexability conditions, and give a recursion for calculatingdiscounted MPIlv,"* (i), as a function of
thenumber of empty buffer spacgs along with a strong characterization of the MPI as an ogdtingginal
productivity rate relative to active-state sets. The MPI (i) is nonincreasing i, and does not depend on
the buffer size, consistently with the optimal least-erdAptyjfer-spaces rule in the symmetric case considered
in Sparaggis et al. [12].

In the pure loss-sensitive case, we further consider theageecriterion. We show that, as discount factor
« vanishes, MPL"* (i) converges to thetaticindexv; (ix) = rpu. This raises the issue of how to break
ties when using the latter in a multiclass model, which welkesby introducing thesecond-order MPI
v (ix), based on the McLaurin expansiofi’ (ix) = rxur — av;i(ix) + o(a) asa vanishes. We obtain
v (i) in closed form. Thus, among classes attaining a tie in firdeoMP17 1, higher priority is given to
classes witlsmallervalues of second-order MBJ; ().

For ana-discount delay-sensitive class, with> 0, we establish PCL-indexability and give a recursion
for calculating the discounted MR£"* (ix.), where nowi,, is thenumber of jobs in systenin what might
appear at first sight to be a counterintuitive result, the MRbnincreasingn ;. Thus, in a multiclass model
with such classes scheduled under the MPI policy, ceteribyoa higher priority is given tshorterqueues.

In the delay-sensitive casg > 0, in order to obtain an index suitable for the average cotgrive use
again a vanishing discount approach. We show that the disedMPIv,** (i)) converges to a limiting index
v} (ix) asa vanishes, and obtain the latter in closed form. We furthemifgi that such limiting index is indeed
an MPI, relative to a new type of indexability introduced fistpaper. We term the lattbias indexability
as it emerges from consideration of Blackwell’s [1] biageribn for MDPs.

We interpret the opposite orderings induced on the stateespyathe MPIs of loss-sensitive and delay-
sensitive classes in terms of a new structural insight. @bethat the MPI of a loss-sensitive class increases
with the queue length means that so does its marginal privityaif work. Namely,reactive work(as the
gueue gets closer to full) is more productive tipg@ventive workas it gets closer to empty). In contrast, for
a delay-sensitive class preventive work is more produdiiga reactive work. The intuition behind the latter
result is that, when the buffer is full, the delay cost caryettany worse, and thus larger marginal rates of
cost reduction per unit work are achieved as the queue gettesh

We obtain relations between the MPI of delay-sensitiveselak and thecy-rule’s indexcg u,. We thus
show that, as the buffer size, grows to infinity, the discounted MRI.""(i;) converges ta; /o We
further show that, in the pure delay-sensitive case nilgepic indexdefined as the limit ofw," (i),) asa
grows to infinity is precisely:;, . Finally, we show that, in a multiclass model where classesdelay-
sensitive, théias MPI scheduling policy gets closer to tlag rule as buffer sizes grow to infinity in fixed
proportion to their arrival rates.

We report results of a computational study on the perforreafthe MPI policies on two-class instances,
showing that they are near optimal in every case and oftgmeoiarm significantly a naive benchmark pol-
icy. We further compare the optimal policy’s structure witle MPI policy’s, finding that the two are often
remarkably similar. However, the examples reveal that thecgire of optimal policies in the multiclass
delay-sensitive case need not be consistent with the stdéeing induced by the MPI.

The rest of the paper is organized as follows. Section 2 dexcthe queueing model and the correspond-
ing scheduling problems of concern. Section 3 reviews cewmhof MPIs and PCL-indexability, in a form



adapted to the model at hand. It further introduces the neweqts of bias MPI and bias PCL-indexability.
Section 4 carries out a PCL-indexability analysis for a 4esssitive class, under discounted and average
criteria. Section 5 carries out a corresponding analysia fitelay-sensitive class, under discounted and bias
criteria. Finally, Section 6 reports the results of a comapiahal study on the performance of the proposed
MPI policies.

2 Model
We consider a multiclas®/ /M /1 queue with a finite dedicated buffer of sizg > 1 for each clasg € K £
{1,..., K}. Classk jobs arrive as a Poisson process with rateand their service times are exponentially

distributed with rateu. Interarrival and service times within and across classesraitually independent.
Upon a job’s arrival, if its class’ buffer is not full it jointhe corresponding queue, and is lost otherwise. We
denote byL,(t) the number of clask jobs in system at time > 0.

The system controller can choose the nonempty class to bieseéiat each job arrival or departure epoch
(assume, for concreteness, that jobs within a class areder¥IFO order). Such choices are represented by
binaryaction processesy,(t), whereay(t) = 1 if the server is working on clagsat timet, anday(t) = 0
otherwise. We thus have the sample-path service-capawisti@int

dat) <1, t>0.

keK

Action choice is dynamically prescribed bysaheduling policyr. This is chosen from the spadé
of admissible policieswhich arenonanticipativeand allowpreemptions Thus, service of a job can be
interrupted at any time, and resumed later at the point efinption.

Regarding the economic structure, the system incurs lim@ding and/or rejection costs separably across
classes. Claskincursholding costst ratec;, > 0 per unit time per job in system; it further incuejection
costs at rater;, > 0 per job lost, withey, + 7, > 0.

Itis of interest to consider the following problems: (i) findliscount-optimal scheduling policy,

min E™ [/ e~ ot Z {CkLk +1reAlr, ) m}} dt] (2)

well
kekK

for a given discount factar > 0; and (i) find an average-optimal scheduling policy,

min lim sup —E’T
mell 700

/0 Z {CkLk +Tk>\k1{Lk(t)—nk}} dt] (3)

keK

Given the likely computational intractability of problen®) and (3), we will not seek to obtain their
optimal policies. Instead, our goal will be to design weibgnded and tractable dynamic index policies.

3 Restless bandits: Indexability, PCL-indexability and the MPI

We briefly review in this section the key concepts and resflthe indexability theory for restless bandits
developed in Nifilo-Mora [7, 8, 10], in a simplified form adegto the model of concern. We further extend
such theory, motivated by phenomena observed in the ma@lyses.

Consider a single restless bandit, modeled as a contintimesMDP whose stat& (¢) evolves across
the finite state spac® £ {mo,...,m,}. Thestate orderingny, ..., m, will play a significant role in the
sequel. The state space is partitioned into thé\8é€t'} £ {m,,...,m,} of controllable stateswhere both
the active {(¢) = 1: work) and the passive:(t) = 0: rest) actions are available; and tngcontrollable state
singletonN %} £ {1m,}, where only the passive action is available. Holding costsrecurred continuously
over time, at the rate df*(j) € per unit time while the bandit occupies stgtand actior: prevails. Actions
are chosen through adoption of a policybelonging in the clasH of admissible policieswhich are only
required to be nonanticipative.



3.1 Discounted MPI

Consider the case where costs are continuously discounerdtime at the exponential rate > 0. To
evaluate the value of costs incurred under a poticy II, when starting at state;, we use thaliscounted
cost measure

perm) 28, | [T e

whereE7  [-] denotes the corresponding expectation.
We further evaluate the amount of work expended, viadibeounted work measure

g™ (mi) £ ET, [ /O " emeta(t) dt} .

To avoid distracting technical issues raised by the chdig&t@al state, we consider this to be drawn from
a distribution assigning a positive probabilitym;) > 0 to every staten,;. We denote the corresponding cost
and work measures bf*™ andg®™, respectively.

Suppose now that work is paid for at thegerate of € per unit time. We will address ttaiscounted
v-wage problem

min /7 + vg® (4)
mell

which is to find an admissible policy minimizing the discoemhvalue of holding and working costs.

To solve problem (4), we will postulate (and then establibhj its optimal policies are dhresholdtype
relative to state orderingug, m1, . . . , m,, SO that they prescribe to work in states “abovehi@shold state
and to rest otherwise. We represent the policy with threkhtaten,; by its active-state set

{mi+1,...,mn} ifo<i<n
S(Wbl)é (5)
1] if i =n,

and refer to it as thé/(m;)-active policy The corresponding nestedtive-state set familig
F £ {S8(mo), S(m1), ..., S(my)} .

We will henceforth refer to such policies &-policies writing e.g.f*%, g for S € .Z.
We assume that work measuie™ satisfies the following regularity condition relative.f6-policies:

ga,S(mifl) > ga,S(mi)’ 1 < 7 <n. (6)

i.e. work measure®S(") is decreasing in.
We next define a key property based on the structure of oppioialies for problem (4) as therevailing
wagev varies.

Definition 3.1 We say that the bandit is-discountZ-indexablef there exists amndexy®*: N{0:1} - R,
termed thaliscounted MPIwhich is nondecreasing along the state ordering, i.e.

v (my) < - < v (ma),
such that, fob < ¢ < n, the.S(m;)-active policy is optimal for problem (4) iff € [v**(m;), v** (m;41)].

When it exists, the MPI gives an intuitively appealing rutesblve problem (4): it is optimal to work
on the bandit in staten; € N{%1} iff the latter's MPI value lies at or above the prevailing wag.e. iff
v®*(m;) > v. This suggests, drawing on the economic theory of optinsluece allocation, that** (m;)
must measure thearginal productivity of work in staten;. Such is indeed the case, as established in
Nifio-Mora [10]. In that paper we further prove the resutittthe bandit is#-indexable iff it obeys the
economicdaw of diminishing marginal returngto work), consistently with#-policies. Namely, if one
considers thachievable work-cost performance reggpanned by pointg)®™, f* ™) asm ranges ovell, its
lower boundaryéfficient frontie} is the piecewise linear and convex function obtained bgdirinterpolation
on points(g®S(m:) | fS(mi)) See Figure 5 for a concrete example in the setting of a deagitive class.
The discounted MPI thus has the evaluation

fa,S(mi) _ fa.,S(mi,l)

Va,*(

, 1<i<n. ()
ga,s(mqj71) — gaas(mi)



PCL-indexability conditions

To establish indexability and calculate the MPI, we will tgpthe sufficient indexability conditions intro-
duced and developed in Nifio-Mora [7, 8, 10], based on satisin by performance measures of PCLs. We
will not discuss here the PCL framework. For our present pseg, it will suffice to formulate the relevant
PCL-indexability condition¢hat need be checked.

We assume that the original continuous-time MDP has beemmeflated as a discrete-time MDP via
uniformization so that actions need only be takerdatision epochgiven by a Poisson process with a valid
uniformization rateA. Given an actiom € {0, 1} and an active-state sftc .7, denote by, S) the policy
that takes action in the initial period (between decision epochs), and adoptsSkective policy thereafter.
For every controllable state; € N10:'} and setS € .#, define thediscountedm;, S)-marginal workload
by

S mi) 2 (a+4) (g7 (my) - g™ (m,) ) ®)

i.e. w™®(m;) measures the marginal rate of increase in work expendechwisuilts from working instead
of resting in the initial period, provided the-active policy is adopted thereafter.
We analogously define ttdiscountedm;, S)-marginal costoy

¢S (my) £ o+ A) (£ ) = f205) ) ) ©)

i.e.c®%(m;) measures the marginal rate of decrease in cost incurrechwéseilts from working instead of
resting in the initial period, provided the-active policy is adopted thereafter.

Notice that the inclusion of factdr + A) in (8) and (9) has the convenient effect of makingy (m;)
andc®®(m;) independent of the choice of uniformization rate

Define now theliscountedm;, S)-marginal productivity rateby

a,S
a,S a €7 (ml)
) NA Z VT 1
v (ml) wa’S(mi)) ( 0)
provided the denominator does not vanish. Finally, defidexv®*: N{%} — R by
v* (my) £ veStmi-1) (my) = p@SMmd(my), 1 <i<n, (11)

where the second identity in (11) is proven in Nifio-Moral@].
We next use the above to define a tractable class of bandits.

Definition 3.2 We say that the bandit is-discount PCIL#)-indexabldf the following holds:
(i) Positive marginal workloadsv®®(m;) > 0, form; € N{%1} § ¢ .7,
(i) Monotone nondecreasing index®*(m,) < --- < v®*(my,).

Notice that Definition 3.2(i) implies regularity conditi¢l). See Nifio-Mora [8, 10]. We next state the
key result used to establish indexability, proven in NN¥ora [7, 8, 10] in increasingly general settings.

Theorem 3.3 Discount PCI(.%)-indexability implies discounf-indexability, with MPlv®*(m;).

In some models, as will be illustrated in this paper, we hawmil that marginal workloads® (™) (m;)
arewedge-shapeds;j varies, attaining the minimum value at eithjer ¢« — 1 or j = 4, i.e.
w0 () > > S () WS (my) < - < w®S M) (my), 1<i<n. (12)

Such property implies the following insightful charactation of the MPI, proven in Nifio-Mora [8, 10].
Theorem 3.4 Suppose that the banditisdiscount PCIL%)-indexable and conditio(L2) holds. Then

max _v*%(m;) =v**(m;) = min _v*5(m;), m; € N101}

m;ESEF m;¢SEF

Theorem 3.4 characterizes the MPI as an optimal marginayativity rate relative to# -policies, in a
dual max-min relation.



3.2 Average and second-order MPI

The MPI can be defined relative to generic cost and work meagirandg™, as discussed in Nifio-Mora
[10]. Thus, under thaverage criterionwe take

1
T A Ii —_E~™
f imsup -

T—o0

T T
/ ha(t)()((t))dt] and g™ £ limsup %E” l/ a(t) dt] ’
0

0 T—oo

where as above we assume the initial state to be drawn frorrbétreay positive probability mass function.
We can thus readily extend Definition 3.1 to define the corswefaverage# -indexabilityandaverage MPI
v*(m;), based on the structure of optimal policies for #verager-wage problem

min f™ +vg”. (13)
mell

Similarly as for the discounted case, we assume that avevage measurg;™ satisfies the following
regularity condition relative tg#-policies:

gSmi=1) 5 8m) 1 <j < n, (14)
i.e. work measurg®(™) is decreasing in.

Definition 3.5 We say that the bandit isverage.Z-indexableif there exists arindexv*: N{%:1} — R,
termed theaverage MPJwhich is nondecreasing along the state ordering, i.e.

vi(my) < - <V (my), (15)
such that, fof < ¢ < n, the.S(m;)-active policyis optimal for problem (13) ifiy € [v*(m;), v*(mit1)]-

The above PCL-indexability conditions are readily extahitethe average criterion. Under the latter, we
use theaverage(m;, S)-marginal workload average(m;, S)-marginal costandaverage(m, S)-marginal
productivity rate defined form; € N{%1} andS € .# by

= lim w®*(m;),
a\,0

T—o0

T T
w(m;) £ lim E{»S) l / a(t) dt] — E{O:9) l / a(t) dt
0 0

T—o00

T
S(m;) £ lim EOS l / he® (X (t)) dt
' 0 0 a0

T
—ELS) l / R (X (1)) dt] = lim ¢®%(my),

and
¥(mi)

VS (m;) £ = lim %% (m;),

wS(m;)  a\o0
respectively. We further defiriadexv*: N{%1} — R by

v*(my) £ S0 (my) = 150 (my) = 1i<% v®*(m;), m; € N0 (16)

Notice that we have indicated the limiting relations betweerresponding undiscounted and discounted
terms as the discount factor vanishes.

We can thus readily extend Definition 3.2 to define the conoéptrerage PCLL%)-indexablebandits,
and obtain the average-criterion counterparts of TheoBfand 3.4.

Definition 3.6 We say that the bandit sverage PCL%)-indexablef the following holds:
(i) Positive marginal workloadsv®(m;) > 0, form; € N9} S ¢ Z.
(i) Monotone nondecreasing index:(m) < --- < v*(my,).

Theorem 3.7 Average PCL%)-indexability implies averagé” -indexability, with MPIv*(m;).



In some models, as will be illustrated in this paper, theayeMPI is constant across states,i&m;) =
v* for m; € N1%1} This raises the issue of how to discriminate between stagefiow to break ties, when
using an MPI-based scheduling policy in a multi-projectisgt where the MPI of several bandits coincides.
We propose to resolve such issue by considering the seaaled-blcLaurin expansion of the discounted
MPI as the discount factor vanishes,

v (m) = v* — 7 (mi)a + o(a), asa \,0,
and then defining theecond-order MPby

7 (me) 2 lim %W) m; € N1, (17)

Notice that the second-order MPI is monotone nonincreasimg the state ordering, i.e.

yH(ma) >y (m2) > -+ >y (my).

3.3 Bias MPI

Itis well known in MDP theory that the average-optimalititerion can bainderselectivgn that there may
be multiple average-optimal policies. In the presentsgttihis can lead to nonexistence of the average MPI.
To deal with such phenomena, we introduce next the concépta®# -indexabilityandbias MP|, based
on Blackwell’s [1] more sensitivbias-optimality criterion See Lewis and Puterman [5] for a survey of work
on the bias criterion in MDPs. Previously, we had introduaed deployed in Nifio-Mora [10] the concepts
of average-bias¥ -indexabilityandaverage-bias MRIbased on mixing an average cost measure with a bias
work measure.
We assume that the banditdsdiscountZ -indexable for alkx close enough t6.

Definition 3.8 We say that the bandit isias.#-indexablef there exists aindexv*: N1} — R, termed
thebias MPI, which is nondecreasing along the state ordering, i.e.

vi(my) < -0 <V (ma), (18)
such that, fof < ¢ < n, the.S(m;)-active policy isbias optimalfor (13) iff v € [v*(m;), v* (mit1)].

We will find it convenient to use the following definition ofds optimality, drawing on its relation with
0-discount optimality as established in Puterman [11, Téen10.1.6]: we say that a stationary poligyis
bias optimal forv-wage problem (13) if, for any average-optimal stationaskqy , it holds that

lim inf v®™ (v) — v*®(v) > 0. 19
im inf v (v) —v*”(v) >0 (19)

4 PCL-indexability analysis: loss-sensitive classes

We address in this section the PCL-indexability analysistifie restless bandit model corresponding to a
loss-sensitive class in isolation, i.e. &fy M /1/n queue with arrival and service ratésindy, respectively,
subject to service control, with delay cost rate 0 and rejection cost rate > 0 satisfyingar > c.

For such a class, we will find it convenient to define steteby X (t) = n — L(t), thenumber of empty
buffer spacesWe will use the state ordering; = n —ifor 0 < i < n, so thatN = {n,n —1,...,0},
N2 £y 1 ... 0}, N1 £ {5}, and the active-state sets.# are given byS(0) £ §, and

S(i)&{i—1,...,0}, 1<i<n.

In words,.# -policies prescribe the server to work when the number oftgfopffer spaces is small enough.

4.1 Discounted criterion

We start by laying the groundwork for calculations of disetad marginal workloads and costs. We use
uniformization to obtain an equivalent discrete-time MiRgre the state is sampled at epochs of a Poisson
process with raté\ > X + u, which include arrival and service completion instantsngl with dummy



transition epochs. The uniformized MDP’s state transifioobability matrixP* = (p;) under actiom €
{0,1} is given by

A/A fo<j=i—1<n—1
(A=X—pa)/A fO<j=i<n

o o ) (A=pa)/A ifj=i=0

P =Y - /A if j=i=n
pa/A fl1<j=i+1<n
0 otherwise

Notice that we take both actions to have the same effect oonirailable state:.

The corresponding discrete-time discount factok j§« + A), and the discrete-time one-period cost rate
in statei is {c(n — i) + rAlg oy }/(a+ A).

Consider now discounted marginal workload’° (i), for i € N{%1} andS € .%. From their definition
in (8) and uniformization we readily obtain

w3 (i) =14+ pAg*S(Gi+1), 0<i<n-—1, (20)

where Ag®S(i) £ ¢g*9(i) — g*(i —1). Hence, calculation of the*%(i)’s reduces to that of the

Ag®®(i)’'s. We thus start by characterizing work measuyes (i). We denote below byis (i) the effective
service rate in stateunder theS-active policy, i.e. lettind s (z) be the indicator function of,

ps(i) £ pls(i), 0<i<n.

The next result gives the standard evaluation equatiorteégr®-°(i)’s, for fixed S € .%.
Lemma 4.1 Discounted work measurgg-“ (i), for i € N, are characterized by the equations

ag®(0) = 1s(0) + us(0)Ag™*(1)

ag®9(i) = 15(i) — MAg™5 (i) + ps(i)Ag*5(i+1), 1<i<n-—1

ag™S (n) = ~AAg™S (n).

The next result, characterizing first-order differendes (), follows immediately.
Lemma 4.2 TermsAgS(z'), for 1 <i < n, are characterized by the equations
(@ + X+ ps(0)Ag™5(1) = Als(1) + ps(1)Ag™*(2)
@8

=A
(+ X+ ps(i — 1) Ag®5 (i) = Alg(i) + AMAg*I (i — 1) + ps(i)Ag*¥(i+1), 2<i<n-—1
(a4 A+ ps(n —1))Ag™%(n) = —1g(n — 1) + AAg™(n — 1).

We can now give the evaluation equations for discounted imalrg/orkloads.

Lemma 4.3 Marginal workloadsw® (i), fori € N1%1}, are characterized by the equations

(a+ A+ ps(0)w*5(0) = o+ A+ ps (w5 (1)
(a0 + A+ ps()w*d () = a+ w5 (@ — 1) + ps(i + Dw*d(@4+1), 1<i<n-—2
(4 X+ ps(n—1D))w*%(n —1) = a+ I (n — 2).

Proof. The result follows immediately from identity (20) and Leramh.2. O

We next turn attention to discounted marginal casts (i), for i € N{%!} andS € .#. From their
definition in (9) and uniformization we readily obtain

c®5(i) = —pAf5 (i + 1). (21)

Hence, we need to characterize first-order differemcgs ;).
Proceeding as before, we next give the standard evaluatigatiens for thef - (i)’s.



Lemma 4.4 Discounted cost measurg§-° (i), fori € N, are characterized by the equations

af*S(0) = cn + 1\ + pus(0)Af*5(1)
af®¥(i) = c(n — i) — AAFYI () + ps(DAFS (i +1),1<i<n—1
af®S(n) = =AAf*S(n).
The next result, characterizing first-order difference&*% (i), follows immediately.
Lemma 4.5 TermsAf“=S(z'), for 1 <i < n, are characterized by the equations

(+ A+ ps(0)AF¥5 (1) = —(c +rA) + ps(1)Af*5(2)
(@ + A+ ps(i = D)AS (D) = —c £ AAF (i = 1) + ps(DAF*S(i+1), 2<i<n—1
(@+ A+ ps(n = D)AF*S(n) = —c+ AAf*S(n - 1).
We can now give the evaluation equations for discounted imalrgosts.

Lemma 4.6 Marginal costsc™ (i), for i € N1%1}, are characterized by the equations

(o + A+ 15(0))e™5(0) = (e + rA ) + ps(1)eS(1)
(4 A+ s (i)™ (i) = cpp + A (i — 1) + pg(i + 1)@ +1), 1<i<n—2
(4 X+ ps(n—1)c®%(n—1) = cp + A (n — 2).

Proof. The result follows immediately from identity (21) and Lerad.2. O

4.1.1 Discounted marginal workloads: calculation and proprties

We next draw on the above to calculate discounted margingdlaads, and to establish their required prop-
erties.

We will develop a recursion to solve the system of evaluagignations in Lemma 4.3 for every active-
state setS(j). Notice that the casg = 0 is trivial, sinceS(0) = ), and hences®*( (i) = 1. For other
cases, calculations will proceed by upward recursiop.0iVe start by solving the system f¢r= 1, whence
the first equation givegivotterm

a+ A
a+A+p

From the remaining equations, we calculate recursivély’ (V) (i), for1 <i <n — 1.

Similarly, if for a givenl < j < n pivot termw®-5U) (5 —1) were available, from the remaining equations
for S(j) we could recursively calculate remaining term%°() (i). Therefore, if we could represent pivot
w5+ (5) in terms of previous piva®°() (j —1), for everyl < j < n—1, such relations would furnish
the backbone of a recursion to calculate all marginal wattgo ) (7).

We next set out to relate successive pivots. We will use thewing vectors (wherex” denotes the
transpose of a vectaot, 1 denotes a vector of ones, ang denotes thé:th unit coordinate vector of the
appropriate dimension): fdr< j < n, let

w5 (0) = (22)

« A

ia T, eS80) s WSO DT Bl e 1
w! = [w20(0) w2 -] atrtn atarn’

1;

and, forl <j<n-1,let

) , , ~. _ @S(+1) ()
w1 L [eSG+D) s weSGRN G )T plap B TV
W = [w 0) w G-, AP S

Let us further introduce, for < j < n, the square matrix of dimensign
0 u
A0 w
ja_ L ) )
Oé+>\+ . .
a A0 w
A0

with B! £ 0. The next result reformulates some equations in Lemma 4.3.
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Lemma 4.7
@ w/ =bl +B/w/, 1<j<n.
(b) W =bi +BiwI, 1<j<n-—1.
To proceed, we introduce coefficients(0), ..., ¢*(n — 1), defined by
1 if j=0
()= det (1—Bi*Y) @9
m ifl1<j<n-1,

wherel denotes the identity matrix of the appropriate dimensidre fiext result shows that such coefficients
are well defined, and establishes properties on which wedwallv in the ensuing analyses.

Lemma 4.8 Termsg® () are well defined, and satisfy the following properties:

@ q¢*()>0, 0<ji<n-1.

(b) They can be computed by upward recursion, segih@) = 1 and

Ap

1<i<n-—1.
@t r+pleG-1 ~—7="

q“(j)=1-

o+ A g : _
(c) 7a+>\+u<q (<1, 1<j<n-1
Proof. (a) The row sums of matriBB’ are less than unity, and hence so is its spectral radius. eTdreg
det (I — B7) > 0 and theg®(j)'s are well defined and positive.
(b) The recursion follows from definition @f*(;j) and the linear algebra identities

A
det(I—-B?) =det(I-B') — —
e ( ) € ( ) (Oé+)\+/l)2
. , Al i ;
det(I—B ) =det(I-B/) — ——= _det(I-B7Y), 2<j<n-1.
et( ) = det( ) (a+A+m26( )s <j<n

(c) Parts (a) and (b) give that(j) < 1 for1 < j < n — 1. We next argue that

a4+ A

AT g<j<n—1, 24
a+A+p =J= (24)

q“(j) >

by upward induction orj. The casg = 0 is trivial. Suppose that the result holds for song j < n — 2.
Then, part (b) and the induction hypothesis yield

A
ol W a+A+pu 4 a+A
+1)=1- B> = :
@G +1) atAtp ¢3) atAtp atrtp
Therefore, (24) holds fdr < 5 < n — 1. This completes the proof. O

We are now ready to relate successive pivots.

Lemma 4.9 ]
a4+  w>SW (5 - 1)

1<5j<n-1.
at At =J=

3

¢* ())w* S (j) =

11



Calculation of w®5(9) (i)’s (note: S(0) = 0):
wSM )y =1, 0<i<n-—1
Calculation of w31 (i)’s:

Q,S(l) ) —
atAtp a+ A

Calculation of w30 (i)'s, for 2 < j < n:

a4+ AwSU=1 (5 — 2)
(@+A+pg(i—1)
—at (et A4 puwSI( - 1)

w0 (j 1) =

w30 (j —2) =

A
. @S0 (; —
wajs(j)(i):a—i—)\w +)\(’L 1)7 j<i<n-1
«
_ o — pw®S@) (; ,5() (5
sy - SO NG |
_ o,5(4)

a+A+p

Figure 1: Marginal workloads: recursive calculation.

Proof. Fix 1 < j < n — 1. By Lemma 4.7 and the definitions bf, b’, we have

ST ()

W —wl = (I-B) (b —b/) = o

(I-B’) le;. (25)

Now, noting that the element in positidp, j) of matrix (I — BJ')71 has the evaluation if j = 1, and
det (I—B’~1) /det (I —BY) if j > 2, which in either case equalgq®(j — 1), it follows from (25) that

wavs(j+1) (.7)

@SGH) (5 1) — @S (i 1) = — M _ 26
w U= 1) = w7 —1) (G —1) a+tA+pu (20)
We next substitute fom®50U+1) (j — 1) in (26) using Lemma 4.3's identity

« n A
at+Atp  at+Atpu

wa,S(j+1)(j) — wa,S(j+1)(j —1),

and further substitute fay*(; — 1) in terms of¢®(;) using Lemma 4.8(b), to obtain, after straightforward
algebra, the stated identity. O

We can now give a complete recursion for calculating distedimarginal workloads, as shown in Figure
1. Figure 2 further clarifies the recursion, showing by asdle directions in which calculations proceed,
and enclosing in boxes the pivot terms, which furnish thergon’s backbone.

Proposition 4.10 Discounted marginal workloads®-° (i), fori € N1%} andS € .Z, are calculated by
the recursion shown in Figure 1.

Proof. The result follows directly from Lemmas 4.3 and 4.9. O

We next use the above to establish required properties obdliged marginal workloads. Figure 2 illus-
trates the inequalities presented in the following result.

Lemma 4.11 Discounted marginal workloads satisfy the following inalifies:

(@) w0t () >0, 0<j<n-—1.

12



1 > |w™®D0)>0| < w5 (0) < - < w5 (0)
| N\ T 1
1 > w51 (1) > |w*¥@1)>0| < < w5 (1)
! ! N 7
! ! N i
1 > w»Wm-1) > w»5Am-1) > ... > |w*™WH-1)>0

Figure 2: Marginal workloads: directions of calculatiomslavedge-shape property.

(b) w*SUTD () > w*SW(5), 0<i<j—1,j<n—1.
(©) w30 (5) > w»SUtD(G), 0<j<i<n-—1.

Proof. (a) This part follows by upward induction gnusing (22) and Lemma 4.9.
(b) Takel < j < n — 1. Since the spectral radius of mati¢ is less than unity (cf. Lemma 4.8's proof),

it follows that matrix (I — BJ’)_1 is positive componentwise, which in turn impli¢b— Bj)_1 e; > 0.
Combining such result with part (a) and identity (25), weadb#’ — w7 > 0, i.e.

w* ST () > w0 (), 0<i<j—1,

as required.
(c) Let0 < j <n —2. By Lemma 4.3, we have
(a+ Nw*5D () = a4+ w30 (i -1), j<i<n-—1
(a0 + Nw*SUHD () = o + Aw®50tD (- 1), j+1<i<n-—1,
whence we obtain
w5 (3) — wSUHD (5) = % {waﬁ(i) (i —1) —w>SUFD (G - 1)} , jH1<i<n-—1
«

In light of the latter identities, to prove the required re#suffices to establish that
w5 () — w0 () >0, 0<j<n-—1,

which we set out to do next.
The casg = 0 follows from
a+ A I

,500) () — w**W(0) = 1 — = > 0.
wT(0) — w™>T(0) a+Atp atArtp

Forl < j <n—1, drawing again on Lemma 4.3, we can write

(@ + A+ w5 () = @+ AU (j - 1)
(a+ Nw*39 (5) = a + w50 (5 - 1).

Using in turn the last two identities, (26), part (a) and Leav8(c), yields
(a+ \) {wavs(j) () — wa7S(j+1)(j)} — ST () — A {wa,S(jH)(j ~ 1) = wSO (5 - 1)}

Aq®(j—1) S(+1)(:
3124 V7 a,S(j+1) 0
{ atrtp M (3) >0,

as required. This completes the proof. |

We can now give the key properties of discounted marginakisads.
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Proposition 4.12 (Positive and wedge-shaped discounted nginal workloads)

(@) w*9(i) > 0, fori € N{®} andS € 7.

(b) Thew 30U (4)'s are wedge-shaped gsvaries, as shown in Figurg, so that conditior{12) holds with
strict inequalities.

Proof. Both parts follow immediately from Lemma 4.11. O

4.1.2 Discounted marginal costs: calculation

We next set out to calculate the required discounted margosisc®-“ (i), proceeding similarly as before
for discounted marginal workloads. Orpyot termsc®SU+1) (), for0 < j < n — 1, are required for the
PCL-indexability analysis. We next develop a recursionaizglate them, along the lines followed above to
calculate thay®SU+1) (j)'s,

We start by noting that Lemma 4.6 readily yields the first spigbt as

c+r

a,S(1) 0) =
¢ 0) oz—l—)\-i-,uu'

(27)

We next set out to relate successive pivots. Define the fatigwectors: forl < j < n, let

cl rAL

i — [eS0) eSO n = 1
c/ = [¢50)(0) SO — 1)), Py w7y el

13
and, forl <j<n-1,let

pe ST ()

o = [caSG+D) o eSGR G )T i = hd )
=l (0) c G-n], o Y
The following result is a counterpart of Lemma 4.7.

Lemma 4.13

(@ ¢ =h/ +B/cd, 1<j<m

(b)y ¢ =hi +Bie/, 1<j<n-—1.
The next result gives the required recursion between ssivessivots.
Lemma 4.14

g+ AeSW) (5 — 1)
a+A+p

q* (50T (j) = 1<j<n-—1

)

Proof. Fix 1 < j <n — 1. By Lemma 4.13 and the definitions b, h7, we have

pe SO ()

¢ =1-B) (b -1)= —
a %

(I—B7) e, (28)

Now, noting again that the element in positioi;) of matrix (I — BJ')71 is1/q*(j — 1), it follows from

(28) that
a,S(j+1) (4

ca,S(j+1)(j _ 1) _ ca,S(j)(j _ 1) — 'u ST )(.7)

(i —1) a+tr+p

We next substitute for*5+1) (5 — 1) in (29) using Lemma 4.6’s identity

(29)

ca,S(j+1)( cp A ca,S(j+1)( i~ 1),

+
atAtp  atrtp J

J) =

and further substitute for*(; — 1) in terms ofg®(j) using Lemma 4.8(b), to obtain the required identity.
This completes the proof. O
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4.1.3 Discounted MPI

We next set out to establish PCE()-indexability and to calculate the discounted MPI. Thddwing result
gives a recursion for constructing inde&* (i) £ ¢®S@+1(5) /w* S+ (5), for0 < i < n — 1 (cf. (11)),
and further establishes the remarkable result that thinalee does not depend on the buffer size

Proposition 4.15
(@) Indexv™*(7) is calculated by the following recursion:

c+rA i
VL ifi=0
v (i) = (30)

. P —1)—c . .
R P Ut Y Rl S R S IO PO}
v (Z ) a+)\wo"s(l)(271) _Z_TL

(b) ForeachO < i <n— 1, v**(i) does not depend on the buffer size
Proof. (a) We have, by (22) and (27),

A c3W0) A

weSM(0) at A

Va,*(

Further, forl <i <n — 1, using Lemma 4.9 and Lemma 4.14 we obtain that

() 2 ST G e+ A5 (= 1) ep 4 v (i — DAw® S (4 — 1)
ver(i) = _ = _ = :
weSEHD () a4 Aw*S@ (3 — 1) a+ Aw*S@ (5 — 1)
av®*(i—1) —cu

o+ w30 (G - 1)

= (i —1) —

(b) The result follows from part (a) and by noting that pivoanginal workloadsv®°® (i — 1) do not
depend on the buffer size either. This completes the proof. O

We will find it useful to reformulate the second identity ir0j&as

w50 (5 — 1)
a+ w50 (5 — 1)

av®* (i) —ep = {av®*(i—1)—cu}, 1<i<n-—1. (31)

Proposition 4.16 The following inequalities hold (strictly itfr > c):
(@) av®*(i) > cu,for0 <i<n-—1.
(0) v**(n—1) <v®*(n—2) <--- <v**(0).

Proof. (a) We argue by upward induction enThe casé = 0 is easily seen to be equivalent to the assumed
conditionar > c¢. Suppose now the inequality holds for sothe&l i < n — 2. Then, (31) and Proposition
4.12(a) imply thatw®*(i + 1) > cu, completing the induction proof.

(b) The result follows from part (a), Proposition 4.12(aj¢dadentity (30).

The result that the inequalities are strictdff > ¢ follows along the same lines. O

We can now give the main result of this section.
Theorem 4.17
(a) Ana-discount loss-sensitive classdsdiscount PCIL%)-indexable with MPL*:* (i), which satisfies

max Va’s(i):l/ i) = min Va’s(’i), 0<i<n-1.
i€ESEF i¢gSeF

(b) The class isx-discount PCIL%)-indexable for anyy > 0 iff it is pure loss-sensitiver(> 0 = ¢).

Proof. (a) The result follows from Proposition 4.12(a) and Prdfms 4.16(a). The stated characterization
of the MPI follows fro Theorem 3.4.
(b) This part follows immediately from the above. O
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Notice that, in light of Proposition 4.15(b), we can consithee sequencér®*(i): i« > 0}. By Propo-
sition 4.16, the latter is is monotone nonincreasing andhed below, and hence it is convergent. The
following result, which follows immediately from the abgwgves its limit.

Corollary 4.18

lim v** (i) = g
17— 00 «

4.2 Average criterion: average and second-order MPI

It is of interest to extend the above analysis to the averaigerion, as outlined in Section 3.2, to obtain
appropriate index policies for scheduling problem (3). ight of Theorem 4.17(b), we restrict attention in
this Section to the pure loss-sensitive case 0 = c.

In short, it is readily seen that a pure loss-sensitive da$¥CL(#)-indexable relative to the average
criterion. One thus obtains average-criterion countésgareach result in Section 4.1 by letting\, 0. The
resulting average MPI is

v (i) = lim v (i) =rp, 0<i<n-—1, (32)
a\,0
so that it is constant across states.

To obtain a more informative, tie-breaking index, we pratas in Section 3.2 to introduce teecond-

order MPI, based on the McLaurin series expansion of the discountdd MP

v&r (@) =rp—ay (i) + o(a) asa \, 0. (33)
We thus define theecond-order MPby

ru — v (i)

7*(i) £ lim , 0<i<n-—1.

a0 «

We will obtain closed-form expressions for the second-pkdel. For such purpose, we will use coeffi-
cients
N A . . .
=1 @ 0<i<n-—1
q(0) = lim ¢"(0), O<i<n-—1,

and pivot average marginal workloads

wSGHD () & limy weSH(G), 0<i<n—1.

In both cases, it suffice to set= 0 in the relevant results of Section 4.1.
Let us start with the(7)'s. Notice that in what follows we will writey = \/pu.

Lemma 4.19
(a) Theg(i)’s are calculated by the following recursiog(0) = 1, and

p

gi)=1— —————— 1<i<n-—1.
K ORIy
(b) The solution to such recursionis: for< i <n — 1,
1 1-p*2
BN A
(0) 1 144 ptt 1+pl—ptt
q(i) = — =
Lhp 14y 1i42 .
—_ if p=1.
2:+1
Proof. Part (a) follows by Lemma 4.8(b). Part (b) follows by upweasdursion. O

The corresponding result for the®(“+1) (4)’s follows.

Lemma 4.20
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(@) Thew>(+1)(i)’'s are calculated by the following recursiom*()(0) = p/(1 + p), and

. SE) (5 —1
wS(z+1)(Z-) _ p_w (Z ) 1<i<n-—1.
I+p  q(i)
(b) The solution to such recursionis: for< i <n — 1,
pitl )
4 i1 (17p)1_p71+2 pr#l
wS(H—l) (’L) — P _ _
1+---4+ pz+1
ifp=1
it2 r
Proof. Part (a) follows by Lemma 4.9. Part (b) follows by upwarduesion. O

We can now calculate the second-order MPI.
Proposition 4.21

(a) The second-order MPI is calculated by the following recomsiy*(0) = r/p, and

ls ls r/p ,
— -1 — 1 1<i<n-1.
T =7~V sy 1<i<n

(b) The solution to such recursionis: for< i <n — 1,

rf, p —(A—p)i—11 .
p{ L (1-p)? } s

YH(i) =
it DE+2) ifp—1.
2
Proof. Part (a) follows by substituting for discounted MP1-* (i) in recursion (30) the McLaurin expansion
(33), and then lettingr vanish.
Part (b) is readily verified by induction, drawing on Lemmag{b). O

Notice that the second-order MPI is monotonically incrnegén the number of empty buffer spaces:

7(0) <" (1) < < (n—1). (34)

5 PCL-indexability analysis: delay-sensitive classes

We address in this section the PCL-indexability analysisdalelay-sensitive class in isolation, i.e. an
M/M/1/n queue with arrival and service rataésand i1, respectively, subject to service control, with de-
lay cost rate- > 0 and rejection cost rate> 0 satisfyingc > ar.

For such a class, we define thiateby X (t) £ L(t), thenumber of jobs in systeniVe will use the state
orderingmg £ 0, andm; 2 n —i+ 1for1 < i < n, sothatN £ {0,n,...,1}, NIO} 2 £5 1},
N10} £ [0}, and the active-state sets.ii are given byS(0) 2 {n,...,1}, S(1) £ (), and

SHE{i—1,...,1}, i=2,...,n.

In words,.Z -policies prescribe the server to work when the number of jatsystem is small enough.
For notational convenience we will write hencefoftf0) asS(n + 1).
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5.1 Discounted criterion

We start by laying the groundwork for calculations of disetad marginal workloads and costs, using uni-
formization as before with ratd > A + p. The uniformized MDP’s state transition probability matri
P¢ = (pg;) under actioru € {0, 1} is given by

A/A fl<j=i+1<n

na/A fo<j=i—1<n-1
o s JAA=X—pa)/A fO<j=i<n
Pa =Y A - 2/a if j=i=0

(A = pa)/A ifj=i=n

0 otherwise

The corresponding discrete-time discount factok j§« + A), and the discrete-time one-period cost rate
in statei is {ci + rAlg—ny }/ (o + A).

Consider now discounted marginal workload¥* (i), for i € N1} andS € .#. From their definition
in (8) and uniformization we readily obtain

w3 (i) =1 — pAg™* (i), (35)
whereAg®5 (i) £ g5 (i) — (i — 1).
We thus start by giving the evaluation equations forghe’(i)’s, for fixed S € .. We will denote by

us (i), as before, the effective service rate in stateder theS-active policy, i.e. lettind s (¢) be the indicator
function of S,

ps(i) = ulg(i), i€ N.
Lemma 5.1 Discounted work measurg$-° (i), fori € IV, are characterized by the equations
ag™¥(0) = AAg*¥(1)
ag®®(i) = 15(i) — ps(i)Ag™5 (i) + AAg** (i +1), 1<i<n-—1
ag®®(n) = 1s(n) — ps(n)Ag**(n).
The next result, characterizing first-order differendeg:* (i), follows immediately.
Lemma 5.2 TermsAg®S(i), fori € N101} are characterized by the equations
(0 + X+ ps(1)Ag*3(1) = 15(1) + AMAg>5(2)
(0 + X+ s (i) Ag®S (i) = Alg(i) 4+ ps(i — 1)Ag*¥ (i — 1) + AMAg*¥(i+1), 2<i<n-—1
(0 + A + s (n) Ag*5(n) = Alg(n) + ps(n — 1)Ag*™5(n — 1).

We can now give the evaluation equations for discounted imalrgrorkloads.

Lemma 5.3 Discounted marginal workloads®° (i), for i € N10:1}, are characterized by the equations

(o + A ps (L) (1) = a + 25 (2)
(4 A+ ps (D) w* (i) = a + ps(i = D™ (i = 1) + w5 (i +1), 2<i<n—1
(a+ A+ ps(n)wS (n) = a + A+ ps(n — Lw™5 (n - 1),

Proof. The result follows immediately from identity (35) and Lera®.2. O

We next turn attention to discounted marginal casts (i), for i ¢ N{%!} andS € .#. From their
definition in (9) and uniformization we readily obtain

(i) = pA fo5 (i), (36)

Proceeding as before, we next state the standard evaleafi@tions for theg % (i)’s.
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Lemma 5.4 Discounted cost measurg§-° (i), fori € N, are characterized by the equations
af®(0) = AAf*5(1)
afoS(i) = ci — pus(D)AF¥S (@) + AAf*S(i4+1),1<i<n—1
af S (n) = en + A — ps(m) AL (n).
The next result, characterizing first-order differendes*(3), follows immediately.
Lemma 5.5 TermsA f*5(i), fori € N10:1}, are characterized by the equations
(a+ A+ ps(D)AF¥I(1) = ¢+ ANAF*5(2)
(@4 A4 us())AfS() = c+ ps(i — DAL — 1) + AAfS(i+1), 2<i<n
(@ + A+ pus(n)AF*S(n) = ¢+ A+ ps(n — DAS*S(n — 1).
We can now give the evaluation equations for discounted imalrgosts.

Lemma 5.6 Discounted marginal costs (i), fori € N{%!} are characterized by the equations

(a+ A+ ps(1)e™5(1) = e+ Ac™5(2)
(o A+ ps (D) e (i) = ep+ ps (i = 1)@ = 1) + A (i +1), 2<i<n—1
(- A+ ps(n)eS (n) = (e + rA)p + ps(n — 1)eS(n - 1).

Proof. The result follows immediately from identity (36) and Lera®.5. O

5.1.1 Discounted marginal workloads: calculation and proprties

We next set out to calculate discounted marginal workloadd,to establish their required properties.

We will develop a recursion to solve the evaluation equationLemma 5.3 for every active-state set
S(4), with 1 < j < n + 1 (recall that we writeS(n + 1) = S(0) = N{%}). Notice that the casg = 1
is trivial, sinceS(1) = () and hences®(M) (i) = 1. For other cases, calculations will proceed by upward
recursion ory. We start with the equations fgr= 2

=a+ )\wo"s(z)@)
= a + pw*S@ (1) + w53 (3)
=a+ @ (i4+1), 3<i<n-1

(@+ A+ w53 (1
(o + Vw53 (2
(OL + )\) a,5(2) (’L

(a+Nw @ (n) =a+ A,
whose solution is
A
wa,S(Q)(l) _ ( + ) , wOl,S(Q) (2) =1+ ‘u#
(o + ) + (a+ N +ap (37)
w3 (i) =1, 3<i<n

Notice that it suffices to know the value pivottermw®:5(2)(2), from which remaining terma-5(2) ()
are readily calculated. Similarly, if for a given< j < n pivot termw®5\) (j) were available, from the
remaining equations fa$(;) we could readily calculate remaining terma&-5U) (4). Noting further that

w*S () =1, j+1<i<n. (38)
Thus, if we could represent pivat*S+1) (5 + 1) in terms of previous pivoi®5() (5), for2 < j < n — 1,
such relations would furnish the backbone of a recursioratoutate all marginal workloads®-(/) (7) for
2 < j < n. To complete the calculations, we will need a further relatbetween pivotu“vs(") (n) and

the last pivot, which we take to be>(+1)(n). Again, from the latter we easily obtain remaining terms
wa,S(n—ﬁ-l)(i).
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We next set out to relate successive pivots, along the lislesrfed before in the loss-sensitive case. We
will use the following vectors: fo2 < j <n+ 1, let

wi & [pSU)(1) ... wa,sm(j_l)f

« 1+)\wo"s(j)(j)
bi2)atA+p a+A+p
e A

€51 |f2§j§n

1+ en if j=n+1;
At Atp atrtp J

and, for2 < j < n, let
WL [wesSEHI(1) o eSGHD (1))
w ST (5) — w50 () } e 1.
a+A+pu I
Let us further introduce, fat < j < n + 1, the square matrix of dimensign- 1

0 A
w0 A

BjAbj+)\{

Jj A 1 _
a+A+p L0 A
uo 0
with B2 £ 0. The next result reformulates some equations in Lemma 5.3.
Lemma 5.7
@ w/ =bl +B/w/, 2<j<n+1.
(b) W/ =b/ + Biwd, 2<j<n.
To proceed, we introduce coefficients(2), . .., ¢*(n + 1), defined by
1 if j =2

q*(j) = (39)

det (I — BY)
det (I —Bi—1)
The following result is equivalent to Lemma 4.8.

if3<j<n+l1.

Lemma 5.8 Termsg® () are well defined, and satisfy the following properties:
(@) ¢*(j) >0,for2<j<n+1.

(b) They can be computed by upward recursion, sef@) = 1 and

Ap
() =1- 3<j<n+l
) @irtpie(_1 °=/=nt

AT e <j<
© Foxfy <¢"U) <l 3<j<n+l
We are now ready to relate successive pivots.

Lemma5.9

(@+A+p)q*(j+1)—p

SO +1) =1+
b U = e N et A+ G +1) —

wSU)(j), 2<j<n-—1,

and
(a+A+p)g*(n+1)

wa,S(n-{-l) (n) _

(n)
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Proof. Fix2 < j <n —1. By Lemma5.7, we have

AMuw* S0+ () — w0 ) }

W —wl = (I-B/) (b —b/) = oy

(I — Bj)ilej_l. (40)

Now, noting that the element in positi¢f—1, j—1) of matrix (I — BJ')71 isdet (I—B7~!) /det (I - BY),
which by definition equal$/q¢“(j), it follows from (40) that

A {wa,S(jJrl)(j) — wa-,S(j)(j)}

0) at AT (41)

w* St (j — 1) — w30 (j 1) =

We further have the equations (cf. Lemma 5.3 and (38)

(a+ Nw*9) (j) = a + A+ pw*SV (5 - 1)
(a4 A+ w50t (5) = o 4 pw*SUTD (= 1) 4+ Mw®50HD (5 4 1) (42)
(a 4+ Nw*S0D (5 1) = a + A 4 pw> S0+ (4).
Now, from (41)—(42) and Lemma 5.8(b) we obtain

(a+A+p)g*(G+1)—p
(a+N)(a+A+p)g*(j+1)— A

wsSEHD (G 1 1) =14 w5 (),

as required.
To obtain the relation between the last two pivots, we usethmtions
A {weS D (n) — S (n)}
q*(n) a+A+p
(a 4+ Nw* ™ (n) = a + X 4 pw*¥™ (n - 1)
(@+ A+ w5 () = @+ A 4 ™3 (n — 1),

wa,S(nJrl) (n . 1) o wa,S(n) (n o 1) —

from which we get, using again Lemma 5.8(b),

wa,S(nJrl)(n) _ (OL +A+ /L) qa(n + 1) — :uwa.,S(n) (TL)
(@+A+p)g(n+1)

This completes the proof. |

We can now give a complete recursion for calculating distedimarginal workloads, as shown in Figure
3. Figure 4 further clarifies the recursion, showing by agdke directions in which calculations proceed,
and enclosing in boxes the pivot terms.

Proposition 5.10 Discounted marginal workloads®-° (i), fori € N1%} andS € .Z, are calculated by
the recursion shown in Figure 3.

Proof. The result follows directly from Lemmas 5.3 and 5.9. O

We next use the above to establish required properties obdliged marginal workloads. Figure 4 illus-
trates the inequalities presented in the following result.

Lemma 5.11 Discounted marginal workloads satisfy the following inalities:

(@) w*SU)(5) > 1,for2 < j < n, andw®S"+1 (n) > 0.
(b) w*SW) (i) > w*SUtD(;), for2 < j <nandl <i < j.
(€) w*SW (i) =1,fort1<j<n—1landj+1<i<n.

(d) wS () >0, 1<i<n.
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Calculation of w*SM (i)s: w*SM (i) =1, 1<i<n
Calculation of w™*®@) (iy's: w5 (i) =1, 3<i<n

a—+ A

a4  w>5?)(2)
(@+ A" +ap’

(1) = a4 A+ p

w5 (2) =1+ p

Calculation of w5 (i)'s, for j = 3ton: w*SW (i) =1, j+1<i<n

(@+A+p)q*() —p
(a+A) (a+ A+ p)g*(j) — A

WSO () =1+ p w00 (j 1)

«.5() ¢+ A+ A sy
WS (j — 1) = . {w SG) () — 1}
, — S (i 4+ 1) = MwSW (£ 2
WS (j) = a+ (a+ X+ p)w (i+1)—w (i + X l<i<j—2
7!
Calculation of w5+ (;)'s:
wa,S(n+1)(n) _ (a +A+ M) qa(n + 1) — IU/wa,S(n) (n)
(@+A+p)g*(n+1)
_ a,S(n+1)
wa,S(nJrl) (n o 1) _ (Oé + ,LL) + (Oé +A+ M)w (n)
w
_ a,S(n+1)(; _ a,S(n+1) (;
wa,S(nJrl)(i): a+ (a+ A+ pw (i+1)—w (Z+2),1§i§n—2
7!

Figure 3: Marginal workloads: recursive calculation.

1> w¥@a) > . > w1 > w>S (1) (1)
I T T

1 < |w@@2)| > > weSM2) > eShih(2)

N\
1 1 < > weS)(3) > w3 (F1)(3)
N\ I i
1 1 1 < |uS™m) | > = |weS0 ()

Figure 4: Marginal workloads: directions of calculatiomslanequalities.
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Proof. (a) This part follows by upward induction ghvia (37) and Lemmas 5.8(a) and 5.9.
(b) Fix2 < j <n.Inthecas® < j <n — 1, we have

M usS0 ) —wesSi ()

I —w I-B/) e
W at A tp ( ) e
_ w56 (5) (L B)-te,
T (at At (N (@t A+ p) (G +1) = M) 7
>0,

where we have used Lemma 5.7, the identity (which followslitgdrom (41)—(42))

0, SGHL) (5 _ oSG 5y — ap a,5(j) (;
v (7) = w™27() @t N (@AW @G+1) - (7)

)

Lemma 5.8(c) and part (a).
Arguing similarly, in the cas¢ = n we have

B A {wa,S(n) (n> o wa,S(n+1) (TL)}
N a+ A+
a,S(n)
— )‘Mw 2 (n) (I _ ]_)’n)—len_1
(@+A4+p)"q¢*(n+1)
> 0,

n oSn
— W

w (I-B") e,

where we have used the identity

a,S(n+1) _,e8(n) — K a,S(n)
w (n) —w (n) Ry 1)w (n).

We have thus shown that
w0 (3) > w0t () 1<i<j—1.

Further, we obtain from (41) and the inequalities just proetw® () (7) > w5+ (5), as required.
(c) This part follows immediately from the evaluation eqoas.
(d) We have

Wn+1 _ (I _ Bn+1)—1bn+1 > 0,

as required. This completes the proof. |
We can now give the main result on discounted marginal waid$o

Proposition 5.12 Discounted marginal workloads®® (i) are positive, fori ¢ N{*1} andS € .Z.

Proof. The result follows immediately from the inequalities addrtities in Lemma 5.11, as illustrated in
Figure 4. |

5.1.2 Discounted marginal costs: calculation

We next set out to calculate the required discounted margosisc®-“ (i), proceeding similarly as before
for discounted marginal workloads. Orpyvot termsc®50) (), for 1 < j < n, are required for the PCL-
indexability analysis. We next develop a recursion to dakeuthem, along the lines followed above to
calculate thay® 50 (5)’s.

We start by formulating the system of evaluation equatiorissmma 5.6 forj = 1:

(e + NSV (@) = e+ AW (i 4+1), 1<i<n-—1
(o + XD () = (¢4 rA)p.

We thus obtain the first pivot, as

@S (1) = % {1 (aiQn} +rp <aiA>n. (43)
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The corresponding system of evaluation equationg fer2 is

(a4 X+ )@ 1) = cu+ 2@ (2)
(a+ M@ (2) = cp+ pc®@ (1) + Ae5@(3)

(a+ NP =eu+ AP (i+1), 3<i<n—1
(a+ )P (n) = (c+rA)p,
whence we obtain the second pivot
£53)(2) = a+A+2u Ao+ X+ p) 52 (3), (a4)

cp
(@+N’+ap  (a+ N +au

where we use the auxiliary term

cu A n—2 A n—2
CmS(Z)(S):E{l_(aJrA) }er(oum) '

The last identity is easily seen to extend to

n—j n—j
aSG (4= )y (A A 1<j<n-—1 4
c (J+1) a{ Y el o , 1<j<n—1, (45)

so that we have the downward recursion on auxiliary terms

Ca,S(nfl)(n) _ 99 + T;‘,u’
ca,u+ A (46)
aSW (G 41) = —— + =904 92) 1<j<n-—2
c G+1) P (J+2), 1<j<n
We next set out to relate successive pivots. Define the fatlpwectors. Foe < j < n, let
2 (S (1) ... S5 —1 T7 h! & °“ 4 e;_1,
[C () c (.7 )} a+)\+u a+)\+ﬂj1
) ) ) ~. _ @S+ (5) — ¢*S0) ()
& L [@SGEH (1) ... @SGHD (1)), R 2 ni 4 A S / j—1-
c [C () c (.] )}7 + oz—i—)\—i-,u e_]l
The next result reformulates some equations in Lemma 5.6.
Lemmab5.13For2 < j < n:
(@) ¢/ =hJ +BJc.
(b) @ =hJ + Bidl.
We are now ready to establish the required recursion on fBvots.
Lemma5.14
1) N A+p)g(G+1) —p (o ,

@ SEHD (5 4 1) = @56 (j 4 1) + (a+ @S5 (7) 2<j<n-1.
c (J+1) =" +1) P VY P S Py ey S e (), 2<j<n
Proof. Fix2 < j <n — 1. By Lemma 5.13, we have

- o AL eSGAD (5 _ e SG) ( _
¥ =(1-B) MW W)= {e () = D)} (I-B9)le;_;. (47)

at+A+p

Now, noting that the element in positi¢f—1, j—1) of matrix (I — BJ')71 isdet (I—B7~!) /det (I - BY),
which by definition equal$/q¢“(j), it follows from (47) that
1 A {cavs(j'i'l)(j) - ca,S(j)(j)}

@SGHD) (5 1) — 0S50 (5 1) =
c -1 —c (G—1 20 T

(48)
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We further have, in the cage< n — 2, the equations (cf. Lemma 4.6)
(a4 N)e* 5D (5) = cp 4 pe®39D (G — 1) + Ae>50 (5 4 1)
(a4 A+ )50t () = ep+ pe®™SUTD(j = 1) + Ae®SUTD (5 4+ 1)
(@ + eS0T (G4 1) = et pe™ 50 () 4 A 50H (4 2),
From the last four identities, (46) and Lemma 5.8(b), we iobta

u (@+A+p)g*(G+1)—
(@+A)(a+A+p)g*(+1) — A

Inthe casg = n — 1, we have the equations

@S0 (G4 1) = 90 (5 4 1) + 3@ ().

(a + )\) a,S(n—1) ( ) C,LL+,LLCO"S(H71)(TL7 2) + )\Ca,S(nfl)(n>
(@ + A+ e (n—1) = e+ pe5™ (n = 2) + Xe™50 (n)
(@ + M50 (n) = (e + rA)p+ peS™ (n - 1).
From these, (46), (48), and Lemma 5.8(b), we obtain

a,S(n) — ~a,S(n—1) (a +A+ ,U,) qa (n) —H a,S(n—1) 1
) = T e T N et pel) T

as required. This completes the proof. O

5.1.3 Discounted MPI

We next set out to establish PCE{)-indexability, and to calculate the discounted MPI. Wetdtg construct-
ing indexv®* (i) £ ¢S5 (3) Jw™50) (7) (cf. (11)).

Proposition 5.15 Indexv®*(#) is calculated by the following recursion:
clt A " A "
—q1- —_— fi=1
a{l (aM) }+T“<a+)\) "
v (i) = (49)

I/a"*(i o 1) - Ca,S(ifl)(i)
wa,S(i) (2)

ver(i—1) — if2<i<n.

Proof. We have, using:®°() (1) = 1 and (43),

- cSM1)  ep A" A"
VL) = weSM (1) E{l_ (a+)\) }+Tﬂ(a+)\) '

Further, for2 < i < n, using Lemmas 5.9 and 5.14, we obtain

ca,S(i) (’L)
WS (3)
a.S(i-1) (5) 4 (a+A+p)g*(i) —p @S(i-1)(; _ 1
R e e eV D VA
wa,S(z) (2)

(o2

v&r(i) =

a,S(i—1)(; (a+A+p)g*(i) — p 0 S(-1)(j _ 1)y (j — |
O e N e e m i)
wS () (4)
Ca,S(i—l)(,L-) + {wa,S(i) (’L) _ 1} l/a’*(i _ 1)
wS() (4)
l/a’*(i o 1) - Ca,S(i—l)(Z-)
wS () (4) ’

=v*¥*i—-1)—

as required. This completes the proof. O
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Proposition 5.16 The following inequalities hold (strictly iff > ar):
@) v** (i —1) > c%0-D(G), 2<i<n.
(b) ¥ (1) > v™*(2) > - > v (n).

Proof. We argue by upward induction anThe caseé = 2 follows from

o o A\ e—ar
V’(l)_C’S(l)(Q):(aJrA) arai=z?

Suppose now® 5= (; — 1) > =51 (4) for some2 < i < n — 1. Then, we can write

w0 (5) — 1 S(i
k(s o, S(—1)
+ eSO () @ {V (i—1)—c¢ (z)}

> Ca,S(i—l)(Z-) > Ca,S(i)(Z-+1)7

l/a’*(i) — ca,S(i—l) (’L)

where we have used the stated reformulation of (49), theciimuhypothesis and the fact thett5(—1) (;)
is nondecreasing ify which follows immediately from (45). This completes thdirction.

(b) This part follows directly from part (a) and Propositisri5.

In both parts it is readily seen that the inequalities atietsff ¢ > ar. This completes the proof. O

We can now give the main result of this section.
Theorem 5.17
(a) Ana-discount delay-sensitive class is PCE)-indexable, with MPL>* (7).
(b) The class isx-discount PCIL%)-indexable for anyy > 0 iff it is pure delay-sensitive:(> 0 = r).

Proof. (a) This part follows from Proposition 5.12(a) and Profiogi5.16(b).
(b) This part follows immediately from the above. i

It is insightful to consider the limit of discounted MP* () as the buffer sizes grows to infinity, for
fixedi. In the pure delay-sensitive case, it is also of interesotesider thamyopic indexdefined by

meoPic(i) £ lim av®™*(i).
a— 00

The following result gives simple expressions for both ting indices, which show corresponding as-
ymptotic relations with they rule.

Proposition 5.18
(@) limy,— oo v** (i) = cu/a, > 1.
(b) ™OPC(3) = cp, 1 <i <.

Proof. Both parts follow immediately by taking the correspondingts in Proposition 5.15(a). O

5.2 Bias criterion and MPI

In order to design appropriate indices for delay-senstiasses in average-criterion scheduling problem (3),
we draw on the above analysis via a vanishing discount apprimedefine the index

*(0\ A s k([ .
I/(Z)—il\nlol/ (1), 1<i<n. (50)
We will show next that index* (i) is well defined, and will derive it in closed form. We will finer
demonstrate that*(:) is indeed an MPI, relative to the bias criterion, as intraglinn Section 3.3.
To calculates* (i) we will draw on recursion (49) in Proposition 5.15, which cicterizes the discounted
MPI v**(3), letting the discount factos vanish. We will thus need to calculate the undiscountedtpivo
marginal workloads

w3 (3) 2 ii\nlowa’s(i) (i), 1<i<n,
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along with the undiscounted auxiliary marginal costs

SEDG) £ lim 30D (5), 2<i<n.
a\,0

The following result gives closed-form expressions forré? (i)’'s. Notice that we writgp 2 \/pu.
Lemma 5.19

(a) Termsw®( () are characterized by the recursian®(?) (1) = 1 and

. S(i-1)(; 1
wS(l)(i):1+7w g ), 2<1<n.
p

(b) The solution to such recursion is: far< i < n,
1-—pt .
i1 L ifp#1

: (L=p)p~!
i if p=1.

Proof. (a) The identityw™) (1) = 1 is trivial. Further, letting;(i) £ lim,~_o ¢® (i), we obtain from the first
identity in Lemma 5.9 that

w3 (; — 1)

: A+p)a(i) —p 1), :
S3) () — S(i—1) _
w>W (i) =1+ , w i—-1)=14———2 2<i<n,
© FXOT Wl — G=1) p
as required.
(b) This part follows immediately from part (a). |

We next calculate the required undiscounted auxiliary matgosts.

Lemma 5.20 .41
cs(i_l)(i) = cu +ru, 2<i<n.
p

Proof. We take limits in (45), using L'Hopital’s rule, to obtain

cs(i_l)(i) = lim co"s(i_l)(i)

a0
n—i+1 n—i+1
cl A A

= 1 _— —_

al\moa{ (aH) }+m(a+A)

n—1i+1
= + i,
as required. |

We are now ready to calculate indeX(s).
Proposition 5.21

() Indexv*(i) is calculated by the following recursion:
p +ru ifi=1
P

vi(i) =

if2<i<n.
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Figure 5: Discounted work-cost achievable performancereg: = 10, A = 0.9, u = 1,7 = 4, ¢ = 5,
a=0.1,0.01,0.001.

(b) The solution to such recursion is: far< i < n,

f{nLﬂ' p «}+w if p £ 1
p I—p 1-=p
V(i) =
i—1 .
CqnT 5 +ru if p=1.

Proof. (a) We have, taking the limit ™ 0 in the first identity in (49),

V' (1) = lim (1)

() o)

n
=c— +ru.
P

Further, the stated recursion follows immediately frontisinterpart in (49).
(b) The result is readily verified by induction. O

Having calculated index*(i), we next argue that it is indeed an MPI, though not relativeheocon-
ventional average criterion in Section 3.2. To gain insifgttus start by understanding how the discounted
work-cost achievable performance region changes as tlkeutis factor vanishes. Figure 5 displays such
region (appropriately scaled) in a specific instance unlderdiscount factor values = 0.1,0.01,0.001.
Figure 5 illustrates the phenomenon which occurs in the igénkelay-sensitive case: asapproaches,
the achievable performance region®@#caled discounted work-cost paisg® ™, «f ™), spanned under
all admissible policiesr € II, collapses into a line segment, as shown in Figure 6. Therlettprecisely
the average work-cost achievable performance region,ngghhy average work-cost paitg™, f™). The
segment’s right end-point is achieved by thié: + 1)-active policy (work whenever there are jobs in the
queue), whereas its left end-point is achieved, not onlyhky{i)-active policy, fori = 1, ..., n, but by any
policy which idles the server when the buffer is full. Notibat any such policy induces a Markov chain with
absorbing state, while the other states are transient.
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Figure 6: Average work-cost achievable performance regiog 10, A = 0.9, u=1,r =4,¢c=5.

We thus see that the required regularity condition (14) efage work measurg” relative to.#-policies
does not hold. Therefore, the corresponding bandit is reree -indexable and the average MPI does not
exist (cf. Definition 3.5). In light of the insight furnishéy Figure 6, it is clear that averagewage problem
(13) is solved by th&'(n + 1)-active policy iffv < v*(n), whereas it is solved by any policy which idles the
server in state: iff v > v*(n).

To resolve such difficulty, we propose to use the concept&ast# -indexabilityandbias MPJ, introduced
in Section 3.3. The next result states thati) is indeed the MPI in such setting.

Theorem 5.22 A delay-sensitive class ¢ 0) is bias.Z-indexable, with bias MP* ().

Since our proof of Theorem 5.22 is based on new techniqueashwlnaw on our PCL-indexability theory,
we next outline the proof's main ingredients before preisgrit. The key tool will be the Workload Refor-
mulation lemma in Nifio-Mora [10, Lemma 4.8]. This reformids the difference between the discounted
v-wage problem (4)’s objective

va,ﬂ'(y) s f&,ﬂ' 4 l/ga"ﬂ—

under an arbitrary policy € II and under a giver¥ -policy, as a weighted sum of workload terms. Recall
that we assume the initial state to be drawn from an arbitistyibution —which is implicit in the notation—
assigning a positive probability to every state.

To state and deploy the result, we must introduce additinatdtion, as follows. For a policy € II,
actiona € {0,1} and statej € N, we definexr®*7(j) as the discounted state-action occupancy measure,
i.e. the expected total discounted time that actids taken in statg under policyr. We further define, for
an active-state s&t € .#, the aggregate marginal work measures

Wa,S,O,ﬂ A Zwa,S(j)xa,O,w(j), Wa,S,l,ﬂ A Z wo"s(j)zo‘*l’“(j).
jes jEN{OIN\S

We next state the Workload Reformulation lemma, as it apptiehe present model.

Lemma 5.23 For any state2 < i < n, policyr € II and wager € R, the discounted-wage problem’s
objective can be reformulated as

va,ﬂ'(y) _ va,S(i) (I/) + Wa,S(i),l,w{V . l/a’*(i)} + Wa,S(i).,O,ﬂ'{l/a,*(Z- - 1) . l/}

1—2 n
£ WESEIOTL () (4 D} 4 YD WSO (- 1) -2 (),
j=1 j=it+1
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We will further use the fact that the undiscounted marginadkioads

w’ (i) & li\mowo"s(i), 1<i<n,Se.Z, (51)
are well defined and positive. This follows immediately bitisg o = 0 in Figure 3's recursion.
Another ingredient in the proof is the observation that,emahy admissible policy which idles the
server in state:, the following limiting occupancy measures are finite:

T (5) & 1i\moxo"1’”(j) <oo, 1<j<n
. (52)
297 (5) £ lim 2*%7(j) <00, 1<j<n—1.
a0
Such result is an immediate consequence of the fact that amglesuch policy state is absorbing.
It follows readily from the above that, under any such poficyhe following limiting aggregate marginal
workloads are finite:

WSO 23S ()07 (j) = lim WSO <00, n¢ SeF
jeS e
J

wEbTE N W ()t (j) = im WS <00, S € Z.
FEN{011\ S oo

(53)

We next draw on the above to present a counterpartto LemrBae[-suited to establish bias optimality.

Lemma 5.24 For any state2 < i < n, wager € R and admissible policy which idles the server in state
n, it holds that:

lim v (v) — o3 (1) = WIDLT L, (i)} + WO L2 — 1) — v}

a\,0
1—2 n
+ Y WITEDOTLA () — v (G DY+ Y WD — 1) = v ()}
7j=1 j=i+1

Proof. We use Lemma 5.23, (50), and (51)—(53) to write, for any qailty ,

v () — oS0 () = WSSOI e ()} 4 WSEOT e 1) — p)
1—2 n

+ Z Wa,S(jJrl),O,ﬂ{Va,*(j) - l/a’*(j + 1)} + Z Wa,S(j),l,w{Va,*(j o 1) - l/a’*(j)}
j=1 j=i+1

— WS(i),l.jr{V _ V*(’L)} + WS(i),O,w{V*(i o 1) . l/}

i—2 n
+ D WETDOT () — (4 D+ 3 WD — 1) = v (j)
J=1 j=i+1

+o(1) asa\,0,
as required. O

We are now ready to give the proof of Theorem 5.22. See DefinRi8 and (19).

Proof of Theorem 5.22. Let2 < i < n, and suppose € [v*(¢),v*(i — 1)]. Letn be a stationary policy
which idles the server in state Then, we use Lemma 5.24 to obtain

lim v®™ (v) — v®3D () = WIDLT L, (i)} 4 WIOOT L2 — 1) — v}

a0
1—2 n
+ Y WIEEDOTLE(G) — v (G DY+ Y WD — 1) = v ()}
j=1 j=it1

>0

)

(54)
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since every term in the right-hand side of (54) is nonnegatit'thus follows that the5(¢)-active policy is
bias optimal for the/-wage problem.

Conversely, suppose th(i)-active policy is bias optimal for the-wage problem. Then, taking =
S(i+ 1) in Lemma 5.24, we obtain

0< hil%) va,S(i+1)(V> - va,S(i) (I/) _ wS(i) (i)xl’s(i+1)(i){y U (Z)}

SincewS® (i)2L 30+ (4) > 0, it follows thaty > v*(i).
Further, takingr = S(i — 1) in 5.24, we obtain

0< lim v S () — @S0 () = WSO (5 — )25 D (G — 1) {v* (i — 1) — v},

Sincew®® (i — 1)2%3E=D(; — 1) > 0, it follows thatv* (i — 1) > v. This completes the proof

5.3 Relation with the cu-rule

Since the optimal policy for the infinite-buffer delay-siive version of scheduling problems (2) and (3) is
the classicatu-rule, it is insightful to investigate the behaviour of thé’Mpolicies as buffer sizes grow.
Under the discounted criterion, Proposition 5.18(a) shihwasthe MPI policy does approach asymptoti-
cally thecy rule as buffer sizes grow.
The relation is not as straightforward under the averadgerarn. However, the bias MPI expression in
Proposition 5.21 reveals that the MPI policy will asymptatly approach theu-rule provided the following

condition holds:
ni n2 nK

VR
i.e. provided buffer sizes grow in fixed proportion to artiretes.

asni,...,ng — 00, (55)

6 Computational study

We next discuss the results of a computational study on thfenpeance of MPI policies across the range
of 32 two-class instances shown in Table 1. As shown in Fiduia some instances we vary the discount
factor «,, where the value« = 0 represents the average criterion. The results are preseniable 2. For
each instance, we report the optimal cgst the costfMP' under the corresponding MPI policy, and the cost
f"aveynder a naive policy. In the discounted case, such costesmond to the discounted cost measffté
scaled byw, for consistency with the limiting average casenaganishes. The naive policy uses the index
(cr + 7)1 for a delay-sensitive clags and it uses the static index . for a loss-sensitive class, breaking
ties with the dynamic index; i, (nr, — Ly (t)). The results have been obtained by solving the correspgndin
dynamic programming or evaluation equations, via a Matiaplémentation by the author.

Notice that instances 1-9 are pure loss-sensitive, inegah@—21 are pure delay-sensitive, and instances
22-32 are mixed. Further, instances are based on the examfitgure 1 of Kim and Van Oyen [4].

The results reported in Table 2 show that the MPI policy ig+ogdimal in every instance, and often even
optimal, and it significantly outperforms the naive polioymost instances. Only in instances 21 and 29 does
the naive policy slightly outperform the MPI policy.

We have further compared for every instance the structutiesodptimal policy with that of the MPI and
the naive policies. We have found that in instances where tlasses are delay-sensitive, the optimal policy
is consistent with the MPI policy in that both are represéiitg an switching curve which is nondecreasing
in the queue length@,i2). See, e.g. Figure 7, which displays the structure of thevggitithe MPI and the
naive policy for instance 8, where a square box means thatequis served, and a star means that qugue
is served.

In instances where both classes are delay-sensitive, leowewe might be tempted to conjecture that
optimal policies are consistent with the state orderinglsioed by MPI policies. However, such is not the
case in general, as illustrated by Figure 8 on instance 14.
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Instance n A I c r «

1 (2,1) (0.8,0.5) (1,1.2) (0,0) 1,2 0.5
2 (10,10) (0.8,0.5) (1,1.2) (0,0) (1,2 0.p
3 (10,10) (0.8,0.5) (1,1.2) (0,0) (1,2 0.L
4 (10,10) (0.8,0.5) (1,1.2) (0, 0) (1,2) 0.01
5 (10,10) (0.8,0.5) (1,1.2) (0, 0) (1,2 0
6 (10,10) (0.8,0.5) (1,2 (0,0) (2,05) 0.5
7 (10,10) (0.8,0.5) (1,2 (0,0) (1,0.5) oO0.1L
8 (10,10) (0.8,0.5) (1,2 (0,0) (1,0.5) 0.01
9 (10,10) (0.8,0.5) (1,2 (0,0) (1,0.5) 0
10 (5,5) (1,0.4) 2,1) (1.1,2) (0,0) 0.5
11 (5,5) (1,0.4) 2,1) (1.1,2) (0,0) 0.1
12 (5,5) (1,0.4) 2,1) (1.1,2) (0,00 o0.01
13 (5,5) (1,0.4) 2,1) (1.1,2) (0,0) 0
14 (10,10) (1,0.4) (2,1) (1.1,2 (0,0) 0.5
15 (10,10) (1,0.4) 2,1) (1.1,2) (0,0) 0.1
16 (10,10) (1,0.4) 2,1) (1.1,2) (0,00 0.01
17 (10,10) (1,0.4) 2,1) (1.1,2) (0,0) 0
18 (20,10) (0.3,0.1) (1,1 (1.1,1) (0,0) 0.b
19 (20,10) (0.3,0.1) (1,1 (1.1,1) (0,0) 0.1
20 (20,10) (0.3,0.1) (1,1 (1.1,1) (0,00 0.01
21 (10,10) (0.3,0.1) (1,1 (1.12,1) 0,0) 0
22 (10,10) (0.8,0.3) (1,2 (0,0.4) (1,0 0.6
23 (10,10) (0.8,0.3) (1,2 (0,0.4) (1,0 0.1
24 (10,10) (0.8,0.3) (1,2 (0,0.4) (1,0) 0.01
25 (10,10) (0.8,0.3) (1,2 (0,0.4) (1,0) 0
26 (10,10) (0.3,0.7) (2,2) (1.01,1) (10,10) 1
27 (20,10) (0.3,0.7) (2,2) (1.01,1) (10,120) 05
28 (10,10) (0.3,0.7) (2,2) (1.01,1) (10,120) 0J2
29 (20,10) (0.3,0.7) (2,2) (1.01,1) (10,120) o021
30 (20,10) (0.3,0.7) (2,2) (1.01,1) (10,120) O0.p5
31 (20,10) (0.3,0.7) (2,2) (1.01,1) (10,120) O0.p2
32 (10,10) (0.3,0.7) (2,2) (1.01,1) (10,10) @

12

012345678 910
i1

Table 1: Cases investigated.
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Figure 7: Instance 8: structure of optimal, MPI and naiveqies.
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Instance f* fMPI fnaNe
1 0.7844  0.7844  0.7844
2 0.1211  0.1211  0.2007
3 0.1338  0.1340  0.2643
4 0.2083  0.2095  0.2481
5 0.2273  0.2370  0.2370
6 0.0728  0.0729  0.0731
7 0.0690  0.0692  0.0703
8 0.0817  0.0820  0.0825
9 0.0870  0.0873  0.0875
10 6.8987  6.9031 7.0784
11 5.2968  5.2991  6.1185
12 3.9894  3.9894  5.2446
13 3.7763  3.7763  5.0812
14 14.6226 14.6247 14.7759
15 11.7361 11.7446 12.9384
16 6.8651  6.8651  9.2980
17 5.7525  5.7525  8.1041
18 9.2155  9.2155  9.2314
19 5.9517  5.9898  6.0382
20 1.6257  1.6613  1.6667
21 0.7095  0.7220  0.7095
22 1.3088  1.3088  2.1302
23 0.5757  0.5757  2.2043
24 0.1872  0.1872  1.9814
25 0.1288  0.1288  1.8475
26 10.1600 10.1758 10.2461
27 8.5420  8.5480  8.5572
28 6.6019 6.6100  6.6112
29 4.8911 5.0195  4.9462
30 3.3978  3.4227  3.4227
31 1.5761 1.5767  1.5767
32 1.0014 1.0014 1.0014

Table 2: Results of computational experiments.
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Figure 8: Instance 14: structure of optimal, MPI and naiviicpes.
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