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Abstract 
We address the problem of scheduling a multiclass M/M/1 queue with a finite dedicated 
buffer for each class. Some classes are delay-sensitive, modeling real-time traffic (e.g. 
voice, video), whereas others are loss-sensitive, modeling nonreal-time traffic (e.g. 
data). Different levels of tolerance to delay and loss are modeled by appropriate linear 
holding cost and rejection cost rates. The goal is to design well-grounded and tractable 
scheduling policies which nearly minimize the discounted or long-run average expected 
cost objective. We develop new dynamic index policies, prescribing to give higher 
service priority to classes with larger index values, where the priority index of a class 
measures the marginal productivity of work at its current state.  To construct the 
indices, we deploy the theory of marginal productivity indices (MPIs) and PCL-
indexability we have introduced in recent work, and further introduce significant 
extensions to such theory motivated by phenomena observed in the model of concern. 
The MPI policies are shown to furnish new, insightful structural results, and to exhibit a 
nearly optimal performance in a computational study. 
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1 Introduction

Motivated by applications involving the dynamic control ofheterogeneous traffic flows vying for access to
service resources, e.g. in manufacturing or computer-communication systems, researchers have investigated
in a variety of models the problem of finding a policy for dynamic scheduling of a multiclass queue which
optimizes a performance objective of concern. Due to analytical tractability, most of such studies have ad-
dressed models where queues have infinite buffer space, so that the objective to optimize is a measure of
average delay or congestion. Fruits of such work include theoptimality of static index policiesin a variety
of settings. The earliest result in such vein concerns the optimal scheduling of a multiclassM/M/1 queue,
where traffic of classk has arrival and service ratesλk andµk, respectively, and accrues holding costs at rate
ck per unit time per customer in system. It is proven in Cox and Smith [2] that the now classiccµ-rule, which
services at each decision epoch a nonempty classk attaining the largest value ofindexνk = ckµk, minimizes
the (long-run) average cost rate.

In contrast, corresponding models where queues have finite buffer space have received remarkably scarce
research attention, despite their obviously higher practical relevance. Finite buffers bring the possibility of
customer losses, as arrivals find buffers full. This createscomplicated boundary effects, which typically
render such models intractable to analysis. Thus, e.g. in the variation on the above model where there is a
finite dedicated buffer for each class, even the structure ofthe optimal policy remains elusive, being known
only in exceptional cases.

The incorporation of linear holding cost ratesck and rejection cost ratesrk, along with finite buffers
of sizenk for each traffic classk, allows us to model different relative sensitivities to delays and losses.
This is particularly relevant in models for modern computer-communication networks. Thus, traditional
Internet traffic, such as e-mail and FTP, is primarilyloss-sensitive, tolerating relatively long delays, and hence
their requirements are accommodated by provisioning long buffers. In contrast, emerging Internet traffic,
generated by interactive and multimedia applications suchas IP telephony, video conferencing and networked
games, is primarilydelay-sensitive, having a higher relative tolerance for losses. Their requirements thus call
for use of shorter buffers. This raises the issue of how to design tractable policies for dynamically scheduling
a given mix of traffic types, consistently with performance objectives.

In this paper we investigate such issue in the setting of a multiclassM/M/1 queue with finite dedicated
buffers, under both discounted and average cost criteria. Before discussing our approach and results, we next
briefly review the scarce previous work on such model. Militoand Levy [6] consider thepure loss-sensitive
casewhererk > 0 = ck for each classk in a two-class system, under the symmetry conditionµ1 = µ2. They
show that a discount-optimal policy is characterized by a monotone increasing switching curve. Namely, if
it is optimal to serve class1 in state(i1, i2) (joint queue length), then so it is to serve it in state(i1 + 1, i2),
and similarly for class2. Sparaggis et al. [12] assume the stronger symmetry condition that rejection costs,
arrival and service rates are each identical across classes(while the amount of buffer space may differ by
class). They prove that thedynamic index rulewhich services at each decision epoch a nonempty class with
the least number of empty buffer spacesminimizes the average loss rate. See also Wasserman and Bambos
[13]. Kim and Van Oyen [4] extend Milito and Levy’s [6] resultto the case where the cost parameters of each
of two classesk satisfy the condition

αrk ≥ ck, (1)

whereα > 0 is the exponential discount factor. Condition (1) will alsoplay a central role in our results. It
means that the cost of rejecting a customer (rk) is greater than or equal to the total discounted cost of holding
it forever in the system (ck/α). Kim and Van Oyen [4] further show by examples that, if condition (1) is
violated, the optimal policy need not be given by a monotone increasing switching curve.

Our approach is based on viewing the model as a special case ofthe restless bandit problem. This
concerns the optimal dynamic scheduling of a collection of stochastic projects, modeled asrestless bandits,
i.e. binary-action (work/rest) Markov decision processes(MDPs), which can change state under either action,
and at most one of which can be engaged at a time. While the nonrestless case —where rested projects do
not change state— is solved optimally by Gittins’ [3] index policy, the restless case is, in general, intractable.
Whittle [14] introduced an index for restless bandits, which reduces to Gittins’ in the nonrestless case, and
proposed as a heuristic the corresponding index policy: work at each time on a bandit with largest index
value. However, theWhittle indexonly exists for a restricted class of bandits, termedindexable. In Niño-
Mora [7, 8, 10] we have developed a theory ofindexabilityfor restless bandits, which includes: the general
concept of a bandit’smarginal productivity index (MPI), which significantly extends the scope of the Whittle
index; an intuitive characterization of indexable banditsas those obeying the economics law of diminishing
marginal returns (to work), consistently with a family of threshold policies; sufficient indexability conditions,
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based on satisfaction ofpartial conservation laws (PCLs); and a one-pass index-computing algorithm. In
short, a bandit’s MPI measures the marginal value of work at each state. Thus, the MPI policy seeks to
engage at each time a bandit where work is most productive, using the MPI as a proxy productivity measure.
In this paper we both draw on such theory to obtain new MPI policies for scheduling a multiclass queue with
finite dedicated buffers, and extend it to accommodate new phenomena observed in the model.

We next outline and discuss our results. Our analyses lead usto consider the following (not mutually
exclusive) five types of traffic classes, relative to a discount factorα ≥ 0: we say that a classk is

• α-discount loss-sensitiveif rk > 0 andαrk ≥ ck;

• pure loss-sensitiveif rk > 0 = ck;

• α-discount delay-sensitiveif αrk ≤ ck > 0;

• delay-sensitiveif ck > 0;

• pure delay-sensitiveif ck > 0 = rk.

Consider anα-discount loss-sensitive classk, with α > 0. We establish that it satisfies ourPCL-
indexabilityconditions, and give a recursion for calculating itsdiscounted MPIνα,∗

k (ik), as a function of
thenumber of empty buffer spacesik, along with a strong characterization of the MPI as an optimal marginal
productivity rate relative to active-state sets. The MPIνα,∗

k (ik) is nonincreasing inik and does not depend on
the buffer size, consistently with the optimal least-empty-buffer-spaces rule in the symmetric case considered
in Sparaggis et al. [12].

In the pure loss-sensitive case, we further consider the average criterion. We show that, as discount factor
α vanishes, MPIνα,∗

k (ik) converges to thestatic indexν∗
k(ik) ≡ rkµk. This raises the issue of how to break

ties when using the latter in a multiclass model, which we resolve by introducing thesecond-order MPI
γ∗

k(ik), based on the McLaurin expansionνα,∗
k (ik) = rkµk − αγ∗

k(ik) + o(α) asα vanishes. We obtain
γ∗

k(ik) in closed form. Thus, among classes attaining a tie in first-order MPIrkµk, higher priority is given to
classes withsmallervalues of second-order MPIγ∗

k(ik).
For anα-discount delay-sensitive class, withα > 0, we establish PCL-indexability and give a recursion

for calculating the discounted MPIνα,∗
k (ik), where nowik is thenumber of jobs in system. In what might

appear at first sight to be a counterintuitive result, the MPIis nonincreasingin ik. Thus, in a multiclass model
with such classes scheduled under the MPI policy, ceteris paribus, higher priority is given toshorterqueues.

In the delay-sensitive caseck > 0, in order to obtain an index suitable for the average criterion, we use
again a vanishing discount approach. We show that the discounted MPIνα,∗

k (ik) converges to a limiting index
ν∗

k(ik) asα vanishes, and obtain the latter in closed form. We further clarify that such limiting index is indeed
an MPI, relative to a new type of indexability introduced in this paper. We term the latterbias indexability,
as it emerges from consideration of Blackwell’s [1] bias criterion for MDPs.

We interpret the opposite orderings induced on the state space by the MPIs of loss-sensitive and delay-
sensitive classes in terms of a new structural insight. The fact that the MPI of a loss-sensitive class increases
with the queue length means that so does its marginal productivity of work. Namely,reactive work(as the
queue gets closer to full) is more productive thanpreventive work(as it gets closer to empty). In contrast, for
a delay-sensitive class preventive work is more productivethan reactive work. The intuition behind the latter
result is that, when the buffer is full, the delay cost cannotget any worse, and thus larger marginal rates of
cost reduction per unit work are achieved as the queue gets shorter.

We obtain relations between the MPI of delay-sensitive classesk and thecµ-rule’s indexckµk. We thus
show that, as the buffer sizenk grows to infinity, the discounted MPIνα,∗

k (ik) converges tockµk/α. We
further show that, in the pure delay-sensitive case, themyopic indexdefined as the limit ofανα,∗

k (ik) asα
grows to infinity is preciselyckµk. Finally, we show that, in a multiclass model where classes are delay-
sensitive, thebias MPI scheduling policy gets closer to thecµ rule as buffer sizes grow to infinity in fixed
proportion to their arrival rates.

We report results of a computational study on the performance of the MPI policies on two-class instances,
showing that they are near optimal in every case and often outperform significantly a naive benchmark pol-
icy. We further compare the optimal policy’s structure withthe MPI policy’s, finding that the two are often
remarkably similar. However, the examples reveal that the structure of optimal policies in the multiclass
delay-sensitive case need not be consistent with the state ordering induced by the MPI.

The rest of the paper is organized as follows. Section 2 describes the queueing model and the correspond-
ing scheduling problems of concern. Section 3 reviews our theory of MPIs and PCL-indexability, in a form
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adapted to the model at hand. It further introduces the new concepts of bias MPI and bias PCL-indexability.
Section 4 carries out a PCL-indexability analysis for a loss-sensitive class, under discounted and average
criteria. Section 5 carries out a corresponding analysis for a delay-sensitive class, under discounted and bias
criteria. Finally, Section 6 reports the results of a computational study on the performance of the proposed
MPI policies.

2 Model

We consider a multiclassM/M/1 queue with a finite dedicated buffer of sizenk ≥ 1 for each classk ∈ K ,

{1, . . . , K}. Classk jobs arrive as a Poisson process with rateλk, and their service times are exponentially
distributed with rateµk. Interarrival and service times within and across classes are mutually independent.
Upon a job’s arrival, if its class’ buffer is not full it joinsthe corresponding queue, and is lost otherwise. We
denote byLk(t) the number of classk jobs in system at timet ≥ 0.

The system controller can choose the nonempty class to be serviced at each job arrival or departure epoch
(assume, for concreteness, that jobs within a class are served in FIFO order). Such choices are represented by
binaryaction processesak(t), whereak(t) = 1 if the server is working on classk at timet, andak(t) = 0
otherwise. We thus have the sample-path service-capacity constraint

∑

k∈K

ak(t) ≤ 1, t ≥ 0.

Action choice is dynamically prescribed by ascheduling policyπ. This is chosen from the spaceΠ
of admissible policies, which arenonanticipativeand allowpreemptions. Thus, service of a job can be
interrupted at any time, and resumed later at the point of interruption.

Regarding the economic structure, the system incurs linearholding and/or rejection costs separably across
classes. Classk incursholding costsat rateck ≥ 0 per unit time per job in system; it further incursrejection
costs, at raterk ≥ 0 per job lost, withck + rk > 0.

It is of interest to consider the following problems: (i) finda discount-optimal scheduling policy,

min
π∈Π

E
π

[∫ ∞

0

e−αt
∑

k∈K

{
ckLk(t) + rkλk1{Lk(t)=nk}

}
dt

]
, (2)

for a given discount factorα > 0; and (ii) find an average-optimal scheduling policy,

min
π∈Π

lim sup
T→∞

1

T
E

π

[∫ T

0

∑

k∈K

{
ckLk(t) + rkλk1{Lk(t)=nk}

}
dt

]
. (3)

Given the likely computational intractability of problems(2) and (3), we will not seek to obtain their
optimal policies. Instead, our goal will be to design well-grounded and tractable dynamic index policies.

3 Restless bandits: Indexability, PCL-indexability and the MPI

We briefly review in this section the key concepts and resultsof the indexability theory for restless bandits
developed in Niño-Mora [7, 8, 10], in a simplified form adapted to the model of concern. We further extend
such theory, motivated by phenomena observed in the model’sanalyses.

Consider a single restless bandit, modeled as a continuous-time MDP whose stateX(t) evolves across
the finite state spaceN , {m0, . . . , mn}. Thestate orderingm0, . . . , mn will play a significant role in the
sequel. The state space is partitioned into the setN{0,1} , {m1, . . . , mn} of controllable states, where both
the active (a(t) = 1: work) and the passive (a(t) = 0: rest) actions are available; and theuncontrollable state
singletonN{0} , {m0}, where only the passive action is available. Holding costs are incurred continuously
over time, at the rate ofha(j) e per unit time while the bandit occupies statej and actiona prevails. Actions
are chosen through adoption of a policyπ, belonging in the classΠ of admissible policies, which are only
required to be nonanticipative.
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3.1 Discounted MPI

Consider the case where costs are continuously discounted over time at the exponential rateα > 0. To
evaluate the value of costs incurred under a policyπ ∈ Π, when starting at statemi, we use thediscounted
cost measure

fα,π(mi) , E
π
mi

[∫ ∞

0

e−αtha(t)(X(t)) dt

]
,

whereE
π
mi

[·] denotes the corresponding expectation.
We further evaluate the amount of work expended, via thediscounted work measure

gα,π(mi) , E
π
mi

[∫ ∞

0

e−αta(t) dt

]
.

To avoid distracting technical issues raised by the choice of initial state, we consider this to be drawn from
a distribution assigning a positive probabilityp(mi) > 0 to every statemi. We denote the corresponding cost
and work measures byfα,π andgα,π, respectively.

Suppose now that work is paid for at thewagerate ofν e per unit time. We will address thediscounted
ν-wage problem

min
π∈Π

fα,π + νgα,π, (4)

which is to find an admissible policy minimizing the discounted value of holding and working costs.
To solve problem (4), we will postulate (and then establish)that its optimal policies are ofthresholdtype

relative to state orderingm0, m1, . . . , mn, so that they prescribe to work in states “above” athreshold state,
and to rest otherwise. We represent the policy with threshold statemi by itsactive-state set

S(mi) ,






{mi+1, . . . , mn} if 0 ≤ i < n

∅ if i = n,

(5)

and refer to it as theS(mi)-active policy. The corresponding nestedactive-state set familyis

F , {S(m0), S(m1), . . . , S(mn)} .

We will henceforth refer to such policies asF -policies, writing e.g.fα,S , gα,S for S ∈ F .
We assume that work measuregα,π satisfies the following regularity condition relative toF -policies:

gα,S(mi−1) > gα,S(mi), 1 ≤ i ≤ n. (6)

i.e. work measuregα,S(mi) is decreasing ini.
We next define a key property based on the structure of optimalpolicies for problem (4) as theprevailing

wageν varies.

Definition 3.1 We say that the bandit isα-discountF -indexableif there exists anindexνα,∗ : N{0,1} → R,
termed thediscounted MPI, which is nondecreasing along the state ordering, i.e.

να,∗(m1) ≤ · · · ≤ να,∗(mn),

such that, for0 < i < n, theS(mi)-active policy is optimal for problem (4) iffν ∈ [να,∗(mi), ν
α,∗(mi+1)].

When it exists, the MPI gives an intuitively appealing rule to solve problem (4): it is optimal to work
on the bandit in statemi ∈ N{0,1} iff the latter’s MPI value lies at or above the prevailing wage, i.e. iff
να,∗(mi) ≥ ν. This suggests, drawing on the economic theory of optimal resource allocation, thatνα,∗(mi)
must measure themarginal productivity of work in statemi. Such is indeed the case, as established in
Niño-Mora [10]. In that paper we further prove the result that the bandit isF -indexable iff it obeys the
economicslaw of diminishing marginal returns(to work), consistently withF -policies. Namely, if one
considers theachievable work-cost performance regionspanned by points(gα,π, fα,π) asπ ranges overΠ, its
lower boundary (efficient frontier) is the piecewise linear and convex function obtained by linear interpolation
on points(gα,S(mi), fα,S(mi)). See Figure 5 for a concrete example in the setting of a delay-sensitive class.
The discounted MPI thus has the evaluation

να,∗(mi) =
fα,S(mi) − fα,S(mi−1)

gα,S(mi−1) − gα,S(mi)
, 1 ≤ i ≤ n. (7)
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PCL-indexability conditions

To establish indexability and calculate the MPI, we will deploy the sufficient indexability conditions intro-
duced and developed in Niño-Mora [7, 8, 10], based on satisfaction by performance measures of PCLs. We
will not discuss here the PCL framework. For our present purposes, it will suffice to formulate the relevant
PCL-indexability conditionsthat need be checked.

We assume that the original continuous-time MDP has been reformulated as a discrete-time MDP via
uniformization, so that actions need only be taken atdecision epochsgiven by a Poisson process with a valid
uniformization rateΛ. Given an actiona ∈ {0, 1} and an active-state setS ∈ F , denote by〈a, S〉 the policy
that takes actiona in the initial period (between decision epochs), and adopts theS-active policy thereafter.
For every controllable statemi ∈ N{0,1} and setS ∈ F , define thediscounted(mi, S)-marginal workload
by

wα,S(mi) , (α + Λ)
(
gα,〈1,S〉(mi) − gα,〈0,S〉(mi)

)
, (8)

i.e. wα,S(mi) measures the marginal rate of increase in work expended which results from working instead
of resting in the initial period, provided theS-active policy is adopted thereafter.

We analogously define thediscounted(mi, S)-marginal costby

cα,S(mi) , (α + Λ)
(
fα,〈0,S〉(mi) − fα,〈1,S〉(mi)

)
, (9)

i.e. cα,S(mi) measures the marginal rate of decrease in cost incurred which results from working instead of
resting in the initial period, provided theS-active policy is adopted thereafter.

Notice that the inclusion of factor(α + Λ) in (8) and (9) has the convenient effect of makingwα,S(mi)
andcα,S(mi) independent of the choice of uniformization rateΛ.

Define now thediscounted(mi, S)-marginal productivity rate, by

να,S(mi) ,
cα,S(mi)

wα,S(mi)
, (10)

provided the denominator does not vanish. Finally, defineindexνα,∗ : N{0,1} → R by

να,∗(mi) , να,S(mi−1)(mi) = να,S(mi)(mi), 1 ≤ i ≤ n, (11)

where the second identity in (11) is proven in Niño-Mora [8,10].
We next use the above to define a tractable class of bandits.

Definition 3.2 We say that the bandit isα-discount PCL(F )-indexableif the following holds:

(i) Positive marginal workloads:wα,S(mi) > 0, for mi ∈ N{0,1}, S ∈ F .

(ii) Monotone nondecreasing index:να,∗(m1) ≤ · · · ≤ να,∗(mn).

Notice that Definition 3.2(i) implies regularity condition(6). See Niño-Mora [8, 10]. We next state the
key result used to establish indexability, proven in Niño-Mora [7, 8, 10] in increasingly general settings.

Theorem 3.3 Discount PCL(F )-indexability implies discountF -indexability, with MPIνα,∗(mi).

In some models, as will be illustrated in this paper, we have found that marginal workloadswS(mj)(mi)
arewedge-shapedasj varies, attaining the minimum value at eitherj = i − 1 or j = i, i.e.

wα,S(m0)(mi) ≥ · · · ≥ wα,S(mi−1)(mi), w
α,S(mi)(mi) ≤ · · · ≤ wα,S(mn)(mi), 1 ≤ i ≤ n. (12)

Such property implies the following insightful characterization of the MPI, proven in Niño-Mora [8, 10].

Theorem 3.4 Suppose that the bandit isα-discount PCL(F )-indexable and condition(12)holds. Then

max
mi∈S∈F

να,S(mi) = να,∗(mi) = min
mi /∈S∈F

να,S(mi), mi ∈ N{0,1}.

Theorem 3.4 characterizes the MPI as an optimal marginal productivity rate relative toF -policies, in a
dual max-min relation.
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3.2 Average and second-order MPI

The MPI can be defined relative to generic cost and work measuresfπ andgπ, as discussed in Niño-Mora
[10]. Thus, under theaverage criterionwe take

fπ , lim sup
T→∞

1

T
E

π

[∫ T

0

ha(t)(X(t)) dt

]
and gπ , lim sup

T→∞

1

T
E

π

[∫ T

0

a(t) dt

]
,

where as above we assume the initial state to be drawn from an arbitrary positive probability mass function.
We can thus readily extend Definition 3.1 to define the concepts ofaverageF -indexabilityandaverage MPI
ν∗(mi), based on the structure of optimal policies for theaverageν-wage problem

min
π∈Π

fπ + νgπ. (13)

Similarly as for the discounted case, we assume that averagework measuregπ satisfies the following
regularity condition relative toF -policies:

gS(mi−1) > gS(mi), 1 ≤ i ≤ n. (14)

i.e. work measuregS(mi) is decreasing ini.

Definition 3.5 We say that the bandit isaverageF -indexableif there exists anindexν∗ : N{0,1} → R,
termed theaverage MPI, which is nondecreasing along the state ordering, i.e.

ν∗(m1) ≤ · · · ≤ ν∗(mn), (15)

such that, for0 < i < n, theS(mi)-active policyis optimal for problem (13) iffν ∈ [ν∗(mi), ν
∗(mi+1)].

The above PCL-indexability conditions are readily extended to the average criterion. Under the latter, we
use theaverage(mi, S)-marginal workload, average(mi, S)-marginal costandaverage(mi, S)-marginal
productivity rate, defined formi ∈ N{0,1} andS ∈ F by

wS(mi) , lim
T→∞

E
〈1,S〉
mi

[∫ T

0

a(t) dt

]
− E

〈0,S〉
mi

[∫ T

0

a(t) dt

]
= lim

α↘0
wα,S(mi),

cS(mi) , lim
T→∞

E
〈0,S〉
mi

[∫ T

0

ha(t) (X(t)) dt

]
− E

〈1,S〉
mi

[∫ T

0

ha(t) (X(t)) dt

]
= lim

α↘0
cα,S(mi),

and

νS(mi) ,
cS(mi)

wS(mi)
= lim

α↘0
να,S(mi),

respectively. We further defineindexν∗ : N{0,1} → R by

ν∗(mi) , νS(mi−1)(mi) = νS(mi)(mi) = lim
α↘0

να,∗(mi), mi ∈ N{0,1}. (16)

Notice that we have indicated the limiting relations between corresponding undiscounted and discounted
terms as the discount factor vanishes.

We can thus readily extend Definition 3.2 to define the conceptof average PCL(F )-indexablebandits,
and obtain the average-criterion counterparts of Theorems3.3 and 3.4.

Definition 3.6 We say that the bandit isaverage PCL(F )-indexableif the following holds:

(i) Positive marginal workloads:wS(mi) > 0, for mi ∈ N{0,1}, S ∈ F .

(ii) Monotone nondecreasing index:ν∗(m1) ≤ · · · ≤ ν∗(mn).

Theorem 3.7 Average PCL(F )-indexability implies averageF -indexability, with MPIν∗(mi).
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In some models, as will be illustrated in this paper, the average MPI is constant across states, i.e.ν∗(mi) ≡
ν∗ for mi ∈ N{0,1}. This raises the issue of how to discriminate between states, i.e. how to break ties, when
using an MPI-based scheduling policy in a multi-project setting, where the MPI of several bandits coincides.
We propose to resolve such issue by considering the second-order McLaurin expansion of the discounted
MPI as the discount factor vanishes,

να,∗(mi) = ν∗ − γ∗(mi)α + o(α), asα ↘ 0,

and then defining thesecond-order MPIby

γ∗(mi) , lim
α↘0

ν∗ − να,∗(mi)

α
, mi ∈ N{0,1}. (17)

Notice that the second-order MPI is monotone nonincreasingalong the state ordering, i.e.

γ∗(m1) ≥ γ∗(m2) ≥ · · · ≥ γ∗(mn).

3.3 Bias MPI

It is well known in MDP theory that the average-optimality criterion can beunderselective, in that there may
be multiple average-optimal policies. In the present setting, this can lead to nonexistence of the average MPI.

To deal with such phenomena, we introduce next the concepts of biasF -indexabilityandbias MPI, based
on Blackwell’s [1] more sensitivebias-optimality criterion. See Lewis and Puterman [5] for a survey of work
on the bias criterion in MDPs. Previously, we had introducedand deployed in Niño-Mora [10] the concepts
of average-biasF -indexabilityandaverage-bias MPI, based on mixing an average cost measure with a bias
work measure.

We assume that the bandit isα-discountF -indexable for allα close enough to0.

Definition 3.8 We say that the bandit isbiasF -indexableif there exists anindexν∗ : N{0,1} → R, termed
thebias MPI, which is nondecreasing along the state ordering, i.e.

ν∗(m1) ≤ · · · ≤ ν∗(mn), (18)

such that, for0 < i < n, theS(mi)-active policy isbias optimalfor (13) iff ν ∈ [ν∗(mi), ν
∗(mi+1)].

We will find it convenient to use the following definition of bias optimality, drawing on its relation with
0-discount optimality as established in Puterman [11, Theorem 10.1.6]: we say that a stationary policyS is
bias optimal forν-wage problem (13) if, for any average-optimal stationary policy π, it holds that

lim inf
α↘0

vα,π(ν) − vα,S(ν) ≥ 0. (19)

4 PCL-indexability analysis: loss-sensitive classes

We address in this section the PCL-indexability analysis for the restless bandit model corresponding to a
loss-sensitive class in isolation, i.e. anM/M/1/n queue with arrival and service ratesλ andµ, respectively,
subject to service control, with delay cost ratec ≥ 0 and rejection cost rater > 0 satisfyingαr ≥ c.

For such a class, we will find it convenient to define thestateby X(t) , n − L(t), thenumber of empty
buffer spaces. We will use the state orderingmi , n − i for 0 ≤ i ≤ n, so thatN , {n, n − 1, . . . , 0},
N{0,1} , {n− 1, . . . , 0}, N{0} , {n}, and the active-state sets inF are given byS(0) , ∅, and

S(i) , {i − 1, . . . , 0}, 1 ≤ i ≤ n.

In words,F -policies prescribe the server to work when the number of empty buffer spaces is small enough.

4.1 Discounted criterion

We start by laying the groundwork for calculations of discounted marginal workloads and costs. We use
uniformization to obtain an equivalent discrete-time MDP,where the state is sampled at epochs of a Poisson
process with rateΛ ≥ λ + µ, which include arrival and service completion instants, along with dummy
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transition epochs. The uniformized MDP’s state transitionprobability matrixPa = (pa
ij) under actiona ∈

{0, 1} is given by

pa
ij ,






λ/Λ if 0 ≤ j = i − 1 ≤ n − 1

(Λ − λ − µa)/Λ if 0 < j = i < n

(Λ − µa)/Λ if j = i = 0

(Λ − λ)/Λ if j = i = n

µa/Λ if 1 ≤ j = i + 1 ≤ n

0 otherwise.

Notice that we take both actions to have the same effect on uncontrollable staten.
The corresponding discrete-time discount factor isΛ/(α + Λ), and the discrete-time one-period cost rate

in statei is {c(n − i) + rλ1{i=0}}/(α + Λ).
Consider now discounted marginal workloadswα,S(i), for i ∈ N{0,1} andS ∈ F . From their definition

in (8) and uniformization we readily obtain

wα,S(i) = 1 + µ∆gα,S(i + 1), 0 ≤ i ≤ n − 1, (20)

where∆gα,S(i) , gα,S(i) − gα,S(i − 1). Hence, calculation of thewα,S(i)’s reduces to that of the
∆gα,S(i)’s. We thus start by characterizing work measuresgα,S(i). We denote below byµS(i) the effective
service rate in statei under theS-active policy, i.e. letting1S(i) be the indicator function ofS,

µS(i) , µ1S(i), 0 ≤ i ≤ n.

The next result gives the standard evaluation equations forthegα,S(i)’s, for fixedS ∈ F .

Lemma 4.1 Discounted work measuresgα,S(i), for i ∈ N , are characterized by the equations

αgα,S(0) = 1S(0) + µS(0)∆gα,S(1)

αgα,S(i) = 1S(i) − λ∆gα,S(i) + µS(i)∆gα,S(i + 1), 1 ≤ i ≤ n − 1

αgα,S(n) = −λ∆gα,S(n).

The next result, characterizing first-order differences∆gα,S(i), follows immediately.

Lemma 4.2 Terms∆gS(i), for 1 ≤ i ≤ n, are characterized by the equations

(α + λ + µS(0))∆gα,S(1) = ∆1S(1) + µS(1)∆gα,S(2)

(α + λ + µS(i − 1))∆gα,S(i) = ∆1S(i) + λ∆gα,S(i − 1) + µS(i)∆gα,S(i + 1), 2 ≤ i ≤ n − 1

(α + λ + µS(n − 1))∆gα,S(n) = −1S(n − 1) + λ∆gα,S(n − 1).

We can now give the evaluation equations for discounted marginal workloads.

Lemma 4.3 Marginal workloadswα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(0))wα,S(0) = α + λ + µS(1)wα,S(1)

(α + λ + µS(i))wα,S(i) = α + λwα,S(i − 1) + µS(i + 1)wα,S(i + 1), 1 ≤ i ≤ n − 2

(α + λ + µS(n − 1))wα,S(n − 1) = α + λwα,S(n − 2).

Proof. The result follows immediately from identity (20) and Lemma 4.2. 2

We next turn attention to discounted marginal costscα,S(i), for i ∈ N{0,1} andS ∈ F . From their
definition in (9) and uniformization we readily obtain

cα,S(i) = −µ∆fα,S(i + 1). (21)

Hence, we need to characterize first-order differences∆fα,S(i).
Proceeding as before, we next give the standard evaluation equations for thefα,S(i)’s.
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Lemma 4.4 Discounted cost measuresfα,S(i), for i ∈ N , are characterized by the equations

αfα,S(0) = cn + rλ + µS(0)∆fα,S(1)

αfα,S(i) = c(n − i) − λ∆fα,S(i) + µS(i)∆fα,S(i + 1), 1 ≤ i ≤ n − 1

αfα,S(n) = −λ∆fα,S(n).

The next result, characterizing first-order differences∆fα,S(i), follows immediately.

Lemma 4.5 Terms∆fα,S(i), for 1 ≤ i ≤ n, are characterized by the equations

(α + λ + µS(0))∆fα,S(1) = −(c + rλ) + µS(1)∆fα,S(2)

(α + λ + µS(i − 1))∆fα,S(i) = −c + λ∆fα,S(i − 1) + µS(i)∆fα,S(i + 1), 2 ≤ i ≤ n − 1

(α + λ + µS(n − 1))∆fα,S(n) = −c + λ∆fα,S(n − 1).

We can now give the evaluation equations for discounted marginal costs.

Lemma 4.6 Marginal costscα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(0))cα,S(0) = (c + rλ)µ + µS(1)cα,S(1)

(α + λ + µS(i))cα,S(i) = cµ + λcα,S(i − 1) + µS(i + 1)cα,S(i + 1), 1 ≤ i ≤ n − 2

(α + λ + µS(n − 1))cα,S(n − 1) = cµ + λcα,S(n − 2).

Proof. The result follows immediately from identity (21) and Lemma 4.2. 2

4.1.1 Discounted marginal workloads: calculation and properties

We next draw on the above to calculate discounted marginal workloads, and to establish their required prop-
erties.

We will develop a recursion to solve the system of evaluationequations in Lemma 4.3 for every active-
state setS(j). Notice that the casej = 0 is trivial, sinceS(0) = ∅, and hencewα,S(0)(i) ≡ 1. For other
cases, calculations will proceed by upward recursion onj. We start by solving the system forj = 1, whence
the first equation givespivot term

wα,S(1)(0) =
α + λ

α + λ + µ
. (22)

From the remaining equations, we calculate recursivelywα,S(1)(i), for 1 ≤ i ≤ n − 1.
Similarly, if for a given1 ≤ j ≤ n pivot termwα,S(j)(j−1) were available, from the remaining equations

for S(j) we could recursively calculate remaining termswα,S(j)(i). Therefore, if we could represent pivot
wα,S(j+1)(j) in terms of previous pivotwα,S(j)(j−1), for every1 ≤ j ≤ n−1, such relations would furnish
the backbone of a recursion to calculate all marginal workloadswα,S(j)(i).

We next set out to relate successive pivots. We will use the following vectors (wherexT denotes the
transpose of a vectorx, 1 denotes a vector of ones, andek denotes thekth unit coordinate vector of the
appropriate dimension): for1 ≤ j ≤ n, let

w
j

,
[
wα,S(j)(0) · · · wα,S(j)(j − 1)

]T
, b

j
,

α

α + λ + µ
1 +

λ

α + λ + µ
e1;

and, for1 ≤ j ≤ n − 1, let

ŵ
j ,

[
wα,S(j+1)(0) · · · wα,S(j+1)(j − 1)

]T
, b̂

j , b
j +

µwα,S(j+1)(j)

α + λ + µ
ej .

Let us further introduce, for1 ≤ j ≤ n, the square matrix of dimensionj

B
j ,

1

α + λ + µ





0 µ
λ 0 µ

.. .
. . .

. . .
λ 0 µ

λ 0




,

with B
1 , 0. The next result reformulates some equations in Lemma 4.3.
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Lemma 4.7

(a) w
j = b

j + B
j
w

j , 1 ≤ j ≤ n.

(b) ŵ
j = b̂

j + B
j
ŵ

j , 1 ≤ j ≤ n − 1.

To proceed, we introduce coefficientsqα(0), . . . , qα(n − 1), defined by

qα(j) ,






1 if j = 0

det
(
I − B

j+1
)

det (I − Bj)
if 1 ≤ j ≤ n − 1,

(23)

whereI denotes the identity matrix of the appropriate dimension. The next result shows that such coefficients
are well defined, and establishes properties on which we willdraw in the ensuing analyses.

Lemma 4.8 Termsqα(j) are well defined, and satisfy the following properties:

(a) qα(j) > 0, 0 ≤ j ≤ n − 1.

(b) They can be computed by upward recursion, settingqα(0) = 1 and

qα(j) = 1 −
λµ

(α + λ + µ)2qα(j − 1)
, 1 ≤ j ≤ n − 1.

(c) α + λ
α + λ + µ

< qα(j) < 1, 1 ≤ j ≤ n − 1.

Proof. (a) The row sums of matrixBj are less than unity, and hence so is its spectral radius. Therefore,
det

(
I − B

j
)

> 0 and theqα(j)’s are well defined and positive.
(b) The recursion follows from definition ofqα(j) and the linear algebra identities

det(I − B
2) = det(I − B

1) −
λµ

(α + λ + µ)2

det(I − B
j+1) = det(I − B

j) −
λµ

(α + λ + µ)2
det(I− B

j−1), 2 ≤ j ≤ n − 1.

(c) Parts (a) and (b) give thatqα(j) < 1 for 1 ≤ j ≤ n − 1. We next argue that

qα(j) >
α + λ

α + λ + µ
, 0 ≤ j ≤ n − 1, (24)

by upward induction onj. The casej = 0 is trivial. Suppose that the result holds for some0 ≤ j ≤ n − 2.
Then, part (b) and the induction hypothesis yield

qα(j + 1) = 1 −
µ

α + λ + µ

λ

α + λ + µ

qα(j)
> 1 −

µ

α + λ + µ
=

α + λ

α + λ + µ
.

Therefore, (24) holds for0 ≤ j ≤ n − 1. This completes the proof. 2

We are now ready to relate successive pivots.

Lemma 4.9

qα(j)wα,S(j+1)(j) =
α + λwα,S(j)(j − 1)

α + λ + µ
, 1 ≤ j ≤ n − 1.

11



Calculation of wα,S(0)(i)’s (note: S(0) = ∅):

wα,S(1)(i) = 1, 0 ≤ i ≤ n − 1

Calculation of wα,S(1)(i)’s:

wα,S(1)(0) =
α + λ

α + λ + µ
; wα,S(1)(i) =

α + λwα,S(1)(i − 1)

α + λ
, 2 ≤ i ≤ n − 1

Calculation of wα,S(j)(i)’s, for 2 ≤ j ≤ n:

wα,S(j)(j − 1) =
α + λwα,S(j−1)(j − 2)

(α + λ + µ)qα(j − 1)

wα,S(j)(j − 2) =
−α + (α + λ + µ)wα,S(j)(j − 1)

λ

wα,S(j)(i) =
α + λwα,S(j)(i − 1)

α + λ
, j ≤ i ≤ n − 1

wα,S(j)(i) =
−α − µwα,S(j)(i + 2) + (α + λ + µ)wα,S(j)(i + 1)

λ
, 1 ≤ i ≤ j − 3

wα,S(j)(0) =
α + λ + µwα,S(j)(1)

α + λ + µ

Figure 1: Marginal workloads: recursive calculation.

Proof. Fix 1 ≤ j ≤ n − 1. By Lemma 4.7 and the definitions ofb
j , b̂j , we have

ŵ
j − w

j = (I − B
j)−1(b̂j − b

j) =
µwα,S(j+1)(j)

α + λ + µ
(I − B

j)−1
ej. (25)

Now, noting that the element in position(j, j) of matrix
(
I − B

j
)−1

has the evaluation1 if j = 1, and
det

(
I − B

j−1
)
/ det

(
I − B

j
)

if j ≥ 2, which in either case equals1/qα(j − 1), it follows from (25) that

wα,S(j+1)(j − 1) − wα,S(j)(j − 1) =
µ

qα(j − 1)

wα,S(j+1)(j)

α + λ + µ
. (26)

We next substitute forwα,S(j+1)(j − 1) in (26) using Lemma 4.3’s identity

wα,S(j+1)(j) =
α

α + λ + µ
+

λ

α + λ + µ
wα,S(j+1)(j − 1),

and further substitute forqα(j − 1) in terms ofqα(j) using Lemma 4.8(b), to obtain, after straightforward
algebra, the stated identity. 2

We can now give a complete recursion for calculating discounted marginal workloads, as shown in Figure
1. Figure 2 further clarifies the recursion, showing by arrows the directions in which calculations proceed,
and enclosing in boxes the pivot terms, which furnish the recursion’s backbone.

Proposition 4.10 Discounted marginal workloadswα,S(i), for i ∈ N{0,1} andS ∈ F , are calculated by
the recursion shown in Figure 1.

Proof. The result follows directly from Lemmas 4.3 and 4.9. 2

We next use the above to establish required properties of discounted marginal workloads. Figure 2 illus-
trates the inequalities presented in the following result.

Lemma 4.11 Discounted marginal workloads satisfy the following inequalities:

(a) wα,S(j+1)(j) > 0, 0 ≤ j ≤ n − 1.
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1 > wα,S(1)(0) > 0 < wα,S(2)(0) < · · · < wα,S(n)(0)

↓ ↘ ↑ ↑

1 > wα,S(1)(1) > wα,S(2)(1) > 0 < · · · < wα,S(n)(1)

↓ ↓ ↘ ↑
...

...
...

. . .
...

↓ ↓ ↘ ↑

1 > wα,S(1)(n − 1) > wα,S(2)(n − 1) > · · · > wα,S(n)(n − 1) > 0

Figure 2: Marginal workloads: directions of calculations and wedge-shape property.

(b) wα,S(j+1)(i) > wα,S(j)(i), 0 ≤ i ≤ j − 1, j ≤ n − 1.

(c) wα,S(j)(i) > wα,S(j+1)(i), 0 ≤ j ≤ i ≤ n − 1.

Proof. (a) This part follows by upward induction onj, using (22) and Lemma 4.9.
(b) Take1 ≤ j ≤ n− 1. Since the spectral radius of matrixBj is less than unity (cf. Lemma 4.8’s proof),

it follows that matrix
(
I − B

j
)−1

is positive componentwise, which in turn implies
(
I − B

j
)−1

ej > 0.
Combining such result with part (a) and identity (25), we obtain ŵ

j − w
j > 0, i.e.

wα,S(j+1)(i) > wα,S(j)(i), 0 ≤ i ≤ j − 1,

as required.
(c) Let0 ≤ j ≤ n − 2. By Lemma 4.3, we have

(α + λ)wα,S(j)(i) = α + λwα,S(j)(i − 1), j ≤ i ≤ n − 1

(α + λ)wα,S(j+1)(i) = α + λwα,S(j+1)(i − 1), j + 1 ≤ i ≤ n − 1,

whence we obtain

wα,S(j)(i) − wα,S(j+1)(i) =
λ

α + λ

{
wα,S(j)(i − 1) − wα,S(j+1)(i − 1)

}
, j + 1 ≤ i ≤ n − 1.

In light of the latter identities, to prove the required result it suffices to establish that

wα,S(j)(j) − wα,S(j+1)(j) > 0, 0 ≤ j ≤ n − 1,

which we set out to do next.
The casej = 0 follows from

wα,S(0)(0) − wα,S(1)(0) = 1 −
α + λ

α + λ + µ
=

µ

α + λ + µ
> 0.

For1 ≤ j ≤ n − 1, drawing again on Lemma 4.3, we can write

(α + λ + µ)wα,S(j+1)(j) = α + λwα,S(j+1)(j − 1)

(α + λ)wα,S(j)(j) = α + λwα,S(j)(j − 1).

Using in turn the last two identities, (26), part (a) and Lemma 4.8(c), yields

(α + λ)
{

wα,S(j)(j) − wα,S(j+1)(j)
}

= µwα,S(j+1)(j) − λ
{

wα,S(j+1)(j − 1) − wα,S(j)(j − 1)
}

=

{
1 −

λ/qα(j − 1)

α + λ + µ

}
µwα,S(j+1)(j) > 0,

as required. This completes the proof. 2

We can now give the key properties of discounted marginal workloads.
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Proposition 4.12 (Positive and wedge-shaped discounted marginal workloads)

(a) wα,S(i) > 0, for i ∈ N{0,1} andS ∈ F .

(b) Thewα,S(j)(i)’s are wedge-shaped asj varies, as shown in Figure2, so that condition(12)holds with
strict inequalities.

Proof. Both parts follow immediately from Lemma 4.11. 2

4.1.2 Discounted marginal costs: calculation

We next set out to calculate the required discounted marginal costscα,S(i), proceeding similarly as before
for discounted marginal workloads. Onlypivot termscα,S(j+1)(j), for 0 ≤ j ≤ n − 1, are required for the
PCL-indexability analysis. We next develop a recursion to calculate them, along the lines followed above to
calculate thewα,S(j+1)(j)’s.

We start by noting that Lemma 4.6 readily yields the first suchpivot as

cα,S(1)(0) =
c + rλ

α + λ + µ
µ. (27)

We next set out to relate successive pivots. Define the following vectors: for1 ≤ j ≤ n, let

c
j =

[
cα,S(j)(0) · · · cα,S(j)(j − 1)

]T
, h

j =
cµ

α + λ + µ
1 +

rλµ

α + λ + µ
e1;

and, for1 ≤ j ≤ n − 1, let

ĉ
j =

[
cα,S(j+1)(0) · · · cα,S(j+1)(j − 1)

]T
, ĥ

j = h
j +

µcα,S(j+1)(j)

α + λ + µ
ej.

The following result is a counterpart of Lemma 4.7.

Lemma 4.13

(a) c
j = h

j + B
j
c

j , 1 ≤ j ≤ n;

(b) ĉ
j = ĥ

j + B
j
ĉ

j , 1 ≤ j ≤ n − 1.

The next result gives the required recursion between successive pivots.

Lemma 4.14

qα(j)cα,S(j+1)(j) =
cµ + λcα,S(j)(j − 1)

α + λ + µ
, 1 ≤ j ≤ n − 1.

Proof. Fix 1 ≤ j ≤ n − 1. By Lemma 4.13 and the definitions ofh
j , ĥj , we have

ĉ
j − c

j = (I − B
j)−1(ĥj − h

j) =
µcα,S(j+1)(j)

α + λ + µ
(I − B

j)−1
ej . (28)

Now, noting again that the element in position(j, j) of matrix
(
I − B

j
)−1

is 1/qα(j − 1), it follows from
(28) that

cα,S(j+1)(j − 1) − cα,S(j)(j − 1) =
µ

qα(j − 1)

cα,S(j+1)(j)

α + λ + µ
. (29)

We next substitute forcα,S(j+1)(j − 1) in (29) using Lemma 4.6’s identity

cα,S(j+1)(j) =
cµ

α + λ + µ
+

λ

α + λ + µ
cα,S(j+1)(j − 1),

and further substitute forqα(j − 1) in terms ofqα(j) using Lemma 4.8(b), to obtain the required identity.
This completes the proof. 2
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4.1.3 Discounted MPI

We next set out to establish PCL(F )-indexability and to calculate the discounted MPI. The following result
gives a recursion for constructing indexνα,∗(i) , cα,S(i+1)(i)/wα,S(i+1)(i), for 0 ≤ i ≤ n − 1 (cf. (11)),
and further establishes the remarkable result that the index value does not depend on the buffer sizen.

Proposition 4.15

(a) Indexνα,∗(i) is calculated by the following recursion:

να,∗(i) =






c + rλ
α + λ

µ if i = 0

να,∗(i − 1) −
ανα,∗(i − 1) − cµ

α + λwα,S(i)(i − 1)
if 1 ≤ i ≤ n − 1.

(30)

(b) For each0 ≤ i ≤ n − 1, να,∗(i) does not depend on the buffer sizen.

Proof. (a) We have, by (22) and (27),

να,∗(0) ,
cα,S(1)(0)

wα,S(1)(0)
=

c + rλ

α + λ
µ.

Further, for1 ≤ i ≤ n − 1, using Lemma 4.9 and Lemma 4.14 we obtain that

να,∗(i) ,
cα,S(i+1)(i)

wα,S(i+1)(i)
=

cµ + λcα,S(i)(i − 1)

α + λwα,S(i)(i − 1)
=

cµ + να,∗(i − 1)λwα,S(i)(i − 1)

α + λwα,S(i)(i − 1)

= να,∗(i − 1) −
ανα,∗(i − 1) − cµ

α + λwα,S(i)(i − 1)
.

(b) The result follows from part (a) and by noting that pivot marginal workloadswα,S(i)(i − 1) do not
depend on the buffer size either. This completes the proof. 2

We will find it useful to reformulate the second identity in (30) as

ανα,∗(i) − cµ =
λwα,S(i)(i − 1)

α + λwα,S(i)(i − 1)
{ανα,∗(i − 1) − cµ} , 1 ≤ i ≤ n − 1. (31)

Proposition 4.16 The following inequalities hold (strictly iffαr > c):

(a) ανα,∗(i) ≥ cµ, for 0 ≤ i ≤ n − 1.

(b) να,∗(n − 1) ≤ να,∗(n − 2) ≤ · · · ≤ να,∗(0).

Proof. (a) We argue by upward induction oni. The casei = 0 is easily seen to be equivalent to the assumed
conditionαr ≥ c. Suppose now the inequality holds for some0 ≤ i ≤ n − 2. Then, (31) and Proposition
4.12(a) imply thatανα,∗(i + 1) ≥ cµ, completing the induction proof.

(b) The result follows from part (a), Proposition 4.12(a), and identity (30).
The result that the inequalities are strict iffαr > c follows along the same lines. 2

We can now give the main result of this section.

Theorem 4.17

(a) Anα-discount loss-sensitive class isα-discount PCL(F )-indexable with MPIνα,∗(i), which satisfies

max
i∈S∈F

να,S(i) = να,∗(i) = min
i/∈S∈F

να,S(i), 0 ≤ i ≤ n − 1.

(b) The class isα-discount PCL(F )-indexable for anyα > 0 iff it is pure loss-sensitive (r > 0 = c).

Proof. (a) The result follows from Proposition 4.12(a) and Proposition 4.16(a). The stated characterization
of the MPI follows fro Theorem 3.4.

(b) This part follows immediately from the above. 2
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Notice that, in light of Proposition 4.15(b), we can consider the sequence{να,∗(i) : i ≥ 0}. By Propo-
sition 4.16, the latter is is monotone nonincreasing and bounded below, and hence it is convergent. The
following result, which follows immediately from the above, gives its limit.

Corollary 4.18
lim

i→∞
να,∗(i) =

cµ

α
.

4.2 Average criterion: average and second-order MPI

It is of interest to extend the above analysis to the average criterion, as outlined in Section 3.2, to obtain
appropriate index policies for scheduling problem (3). In light of Theorem 4.17(b), we restrict attention in
this Section to the pure loss-sensitive caser > 0 = c.

In short, it is readily seen that a pure loss-sensitive classis PCL(F )-indexable relative to the average
criterion. One thus obtains average-criterion counterparts to each result in Section 4.1 by lettingα ↘ 0. The
resulting average MPI is

ν∗(i) = lim
α↘0

να,∗(i) ≡ rµ, 0 ≤ i ≤ n − 1, (32)

so that it is constant across states.
To obtain a more informative, tie-breaking index, we proceed as in Section 3.2 to introduce thesecond-

order MPI, based on the McLaurin series expansion of the discounted MPI:

να,∗(i) = rµ − αγ∗(i) + o(α) asα ↘ 0. (33)

We thus define thesecond-order MPIby

γ∗(i) , lim
α↘0

rµ − να,∗(i)

α
, 0 ≤ i ≤ n − 1.

We will obtain closed-form expressions for the second-order MPI. For such purpose, we will use coeffi-
cients

q(i) , lim
α↘0

qα(i), 0 ≤ i ≤ n − 1,

and pivot average marginal workloads

wS(i+1)(i) , lim
α↘0

wα,S(i+1)(i), 0 ≤ i ≤ n − 1.

In both cases, it suffice to setα = 0 in the relevant results of Section 4.1.
Let us start with theq(i)’s. Notice that in what follows we will writeρ , λ/µ.

Lemma 4.19

(a) Theq(i)’s are calculated by the following recursion:q(0) = 1, and

q(i) = 1 −
ρ

(1 + ρ)2q(i − 1)
, 1 ≤ i ≤ n − 1.

(b) The solution to such recursion is: for0 ≤ i ≤ n − 1,

q(i) =
1

1 + ρ

1 + · · · + ρi+1

1 + · · · + ρi
=






1

1 + ρ

1 − ρi+2

1 − ρi+1
if ρ 6= 1

1

2

i + 2

i + 1
if ρ = 1.

Proof. Part (a) follows by Lemma 4.8(b). Part (b) follows by upwardrecursion. 2

The corresponding result for thewS(i+1)(i)’s follows.

Lemma 4.20
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(a) ThewS(i+1)(i)’s are calculated by the following recursion:wS(1)(0) = ρ/(1 + ρ), and

wS(i+1)(i) =
ρ

1 + ρ

wS(i)(i − 1)

q(i)
, 1 ≤ i ≤ n − 1.

(b) The solution to such recursion is: for0 ≤ i ≤ n − 1,

wS(i+1)(i) =
ρi+1

1 + · · · + ρi+1
=






(1 − ρ)
ρi+1

1 − ρi+2
if ρ 6= 1

1

i + 2
if ρ = 1.

Proof. Part (a) follows by Lemma 4.9. Part (b) follows by upward recursion. 2

We can now calculate the second-order MPI.

Proposition 4.21

(a) The second-order MPI is calculated by the following recursion: γ∗(0) = r/ρ, and

γ∗(i) = γ∗(i − 1) +
r/ρ

wS(i)(i − 1)
, 1 ≤ i ≤ n − 1.

(b) The solution to such recursion is: for0 ≤ i < n − 1,

γ∗(i) =






r

ρ

{
i + 1 +

1/ρi − (1 − ρ)i − 1

(1 − ρ)2

}
if ρ 6= 1

r
(i + 1)(i + 2)

2
if ρ = 1.

Proof. Part (a) follows by substituting for discounted MPIνα,∗(i) in recursion (30) the McLaurin expansion
(33), and then lettingα vanish.

Part (b) is readily verified by induction, drawing on Lemma 4.20(b). 2

Notice that the second-order MPI is monotonically increasing in the number of empty buffer spaces:

γ∗(0) < γ∗(1) < · · · < γ∗(n − 1). (34)

5 PCL-indexability analysis: delay-sensitive classes

We address in this section the PCL-indexability analysis for a delay-sensitive class in isolation, i.e. an
M/M/1/n queue with arrival and service ratesλ andµ, respectively, subject to service control, with de-
lay cost ratec > 0 and rejection cost rater ≥ 0 satisfyingc ≥ αr.

For such a class, we define thestateby X(t) , L(t), thenumber of jobs in system. We will use the state
orderingm0 , 0, andmi , n − i + 1 for 1 ≤ i ≤ n, so thatN , {0, n, . . . , 1}, N{0,1} , {n, . . . , 1},
N{0} , {0}, and the active-state sets inF are given byS(0) , {n, . . . , 1}, S(1) , ∅, and

S(i) , {i − 1, . . . , 1}, i = 2, . . . , n.

In words,F -policies prescribe the server to work when the number of jobs in system is small enough.
For notational convenience we will write henceforthS(0) asS(n + 1).
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5.1 Discounted criterion

We start by laying the groundwork for calculations of discounted marginal workloads and costs, using uni-
formization as before with rateΛ ≥ λ + µ. The uniformized MDP’s state transition probability matrix
P

a = (pa
ij) under actiona ∈ {0, 1} is given by

pa
ij ,






λ/Λ if 1 ≤ j = i + 1 ≤ n

µa/Λ if 0 ≤ j = i − 1 ≤ n − 1

(Λ − λ − µa)/Λ if 0 < j = i < n

(Λ − λ)/Λ if j = i = 0

(Λ − µa)/Λ if j = i = n

0 otherwise.

The corresponding discrete-time discount factor isΛ/(α + Λ), and the discrete-time one-period cost rate
in statei is {ci + rλ1{i=n}}/(α + Λ).

Consider now discounted marginal workloadswα,S(i), for i ∈ N{0,1} andS ∈ F . From their definition
in (8) and uniformization we readily obtain

wα,S(i) = 1 − µ∆gα,S(i), (35)

where∆gα,S(i) , gα,S(i) − gα,S(i − 1).
We thus start by giving the evaluation equations for thegα,S(i)’s, for fixedS ∈ F . We will denote by

µS(i), as before, the effective service rate in statei under theS-active policy, i.e. letting1S(i) be the indicator
function ofS,

µS(i) , µ1S(i), i ∈ N.

Lemma 5.1 Discounted work measuresgα,S(i), for i ∈ N , are characterized by the equations

αgα,S(0) = λ∆gα,S(1)

αgα,S(i) = 1S(i) − µS(i)∆gα,S(i) + λ∆gα,S(i + 1), 1 ≤ i ≤ n − 1

αgα,S(n) = 1S(n) − µS(n)∆gα,S(n).

The next result, characterizing first-order differences∆gα,S(i), follows immediately.

Lemma 5.2 Terms∆gα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(1))∆gα,S(1) = 1S(1) + λ∆gα,S(2)

(α + λ + µS(i))∆gα,S(i) = ∆1S(i) + µS(i − 1)∆gα,S(i − 1) + λ∆gα,S(i + 1), 2 ≤ i ≤ n − 1

(α + λ + µS(n))∆gα,S(n) = ∆1S(n) + µS(n − 1)∆gα,S(n − 1).

We can now give the evaluation equations for discounted marginal workloads.

Lemma 5.3 Discounted marginal workloadswα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(1))wα,S(1) = α + λwα,S(2)

(α + λ + µS(i))wα,S(i) = α + µS(i − 1)wα,S(i − 1) + λwα,S(i + 1), 2 ≤ i ≤ n − 1

(α + λ + µS(n))wα,S(n) = α + λ + µS(n − 1)wα,S(n − 1).

Proof. The result follows immediately from identity (35) and Lemma 5.2. 2

We next turn attention to discounted marginal costscα,S(i), for i ∈ N{0,1} andS ∈ F . From their
definition in (9) and uniformization we readily obtain

cα,S(i) = µ∆fα,S(i). (36)

Proceeding as before, we next state the standard evaluationequations for thefα,S(i)’s.
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Lemma 5.4 Discounted cost measuresfα,S(i), for i ∈ N , are characterized by the equations

αfα,S(0) = λ∆fα,S(1)

αfα,S(i) = ci − µS(i)∆fα,S(i) + λ∆fα,S(i + 1), 1 ≤ i ≤ n − 1

αfα,S(n) = cn + rλ − µS(n)∆fα,S(n).

The next result, characterizing first-order differences∆fα,S(i), follows immediately.

Lemma 5.5 Terms∆fα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(1))∆fα,S(1) = c + λ∆fα,S(2)

(α + λ + µS(i))∆fα,S(i) = c + µS(i − 1)∆fα,S(i − 1) + λ∆fα,S(i + 1), 2 ≤ i < n

(α + λ + µS(n))∆fα,S(n) = c + rλ + µS(n − 1)∆fα,S(n − 1).

We can now give the evaluation equations for discounted marginal costs.

Lemma 5.6 Discounted marginal costscα,S(i), for i ∈ N{0,1}, are characterized by the equations

(α + λ + µS(1))cα,S(1) = cµ + λcα,S(2)

(α + λ + µS(i))cα,S(i) = cµ + µS(i − 1)cα,S(i − 1) + λcα,S(i + 1), 2 ≤ i ≤ n − 1

(α + λ + µS(n))cα,S(n) = (c + rλ)µ + µS(n − 1)cα,S(n − 1).

Proof. The result follows immediately from identity (36) and Lemma 5.5. 2

5.1.1 Discounted marginal workloads: calculation and properties

We next set out to calculate discounted marginal workloads,and to establish their required properties.
We will develop a recursion to solve the evaluation equations in Lemma 5.3 for every active-state set

S(j), with 1 ≤ j ≤ n + 1 (recall that we writeS(n + 1) = S(0) = N{0,1}). Notice that the casej = 1
is trivial, sinceS(1) = ∅ and hencewS(1)(i) ≡ 1. For other cases, calculations will proceed by upward
recursion onj. We start with the equations forj = 2,

(α + λ + µ)wα,S(2)(1) = α + λwα,S(2)(2)

(α + λ)wα,S(2)(2) = α + µwα,S(2)(1) + λwα,S(2)(3)

(α + λ)wα,S(2)(i) = α + λwα,S(2)(i + 1), 3 ≤ i ≤ n − 1

(α + λ)wα,S(2)(n) = α + λ,

whose solution is

wα,S(2)(1) =
(α + λ)2

(α + λ)
2

+ αµ
, wα,S(2)(2) = 1 + µ

α + λ

(α + λ)
2
+ αµ

wα,S(2)(i) = 1, 3 ≤ i ≤ n.

(37)

Notice that it suffices to know the value ofpivot termwα,S(2)(2), from which remaining termswα,S(2)(i)
are readily calculated. Similarly, if for a given2 ≤ j ≤ n pivot termwα,S(j)(j) were available, from the
remaining equations forS(j) we could readily calculate remaining termswα,S(j)(i). Noting further that

wα,S(j)(i) = 1, j + 1 ≤ i ≤ n. (38)

Thus, if we could represent pivotwα,S(j+1)(j + 1) in terms of previous pivotwα,S(j)(j), for 2 ≤ j ≤ n− 1,
such relations would furnish the backbone of a recursion to calculate all marginal workloadswα,S(j)(i) for
2 ≤ j ≤ n. To complete the calculations, we will need a further relation between pivotwα,S(n)(n) and
the last pivot, which we take to bewα,S(n+1)(n). Again, from the latter we easily obtain remaining terms
wα,S(n+1)(i).

19



We next set out to relate successive pivots, along the lines followed before in the loss-sensitive case. We
will use the following vectors: for2 ≤ j ≤ n + 1, let

w
j ,

[
wα,S(j)(1) · · · wα,S(j)(j − 1)

]T

b
j ,






α

α + λ + µ
1 +

λwα,S(j)(j)

α + λ + µ
ej−1 if 2 ≤ j ≤ n

α

α + λ + µ
1 +

λ

α + λ + µ
en if j = n + 1;

and, for2 ≤ j ≤ n, let

ŵ
j ,

[
wα,S(j+1)(1) · · · wα,S(j+1)(j − 1)

]T

b̂
j , b

j + λ

{
wα,S(j+1)(j) − wα,S(j)(j)

α + λ + µ

}
ej−1.

Let us further introduce, for2 ≤ j ≤ n + 1, the square matrix of dimensionj − 1

B
j ,

1

α + λ + µ





0 λ
µ 0 λ

. . .
. . .

. . .
µ 0 λ

µ 0




,

with B
2 , 0. The next result reformulates some equations in Lemma 5.3.

Lemma 5.7

(a) w
j = b

j + B
j
w

j , 2 ≤ j ≤ n + 1.

(b) ŵ
j = b̂

j + B
j
ŵ

j , 2 ≤ j ≤ n.

To proceed, we introduce coefficientsqα(2), . . . , qα(n + 1), defined by

qα(j) =






1 if j = 2

det
(
I − B

j
)

det (I− Bj−1)
if 3 ≤ j ≤ n + 1.

(39)

The following result is equivalent to Lemma 4.8.

Lemma 5.8 Termsqα(j) are well defined, and satisfy the following properties:

(a) qα(j) > 0, for 2 ≤ j ≤ n + 1.

(b) They can be computed by upward recursion, settingqα(2) = 1 and

qα(j) = 1 −
λµ

(α + λ + µ)2qα(j − 1)
, 3 ≤ j ≤ n + 1.

(c) α + µ
α + λ + µ

< qα(j) < 1, 3 ≤ j ≤ n + 1.

We are now ready to relate successive pivots.

Lemma 5.9

wα,S(j+1)(j + 1) = 1 + µ
(α + λ + µ) qα(j + 1) − µ

(α + λ) (α + λ + µ) qα(j + 1) − λµ
wα,S(j)(j), 2 ≤ j ≤ n − 1,

and

wα,S(n+1)(n) =
(α + λ + µ) qα(n + 1) − µ

(α + λ + µ) qα(n + 1)
wα,S(n)(n)
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Proof. Fix 2 ≤ j ≤ n − 1. By Lemma 5.7, we have

ŵ
j − w

j = (I − B
j)−1(b̂j − b

j) =
λ

{
wα,S(j+1)(j) − wα,S(j)(j)

}

α + λ + µ
(I− B

j)−1
ej−1. (40)

Now, noting that the element in position(j−1, j−1) of matrix
(
I − B

j
)−1

isdet
(
I − B

j−1
)
/ det

(
I − B

j
)
,

which by definition equals1/qα(j), it follows from (40) that

wα,S(j+1)(j − 1) − wα,S(j)(j − 1) =
λ

qα(j)

{
wα,S(j+1)(j) − wα,S(j)(j)

}

α + λ + µ
. (41)

We further have the equations (cf. Lemma 5.3 and (38)

(α + λ)wα,S(j)(j) = α + λ + µwα,S(j)(j − 1)

(α + λ + µ)wα,S(j+1)(j) = α + µwα,S(j+1)(j − 1) + λwα,S(j+1)(j + 1)

(α + λ)wα,S(j+1)(j + 1) = α + λ + µwα,S(j+1)(j).

(42)

Now, from (41)–(42) and Lemma 5.8(b) we obtain

wα,S(j+1)(j + 1) = 1 + µ
(α + λ + µ) qα(j + 1) − µ

(α + λ) (α + λ + µ) qα(j + 1) − λµ
wα,S(j)(j),

as required.
To obtain the relation between the last two pivots, we use theequations

wα,S(n+1)(n − 1) − wα,S(n)(n − 1) =
λ

qα(n)

{
wα,S(n+1)(n) − wα,S(n)(n)

}

α + λ + µ

(α + λ)wα,S(n)(n) = α + λ + µwα,S(n)(n − 1)

(α + λ + µ)wα,S(n+1)(n) = α + λ + µwα,S(n+1)(n − 1),

from which we get, using again Lemma 5.8(b),

wα,S(n+1)(n) =
(α + λ + µ) qα(n + 1) − µ

(α + λ + µ) qα(n + 1)
wα,S(n)(n).

This completes the proof. 2

We can now give a complete recursion for calculating discounted marginal workloads, as shown in Figure
3. Figure 4 further clarifies the recursion, showing by arrows the directions in which calculations proceed,
and enclosing in boxes the pivot terms.

Proposition 5.10 Discounted marginal workloadswα,S(i), for i ∈ N{0,1} andS ∈ F , are calculated by
the recursion shown in Figure 3.

Proof. The result follows directly from Lemmas 5.3 and 5.9. 2

We next use the above to establish required properties of discounted marginal workloads. Figure 4 illus-
trates the inequalities presented in the following result.

Lemma 5.11 Discounted marginal workloads satisfy the following inequalities:

(a) wα,S(j)(j) > 1, for 2 ≤ j ≤ n, andwα,S(n+1)(n) > 0.

(b) wα,S(j)(i) > wα,S(j+1)(i), for 2 ≤ j ≤ n and1 ≤ i ≤ j.

(c) wα,S(j)(i) = 1, for 1 ≤ j ≤ n − 1 andj + 1 ≤ i ≤ n.

(d) wα,S(n+1)(i) > 0, 1 ≤ i ≤ n.
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Calculation of wα,S(1)(i)’s: wα,S(1)(i) = 1, 1 ≤ i ≤ n

Calculation of wα,S(2)(i)’s: wα,S(2)(i) = 1, 3 ≤ i ≤ n

wα,S(2)(2) = 1 + µ
α + λ

(α + λ)
2

+ αµ
; wα,S(2)(1) =

α + λwα,S(2)(2)

α + λ + µ

Calculation of wα,S(j)(i)’s, for j = 3 to n: wα,S(j)(i) = 1, j + 1 ≤ i ≤ n

wα,S(j)(j) = 1 + µ
(α + λ + µ) qα(j) − µ

(α + λ) (α + λ + µ) qα(j) − λµ
wα,S(j−1)(j − 1)

wα,S(j)(j − 1) =
α + λ

µ

{
wα,S(j)(j) − 1

}

wα,S(j)(i) =
−α + (α + λ + µ)wα,S(j)(i + 1) − λwα,S(j)(i + 2)

µ
, 1 ≤ i ≤ j − 2

Calculation of wα,S(n+1)(i)’s:

wα,S(n+1)(n) =
(α + λ + µ) qα(n + 1) − µ

(α + λ + µ) qα(n + 1)
wα,S(n)(n)

wα,S(n+1)(n − 1) =
−(α + µ) + (α + λ + µ)wα,S(n+1)(n)

µ

wα,S(n+1)(i) =
−α + (α + λ + µ)wα,S(n+1)(i + 1) − λwα,S(n+1)(i + 2)

µ
, 1 ≤ i ≤ n − 2

Figure 3: Marginal workloads: recursive calculation.

1 > wα,S(2)(1) > · · · > wS(n)(1) > wα,S(n+1)(1)
↑ ↑ ↑

1 < wα,S(2)(2) > · · · > wα,S(n)(2) > wα,S(n+1)(2)

↘ ↑ ↑
1 1 < · · · > wα,S(n)(3) > wα,S(n+1)(3)
...

...
. . .

...
...

↘ ↑ ↑

1 1 1 · · · < wα,S(n)(n) > → wα,S(n+1)(n)

Figure 4: Marginal workloads: directions of calculations and inequalities.
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Proof. (a) This part follows by upward induction onj, via (37) and Lemmas 5.8(a) and 5.9.
(b) Fix 2 ≤ j ≤ n. In the case2 ≤ j ≤ n − 1, we have

w
j − ŵ

j =
λ

{
wα,S(j)(j) − wα,S(j+1)(j)

}

α + λ + µ
(I − B

j)−1
ej−1

=
αλµwα,S(j)(j)

(α + λ + µ) ((α + λ) (α + λ + µ) qα(j + 1) − λµ)
(I − B

j)−1
ej−1

> 0,

where we have used Lemma 5.7, the identity (which follows readily from (41)–(42))

wα,S(j+1)(j) − wα,S(j)(j) = −
αµ

(α + λ) (α + λ + µ) qα(j + 1) − λµ
wα,S(j)(j),

Lemma 5.8(c) and part (a).
Arguing similarly, in the casej = n we have

w
n − ŵ

n =
λ

{
wα,S(n)(n) − wα,S(n+1)(n)

}

α + λ + µ
(I − B

n)−1
en−1

=
λµwα,S(n)(n)

(α + λ + µ)2 qα(n + 1)
(I − B

n)−1
en−1

> 0,

where we have used the identity

wα,S(n+1)(n) − wα,S(n)(n) = −
µ

(α + λ + µ)qα(n + 1)
wα,S(n)(n).

We have thus shown that

wα,S(j)(i) > wα,S(j+1)(i), 1 ≤ i ≤ j − 1.

Further, we obtain from (41) and the inequalities just proven thatwα,S(j)(j) > wα,S(j+1)(j), as required.
(c) This part follows immediately from the evaluation equations.
(d) We have

w
n+1 = (I − B

n+1)−1
b

n+1 > 0,

as required. This completes the proof. 2

We can now give the main result on discounted marginal workloads

Proposition 5.12 Discounted marginal workloadswα,S(i) are positive, fori ∈ N{0,1} andS ∈ F .

Proof. The result follows immediately from the inequalities and identities in Lemma 5.11, as illustrated in
Figure 4. 2

5.1.2 Discounted marginal costs: calculation

We next set out to calculate the required discounted marginal costscα,S(i), proceeding similarly as before
for discounted marginal workloads. Onlypivot termscα,S(j)(j), for 1 ≤ j ≤ n, are required for the PCL-
indexability analysis. We next develop a recursion to calculate them, along the lines followed above to
calculate thewα,S(j)(j)’s.

We start by formulating the system of evaluation equations in Lemma 5.6 forj = 1:

(α + λ)cα,S(1)(i) = cµ + λcα,S(1)(i + 1), 1 ≤ i ≤ n − 1

(α + λ)cα,S(1)(n) = (c + rλ)µ.

We thus obtain the first pivot, as

cα,S(1)(1) =
cµ

α

{
1 −

(
λ

α + λ

)n}
+ rµ

(
λ

α + λ

)n

. (43)
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The corresponding system of evaluation equations forj = 2 is

(α + λ + µ)cS(2)(1) = cµ + λcS(2)(2)

(α + λ)cS(2)(2) = cµ + µcS(2)(1) + λcS(2)(3)

(α + λ)cS(2)(i) = cµ + λcS(2)(i + 1), 3 ≤ i ≤ n − 1

(α + λ)cS(2)(n) = (c + rλ)µ,

whence we obtain the second pivot

cS(2)(2) =
α + λ + 2µ

(α + λ)
2

+ αµ
cµ +

λ (α + λ + µ)

(α + λ)
2

+ αµ
cS(2)(3), (44)

where we use the auxiliary term

cα,S(2)(3) =
cµ

α

{
1 −

(
λ

α + λ

)n−2
}

+ rµ

(
λ

α + λ

)n−2

.

The last identity is easily seen to extend to

cα,S(j)(j + 1) =
cµ

α

{
1 −

(
λ

α + λ

)n−j
}

+ rµ

(
λ

α + λ

)n−j

, 1 ≤ j ≤ n − 1, (45)

so that we have the downward recursion on auxiliary terms

cα,S(n−1)(n) =
cµ + rλµ

α + λ

cα,S(j)(j + 1) =
cµ

α + λ
+

λ

α + λ
cα,S(j+1)(j + 2), 1 ≤ j ≤ n − 2.

(46)

We next set out to relate successive pivots. Define the following vectors. For2 ≤ j ≤ n, let

c
j ,

[
cα,S(j)(1) · · · cα,S(j)(j − 1)

]T
, h

j ,
cµ

α + λ + µ
1 +

λcα,S(j)(j)

α + λ + µ
ej−1,

ĉ
j ,

[
cα,S(j+1)(1) · · · cα,S(j+1)(j − 1)

]T
, ĥ

j , h
j + λ

{
cα,S(j+1)(j) − cα,S(j)(j)

α + λ + µ

}
ej−1.

The next result reformulates some equations in Lemma 5.6.

Lemma 5.13 For 2 ≤ j ≤ n:

(a) c
j = h

j + B
j
c

j .

(b) ĉ
j = ĥ

j + B
j
ĉ

j .

We are now ready to establish the required recursion on pivotterms.

Lemma 5.14

cα,S(j+1)(j + 1) = cα,S(j)(j + 1) + µ
(α + λ + µ) qα(j + 1) − µ

(α + λ) (α + λ + µ) qα(j + 1) − λµ
cα,S(j)(j), 2 ≤ j ≤ n − 1.

Proof. Fix 2 ≤ j ≤ n − 1. By Lemma 5.13, we have

ĉ
j − c

j = (I − B
j)−1(ĥj − h

j) =
λ

{
cα,S(j+1)(j) − cα,S(j)(j)

}

α + λ + µ
(I − B

j)−1
ej−1. (47)

Now, noting that the element in position(j−1, j−1) of matrix
(
I − B

j
)−1

isdet
(
I − B

j−1
)
/ det

(
I − B

j
)
,

which by definition equals1/qα(j), it follows from (47) that

cα,S(j+1)(j − 1) − cα,S(j)(j − 1) =
1

qα(j)

λ
{
cα,S(j+1)(j) − cα,S(j)(j)

}

α + λ + µ
. (48)
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We further have, in the casej ≤ n − 2, the equations (cf. Lemma 4.6)

(α + λ)cα,S(j)(j) = cµ + µcα,S(j)(j − 1) + λcα,S(j)(j + 1)

(α + λ + µ)cα,S(j+1)(j) = cµ + µcα,S(j+1)(j − 1) + λcα,S(j+1)(j + 1)

(α + λ)cα,S(j+1)(j + 1) = cµ + µcα,S(j+1)(j) + λcα,S(j+1)(j + 2).

From the last four identities, (46) and Lemma 5.8(b), we obtain

cα,S(j+1)(j + 1) = cα,S(j)(j + 1) + µ
(α + λ + µ) qα(j + 1) − µ

(α + λ) (α + λ + µ) qα(j + 1) − λµ
cα,S(j)(j).

In the casej = n − 1, we have the equations

(α + λ)cα,S(n−1)(n − 1) = cµ + µcα,S(n−1)(n − 2) + λcα,S(n−1)(n)

(α + λ + µ)cα,S(n)(n − 1) = cµ + µcα,S(n)(n − 2) + λcα,S(n)(n)

(α + λ)cα,S(n)(n) = (c + rλ)µ + µcα,S(n)(n − 1).

From these, (46), (48), and Lemma 5.8(b), we obtain

cα,S(n)(n) = cα,S(n−1)(n) + µ
(α + λ + µ) qα(n) − µ

(α + λ) (α + λ + µ) qα(n) − λµ
cα,S(n−1)(n − 1),

as required. This completes the proof. 2

5.1.3 Discounted MPI

We next set out to establish PCL(F )-indexability, and to calculate the discounted MPI. We start by construct-
ing indexνα,∗(i) , cα,S(i)(i)/wα,S(i)(i) (cf. (11)).

Proposition 5.15 Indexνα,∗(i) is calculated by the following recursion:

να,∗(i) =






cµ

α

{
1 −

(
λ

α + λ

)n}
+ rµ

(
λ

α + λ

)n

if i = 1

να,∗(i − 1) −
να,∗(i − 1) − cα,S(i−1)(i)

wα,S(i)(i)
if 2 ≤ i ≤ n.

(49)

Proof. We have, usingwα,S(1)(1) = 1 and (43),

να,∗(1) =
cα,S(1)(1)

wα,S(1)(1)
=

cµ

α

{
1 −

(
λ

α + λ

)n}
+ rµ

(
λ

α + λ

)n

.

Further, for2 ≤ i ≤ n, using Lemmas 5.9 and 5.14, we obtain

να,∗(i) =
cα,S(i)(i)

wα,S(i)(i)

=

cα,S(i−1)(i) + µ
(α + λ + µ) qα(i) − µ

(α + λ) (α + λ + µ) qα(i) − λµ
cα,S(i−1)(i − 1)

wα,S(i)(i)

=

cα,S(i−1)(i) + µ
(α + λ + µ) qα(i) − µ

(α + λ) (α + λ + µ) qα(i) − λµ
wα,S(i−1)(i − 1)να,∗(i − 1)

wα,S(i)(i)

=
cα,S(i−1)(i) +

{
wα,S(i)(i) − 1

}
να,∗(i − 1)

wα,S(i)(i)

= να,∗(i − 1) −
να,∗(i − 1) − cα,S(i−1)(i)

wα,S(i)(i)
,

as required. This completes the proof. 2
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Proposition 5.16 The following inequalities hold (strictly iffc > αr):

(a) να,∗(i − 1) ≥ cα,S(i−1)(i), 2 ≤ i ≤ n.

(b) να,∗(1) ≥ να,∗(2) ≥ · · · ≥ να,∗(n).

Proof. We argue by upward induction oni. The casei = 2 follows from

να,∗(1) − cα,S(1)(2) =

(
λ

α + λ

)n−1
c − αr

α + λ
µ ≥ 0.

Suppose nowνα,S(i−1)(i − 1) ≥ cα,S(i−1)(i) for some2 ≤ i ≤ n − 1. Then, we can write

να,∗(i) = cα,S(i−1)(i) +
wα,S(i)(i) − 1

wα,S(i)(i)

{
να,∗(i − 1) − cα,S(i−1)(i)

}

≥ cα,S(i−1)(i) ≥ cα,S(i)(i + 1),

where we have used the stated reformulation of (49), the induction hypothesis and the fact thatcα,S(i−1)(i)
is nondecreasing ini, which follows immediately from (45). This completes the induction.

(b) This part follows directly from part (a) and Proposition5.15.
In both parts it is readily seen that the inequalities are strict iff c > αr. This completes the proof. 2

We can now give the main result of this section.

Theorem 5.17

(a) Anα-discount delay-sensitive class is PCL(F )-indexable, with MPIνα,∗(i).

(b) The class isα-discount PCL(F )-indexable for anyα > 0 iff it is pure delay-sensitive (c > 0 = r).

Proof. (a) This part follows from Proposition 5.12(a) and Proposition 5.16(b).
(b) This part follows immediately from the above. 2

It is insightful to consider the limit of discounted MPIνα,∗(i) as the buffer sizen grows to infinity, for
fixed i. In the pure delay-sensitive case, it is also of interest to consider themyopic indexdefined by

νmyopic(i) , lim
α→∞

ανα,∗(i).

The following result gives simple expressions for both limiting indices, which show corresponding as-
ymptotic relations with thecµ rule.

Proposition 5.18

(a) limn→∞ να,∗(i) = cµ/α, i ≥ 1.

(b) νmyopic(i) = cµ, 1 ≤ i ≤ n.

Proof. Both parts follow immediately by taking the correspondinglimits in Proposition 5.15(a). 2

5.2 Bias criterion and MPI

In order to design appropriate indices for delay-sensitiveclasses in average-criterion scheduling problem (3),
we draw on the above analysis via a vanishing discount approach to define the index

ν∗(i) , lim
α↘0

να,∗(i), 1 ≤ i ≤ n. (50)

We will show next that indexν∗(i) is well defined, and will derive it in closed form. We will further
demonstrate thatν∗(i) is indeed an MPI, relative to the bias criterion, as introduced in Section 3.3.

To calculateν∗(i) we will draw on recursion (49) in Proposition 5.15, which characterizes the discounted
MPI να,∗(i), letting the discount factorα vanish. We will thus need to calculate the undiscounted pivot
marginal workloads

wS(i)(i) , lim
α↘0

wα,S(i)(i), 1 ≤ i ≤ n,
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along with the undiscounted auxiliary marginal costs

cS(i−1)(i) , lim
α↘0

cα,S(i−1)(i), 2 ≤ i ≤ n.

The following result gives closed-form expressions for thewS(i)(i)’s. Notice that we writeρ , λ/µ.

Lemma 5.19

(a) TermswS(i)(i) are characterized by the recursionwS(1)(1) = 1 and

wS(i)(i) = 1 +
wS(i−1)(i − 1)

ρ
, 2 ≤ i ≤ n.

(b) The solution to such recursion is: for1 ≤ i ≤ n,

wS(i)(i) =

i−1∑

j=0

ρ−j =






1 − ρi

(1 − ρ)ρi−1
if ρ 6= 1

i if ρ = 1.

Proof. (a) The identitywS(1)(1) = 1 is trivial. Further, lettingq(i) , limα↘0 qα(i), we obtain from the first
identity in Lemma 5.9 that

wS(i)(i) = 1 + µ
(λ + µ) q(i) − µ

λ (λ + µ) q(i) − λµ
wS(i−1)(i − 1) = 1 +

wS(i−1)(i − 1)

ρ
, 2 ≤ i ≤ n,

as required.
(b) This part follows immediately from part (a). 2

We next calculate the required undiscounted auxiliary marginal costs.

Lemma 5.20

cS(i−1)(i) = c
n − i + 1

ρ
+ rµ, 2 ≤ i ≤ n.

Proof. We take limits in (45), using L’Hôpital’s rule, to obtain

cS(i−1)(i) = lim
α↘0

cα,S(i−1)(i)

= lim
α↘0

cµ

α

{
1 −

(
λ

α + λ

)n−i+1
}

+ rµ

(
λ

α + λ

)n−i+1

= c
n − i + 1

ρ
+ rµ,

as required. 2

We are now ready to calculate indexν∗(i).

Proposition 5.21

(a) Indexν∗(i) is calculated by the following recursion:

ν∗(i) =






c
n

ρ
+ rµ if i = 1

ν∗(i − 1) −
ν∗(i − 1) − cS(i−1)(i)

wS(i)(i)
if 2 ≤ i ≤ n.
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Figure 5: Discounted work-cost achievable performance region: n = 10, λ = 0.9, µ = 1, r = 4, c = 5,
α = 0.1, 0.01, 0.001.

(b) The solution to such recursion is: for1 ≤ i ≤ n,

ν∗(i) =






c

ρ

{
n −

ρ

1 − ρ
+ i

ρi

1 − ρi

}
+ rµ if ρ 6= 1

c

{
n −

i − 1

2

}
+ rµ if ρ = 1.

Proof. (a) We have, taking the limitα ↘ 0 in the first identity in (49),

ν∗(1) = lim
α↘0

να,∗(1)

=
cµ

α

{
1 −

(
λ

α + λ

)n}
+ rµ

(
λ

α + λ

)n

= c
n

ρ
+ rµ.

Further, the stated recursion follows immediately from itscounterpart in (49).
(b) The result is readily verified by induction. 2

Having calculated indexν∗(i), we next argue that it is indeed an MPI, though not relative tothe con-
ventional average criterion in Section 3.2. To gain insight, let us start by understanding how the discounted
work-cost achievable performance region changes as the discount factor vanishes. Figure 5 displays such
region (appropriately scaled) in a specific instance under the discount factor valuesα = 0.1, 0.01, 0.001.
Figure 5 illustrates the phenomenon which occurs in the general delay-sensitive case: asα approaches0,
the achievable performance region ofα-scaled discounted work-cost pairs(αgα,π, αfα,π), spanned under
all admissible policiesπ ∈ Π, collapses into a line segment, as shown in Figure 6. The latter is precisely
the average work-cost achievable performance region, spanned by average work-cost pairs(gπ, fπ). The
segment’s right end-point is achieved by theS(n + 1)-active policy (work whenever there are jobs in the
queue), whereas its left end-point is achieved, not only by theS(i)-active policy, fori = 1, . . . , n, but by any
policy which idles the server when the buffer is full. Noticethat any such policy induces a Markov chain with
absorbing staten, while the other states are transient.
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Figure 6: Average work-cost achievable performance region: n = 10, λ = 0.9, µ = 1, r = 4, c = 5.

We thus see that the required regularity condition (14) of average work measuregπ relative toF -policies
does not hold. Therefore, the corresponding bandit is not averageF -indexable and the average MPI does not
exist (cf. Definition 3.5). In light of the insight furnishedby Figure 6, it is clear that averageν-wage problem
(13) is solved by theS(n + 1)-active policy iffν ≤ ν∗(n), whereas it is solved by any policy which idles the
server in staten iff ν ≥ ν∗(n).

To resolve such difficulty, we propose to use the concepts ofbiasF -indexabilityandbias MPI, introduced
in Section 3.3. The next result states thatν∗(i) is indeed the MPI in such setting.

Theorem 5.22 A delay-sensitive class (c > 0) is biasF -indexable, with bias MPIν∗(i).

Since our proof of Theorem 5.22 is based on new techniques, which draw on our PCL-indexability theory,
we next outline the proof’s main ingredients before presenting it. The key tool will be the Workload Refor-
mulation lemma in Niño-Mora [10, Lemma 4.8]. This reformulates the difference between the discounted
ν-wage problem (4)’s objective

vα,π(ν) , fα,π + νgα,π

under an arbitrary policyπ ∈ Π and under a givenF -policy, as a weighted sum of workload terms. Recall
that we assume the initial state to be drawn from an arbitrarydistribution —which is implicit in the notation—
assigning a positive probability to every state.

To state and deploy the result, we must introduce additionalnotation, as follows. For a policyπ ∈ Π,
actiona ∈ {0, 1} and statej ∈ N , we definexα,a,π(j) as the discounted state-action occupancy measure,
i.e. the expected total discounted time that actiona is taken in statej under policyπ. We further define, for
an active-state setS ∈ F , the aggregate marginal work measures

Wα,S,0,π ,
∑

j∈S

wα,S(j)xα,0,π(j), Wα,S,1,π ,
∑

j∈N{0,1}\S

wα,S(j)xα,1,π(j).

We next state the Workload Reformulation lemma, as it applies to the present model.

Lemma 5.23 For any state2 ≤ i ≤ n, policyπ ∈ Π and wageν ∈ R, the discountedν-wage problem’s
objective can be reformulated as

vα,π(ν) = vα,S(i)(ν) + Wα,S(i),1,π{ν − να,∗(i)} + Wα,S(i),0,π{να,∗(i − 1) − ν}

+

i−2∑

j=1

Wα,S(j+1),0,π{να,∗(j) − να,∗(j + 1)} +

n∑

j=i+1

Wα,S(j),1,π{να,∗(j − 1) − να,∗(j)}.
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We will further use the fact that the undiscounted marginal workloads

wS(i) , lim
α↘0

wα,S(i), 1 ≤ i ≤ n, S ∈ F , (51)

are well defined and positive. This follows immediately by setting α = 0 in Figure 3’s recursion.
Another ingredient in the proof is the observation that, under any admissible policyπ which idles the

server in staten, the following limiting occupancy measures are finite:

x1,π(j) , lim
α↘0

xα,1,π(j) < ∞, 1 ≤ j ≤ n

x0,π(j) , lim
α↘0

xα,0,π(j) < ∞, 1 ≤ j ≤ n − 1.
(52)

Such result is an immediate consequence of the fact that under any such policy staten is absorbing.
It follows readily from the above that, under any such policyπ, the following limiting aggregate marginal

workloads are finite:

WS,0,π ,
∑

j∈S

wS(j)x0,π(j) = lim
α↘0

Wα,S,0,π < ∞, n /∈ S ∈ F

WS,1,π ,
∑

j∈N{0,1}\S

wS(j)x1,π(j) = lim
α↘0

Wα,S,1,π < ∞, S ∈ F .
(53)

We next draw on the above to present a counterpart to Lemma 5.23 well-suited to establish bias optimality.

Lemma 5.24 For any state2 ≤ i ≤ n, wageν ∈ R and admissible policyπ which idles the server in state
n, it holds that:

lim
α↘0

vα,π(ν) − vα,S(i)(ν) = WS(i),1,π{ν − ν∗(i)} + WS(i),0,π{ν∗(i − 1) − ν}

+

i−2∑

j=1

WS(j+1),0,π{ν∗(j) − ν∗(j + 1)} +

n∑

j=i+1

WS(j),1,π{ν∗(j − 1) − ν∗(j)}.

Proof. We use Lemma 5.23, (50), and (51)–(53) to write, for any suchpolicy π,

vα,π(ν) − vα,S(i)(ν) = Wα,S(i),1,π{ν − να,∗(i)} + Wα,S(i),0,π{να,∗(i − 1) − ν}

+

i−2∑

j=1

Wα,S(j+1),0,π{να,∗(j) − να,∗(j + 1)} +

n∑

j=i+1

Wα,S(j),1,π{να,∗(j − 1) − να,∗(j)}

= WS(i),1,π{ν − ν∗(i)} + WS(i),0,π{ν∗(i − 1) − ν}

+

i−2∑

j=1

WS(j+1),0,π{ν∗(j) − ν∗(j + 1)} +

n∑

j=i+1

WS(j),1,π{ν∗(j − 1) − ν∗(j)

+ o(1) asα ↘ 0,

as required. 2

We are now ready to give the proof of Theorem 5.22. See Definition 3.8 and (19).

Proof of Theorem 5.22. Let 2 ≤ i ≤ n, and supposeν ∈ [ν∗(i), ν∗(i − 1)]. Let π be a stationary policy
which idles the server in staten. Then, we use Lemma 5.24 to obtain

lim
α↘0

vα,π(ν) − vα,S(i)(ν) = WS(i),1,π{ν − ν∗(i)} + WS(i),0,π{ν∗(i − 1) − ν}

+

i−2∑

j=1

WS(j+1),0,π{ν∗(j) − ν∗(j + 1)} +

n∑

j=i+1

WS(j),1,π{ν∗(j − 1) − ν∗(j)}

≥ 0,

(54)
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since every term in the right-hand side of (54) is nonnegative. It thus follows that theS(i)-active policy is
bias optimal for theν-wage problem.

Conversely, suppose theS(i)-active policy is bias optimal for theν-wage problem. Then, takingπ =
S(i + 1) in Lemma 5.24, we obtain

0 ≤ lim
α↘0

vα,S(i+1)(ν) − vα,S(i)(ν) = wS(i)(i)x1,S(i+1)(i){ν − ν∗(i)}.

SincewS(i)(i)x1,S(i+1)(i) > 0, it follows thatν ≥ ν∗(i).
Further, takingπ = S(i − 1) in 5.24, we obtain

0 ≤ lim
α↘0

vα,S(i−1)(ν) − vα,S(i)(ν) = wS(i)(i − 1)x0,S(i−1)(i − 1){ν∗(i − 1) − ν}.

SincewS(i)(i − 1)x0,S(i−1)(i − 1) > 0, it follows thatν∗(i − 1) ≥ ν. This completes the proof.2

5.3 Relation with thecµ-rule

Since the optimal policy for the infinite-buffer delay-sensitive version of scheduling problems (2) and (3) is
the classicalcµ-rule, it is insightful to investigate the behaviour of the MPI policies as buffer sizes grow.

Under the discounted criterion, Proposition 5.18(a) showsthat the MPI policy does approach asymptoti-
cally thecµ rule as buffer sizes grow.

The relation is not as straightforward under the average criterion. However, the bias MPI expression in
Proposition 5.21 reveals that the MPI policy will asymptotically approach thecµ-rule provided the following
condition holds:

n1

λ1
≈

n2

λ2
≈ · · · ≈

nK

λK
, asn1, . . . , nK → ∞, (55)

i.e. provided buffer sizes grow in fixed proportion to arrival rates.

6 Computational study

We next discuss the results of a computational study on the performance of MPI policies across the range
of 32 two-class instances shown in Table 1. As shown in Figure1, in some instances we vary the discount
factorα, where the valueα = 0 represents the average criterion. The results are presented in Table 2. For
each instance, we report the optimal costf∗, the costfMPI under the corresponding MPI policy, and the cost
fnaiveunder a naive policy. In the discounted case, such costs correspond to the discounted cost measurefα,π

scaled byα, for consistency with the limiting average case asα vanishes. The naive policy uses the index
(ck + rk)µk for a delay-sensitive classk, and it uses the static indexrkµk for a loss-sensitive class, breaking
ties with the dynamic indexrkµk(nk −Lk(t)). The results have been obtained by solving the corresponding
dynamic programming or evaluation equations, via a Matlab implementation by the author.

Notice that instances 1–9 are pure loss-sensitive, instances 10–21 are pure delay-sensitive, and instances
22-32 are mixed. Further, instances are based on the examplein Figure 1 of Kim and Van Oyen [4].

The results reported in Table 2 show that the MPI policy is near-optimal in every instance, and often even
optimal, and it significantly outperforms the naive policy in most instances. Only in instances 21 and 29 does
the naive policy slightly outperform the MPI policy.

We have further compared for every instance the structure ofthe optimal policy with that of the MPI and
the naive policies. We have found that in instances where both classes are delay-sensitive, the optimal policy
is consistent with the MPI policy in that both are represented by an switching curve which is nondecreasing
in the queue lengths(i1, i2). See, e.g. Figure 7, which displays the structure of the optimal, the MPI and the
naive policy for instance 8, where a square box means that queue1 is served, and a star means that queue2
is served.

In instances where both classes are delay-sensitive, however, one might be tempted to conjecture that
optimal policies are consistent with the state orderings induced by MPI policies. However, such is not the
case in general, as illustrated by Figure 8 on instance 14.
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Instance n λ µ c r α
1 (1, 1) (0.8, 0.5) (1, 1.2) (0, 0) (1, 2) 0.5
2 (10, 10) (0.8, 0.5) (1, 1.2) (0, 0) (1, 2) 0.5
3 (10, 10) (0.8, 0.5) (1, 1.2) (0, 0) (1, 2) 0.1
4 (10, 10) (0.8, 0.5) (1, 1.2) (0, 0) (1, 2) 0.01
5 (10, 10) (0.8, 0.5) (1, 1.2) (0, 0) (1, 2) 0
6 (10, 10) (0.8, 0.5) (1, 2) (0, 0) (1, 0.5) 0.5
7 (10, 10) (0.8, 0.5) (1, 2) (0, 0) (1, 0.5) 0.1
8 (10, 10) (0.8, 0.5) (1, 2) (0, 0) (1, 0.5) 0.01
9 (10, 10) (0.8, 0.5) (1, 2) (0, 0) (1, 0.5) 0
10 (5, 5) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.5
11 (5, 5) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.1
12 (5, 5) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.01
13 (5, 5) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0
14 (10, 10) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.5
15 (10, 10) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.1
16 (10, 10) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0.01
17 (10, 10) (1, 0.4) (2, 1) (1.1, 2) (0, 0) 0
18 (10, 10) (0.3, 0.1) (1, 1) (1.1, 1) (0, 0) 0.5
19 (10, 10) (0.3, 0.1) (1, 1) (1.1, 1) (0, 0) 0.1
20 (10, 10) (0.3, 0.1) (1, 1) (1.1, 1) (0, 0) 0.01
21 (10, 10) (0.3, 0.1) (1, 1) (1.1, 1) (0, 0) 0
22 (10, 10) (0.8, 0.3) (1, 2) (0, 0.4) (1, 0) 0.5
23 (10, 10) (0.8, 0.3) (1, 2) (0, 0.4) (1, 0) 0.1
24 (10, 10) (0.8, 0.3) (1, 2) (0, 0.4) (1, 0) 0.01
25 (10, 10) (0.8, 0.3) (1, 2) (0, 0.4) (1, 0) 0
26 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 1
27 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0.5
28 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0.2
29 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0.1
30 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0.05
31 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0.01
32 (10, 10) (0.3, 0.7) (2, 2) (1.01, 1) (10, 10) 0

Table 1: Cases investigated.

i1

i 2

i1

i 2

i1

i 2

0 1 2 3 4 5 6 7 8 9100 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 910
0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

Figure 7: Instance 8: structure of optimal, MPI and naive policies.
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Instance f∗ fMPI fnaive

1 0.7844 0.7844 0.7844
2 0.1211 0.1211 0.2007
3 0.1338 0.1340 0.2643
4 0.2083 0.2095 0.2481
5 0.2273 0.2370 0.2370
6 0.0728 0.0729 0.0731
7 0.0690 0.0692 0.0703
8 0.0817 0.0820 0.0825
9 0.0870 0.0873 0.0875
10 6.8987 6.9031 7.0784
11 5.2968 5.2991 6.1185
12 3.9894 3.9894 5.2446
13 3.7763 3.7763 5.0812
14 14.6226 14.6247 14.7759
15 11.7361 11.7446 12.9384
16 6.8651 6.8651 9.2980
17 5.7525 5.7525 8.1041
18 9.2155 9.2155 9.2314
19 5.9517 5.9898 6.0382
20 1.6257 1.6613 1.6667
21 0.7095 0.7220 0.7095
22 1.3088 1.3088 2.1302
23 0.5757 0.5757 2.2043
24 0.1872 0.1872 1.9814
25 0.1288 0.1288 1.8475
26 10.1600 10.1758 10.2461
27 8.5420 8.5480 8.5572
28 6.6019 6.6100 6.6112
29 4.8911 5.0195 4.9462
30 3.3978 3.4227 3.4227
31 1.5761 1.5767 1.5767
32 1.0014 1.0014 1.0014

Table 2: Results of computational experiments.
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Figure 8: Instance 14: structure of optimal, MPI and naive policies.
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