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Model selection criteria and quadratic discrimination in ARMA and

SETAR time series models

Pedro Galeano and Daniel Peña

Departamento de Estad́ıstica, Universidad Carlos III de Madrid, Spain.

Abstract

We show that analyzing model selection in ARMA time series models as a quadratic discrimination

problem provides a unifying approach for deriving model selection criteria. Also this approach suggest

a different definition of expected likelihood that the one proposed by Akaike. This approach leads to

including a correction term in the criteria which does not modify their large sample performance but can

produce significant improvement in the performance of the criteria in small samples. Thus we propose

a family of criteria which generalizes the commonly used model selection criteria. These ideas can be

extended to self exciting autoregressive models (SETAR) and we generalize the proposed approach for

these non linear time series models. A Monte-Carlo study shows that this family improves the finite

sample performance of criteria such as AIC, corrected AIC and BIC, for ARMA models, and AIC,

corrected AIC, BIC and some cross-validation criteria for SETAR models. In particular, for small and

medium sample size the frequency of selecting the true model improves for the consistent criteria and the

root mean square error of prediction improves for the efficient criteria. These results are obtained for both

linear ARMA models and SETAR models in which we assume that the threshold and the parameters are

unknown.

KEY WORDS: Model Selection Criteria; Asymptotic Efficiency; Consistency; Quadratic Discrimina-

tion Rule.

1 INTRODUCTION

Most of model selection criteria for linear time series can be written as follows:

min
k

{
log σ̂2

k + k × C(T, k)
}

, (1)
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where σ̂2
k is the maximum likelihood estimate of the residual variance, k is the number of estimated parameters

for the mean function of the process, T is the sample size and the function C(T, k) converges to 0 when

T → ∞. These criteria can be classified into two groups. The first one includes the consistent criteria

that, under the assumption that the data come from a finite order autoregressive moving average process,

have a probability of obtaining the true order of the model that goes to one when the sample size increases.

The Bayesian information criterion, BIC, by Schwarz (1978), where C(T, k) = log(T )/T , and the Hannan

and Quinn (1979) criterion, HQC, where C(T, k) = 2m log log(T )/T with m > 1, are consistent criteria.

The second group includes the efficient criteria that asymptotically select the order which produces the

least mean square prediction error. The final prediction error criterion, FPE, by Akaike (1969), where

C(T, k) = k−1 log(T+k
T−k ), the Akaike’s information criterion, AIC, by Akaike (1973), where C(T, k) = 2/T and

the corrected Akaike’s information criterion, AICc, by Hurvich and Tsai (1989), where C(T, k) = 1
k

2(k+1)
T−(k+2) ,

are efficient criteria.

These criteria have been derived from different points of view. The BIC approaches the posterior proba-

bilities of the models. The HQC has been derived to be a consistent criterion such that C(T, k) converges to

0 as fast as possible. The FPE selects the model that minimizes the one step ahead square prediction error.

The AIC is an approximately unbiased estimator of the expected Kullback-Leibler information of a fitted

model, which can be used as a discrepancy measure between the actual and the fitted model. The AICc is

a bias correction form of the AIC that appears to work better in small samples. In this article we consider

model selection as a discrimination problem and show that the BIC, AIC and AICc criteria can be derived

as approximations to a quadratic discriminant rule. This approach also introduces a correction term that

improves the finite sample performance of all these criteria but maintaining their asymptotic properties.

A useful non linear extension of ARMA models are the self-exciting threshold autoregressive (SETAR)

models, see Tong (1990). These models can explain interesting features found in real data, such as asymmetric

limit cycles, jump phenomena, chaos and so on. A series following a SETAR model is piecewise linear so

that the correction considered for linear models can be easily extended to these non linear models. Model

selection for SETAR models has been studied in Wong and Li (1998), Kapetanios (2001) and De Gooijer

(2001). We analyze the correction term obtained from our approach for SETAR model selection criteria and

show that this correction improves the finite sample performance of previous criteria.

The rest of this paper is organized as follows. Section 2 introduces the family of criteria for ARMA time

series models. Section 3 discusses the computation of the correction term. Section 4 includes the correction

term in SETAR time series models. Section 5 explores the performance of the proposed criteria in a Monte
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Carlo experiment and shows that they perform better than the classical criteria for all the models considered.

2 A FAMILY OF MODEL SELECTION CRITERIA BASED ON

THE QUADRATIC DISCRIMINANT RULE

The discrimination problem in time series appears as follows. Suppose it is known that a given time series,

x = (x1, ..., xT )′, has been generated by one of the models Mj , j = 1, ..., jmax. From the Bayesian point of

view we also know the prior probabilities p (Mj). The objective is to select the data generating model given

the time series data. In the general case, we assume that the models Mj are Gaussian processes given by

xt = µjt +njt, where µjt are deterministic mean functions and njt are zero mean ARMA models of the form

φj (B)njt = θj (B) ajt, where φj (B) and θj (B) are polynomials in the lag operator B such that Bxt = xt−1,

with no common roots. The models are assumed to be casual and invertible. The series ajt are white noise

residuals with variance σ2
ja. The simplest discriminant problem is to assume that the deterministic functions

µjt are different, but the covariance matrices Σj are all equal to Σ. This case corresponds to the situation

in which all the models have the same ARMA structure. Calling µj = (µj1, ..., µjT )′, this is equivalent to

consider the hypothesis Mj : x ∈ NT (µj , Σ), and we have that,

p (x | Mj) = (2π)−
T
2 |Σ|− 1

2 exp
(
−1

2
(x− µj)

′Σ−1 (x− µj)
)

, j = 1, . . . , jmax.

Maximizing the likelihood of the data implies minimizing the Mahalanobis distance between the data and

the vector of marginal means. The same conclusion is obtained from the Bayesian point of view assuming

equal prior probabilities p (Mj) = 1/jmax and maximizing the posterior probability of choosing the right

model. A more interesting case appears when the ARMA models are different, that is, Mj : x ∈ NT (µj , Σj),

for j = 1, ..., jmax, where Σj are the covariance matrices of x under each ARMA model njt. Then, assuming

for simplicity µj = 0,

p (x | Mj) = (2π)−
T
2 |Σj |−

1
2 exp

(
−1

2
(x− µj)

′Σ−1
j (x− µj)

)

the standard quadratic classification rule selects the model i if,

i = arg max
1≤j≤jmax

(2π)−
T
2 |Σj |−

1
2 exp

(
−1

2
(x− µj)

′Σ−1
j (x− µj)

)
(2)
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and the Bayesian rule selects the model i if,

i = arg max
1≤j≤jmax

p(Mj) (2π)−
T
2 |Σj |−

1
2 exp

(
−1

2
(x− µj)

′ Σ−1
j (x− µj)

)
. (3)

In this section the rules (2) and (3) are approximated in several ways and corrected versions of AIC,

AICc and BIC are obtained from these approximations. For that, we consider the case in which the time

series data, x = (x1, ..., xT )′, has been generated by the class of ARMA Gaussian processes given by:

xt − φ1xt−1 − . . .− φpxt−p = at − θ1at−1 − . . .− θqat−q, t = . . . ,−1, 0, 1, . . . (4)

where at is a sequence of independent Gaussian distributed random variables with zero mean and variance

σ2
p,q and we assume that p ∈ {0, ..., pmax} and q ∈ {0, ..., qmax}, where pmax and qmax are some fixed

upper bounds. We call the ARMA(p, q) model Mp,q, βp,q = (φ1p, . . . , φpp, 0, . . . , 0, θ1q, . . . , θqq, 0, . . . , 0)′ is a

(pmax + qmax)× 1 vector of parameters for the Mp,q model and we define αp,q =
(
βp,q, σ

2
p,q

)
. We denote the

parameters of the model that have generated the data as α0 =
(
β0, σ

2
0

)
. Thus, the vector of parameters αp,q

are the parameters conditioning that the true model is Mp,q. In this case, let β̂p,q be the maximum likelihood

estimate of the vector of parameters βp,q and let σ̂2
p,q be the maximum likelihood estimate of the innovations

variance. The covariance matrix of x assuming the model Mp,q can be written as ΣT (αp,q) = σ2
aQT (βp,q),

where QT (βp,q) is a T ×T matrix depending on the parameters βp,q. Let QT (βp,q) = L (βp,q)L′ (βp,q) be the

Cholesky decomposition of QT (βp,q). We denote, a (βp,q) = L (βp,q)
−1

x and Sx (βp,q) = a (βp,q)
′
a (βp,q).

We consider the following assumption:

Assumption 1: The models Mp,q are casual, invertible and stationary and with polynomials 1−φ1B−
. . .− φpB

p and 1− θ1B − . . .− θqB
q with no common roots.

2.1 A maximum likelihood approach

From (2), the discriminant rule assigns the data x = (x1, . . . , xT )′, to the model Mp,q with parameters αp,q

that maximizes p (x | Mp,q) = p (x | αp,q). In practice, the parameters are unknown and the first idea is to

substitute the unknown parameters αp,q by its maximum likelihood estimates, α̂p,q, but it is well known that

this solution will always choose the model with the largest number of parameters. We propose the following

way to obtain a suitable approximation of the quadratic rule. We compute the maximum likelihood estimate
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α̂p,q based on x for each possible model and select the one that maximizes,

Eα0 [log p(y|α̂p,q)] =
∫

p(y|α0) log p(y|α̂p,q)dy,

that is, the model that maximizes the expectation with respect to future observations generated by the

right model. Note that the model which will be selected by this criterion is the one which minimizes the

Kullback-Leibler distance between the selected model and the true one. As,

Eα0

[
log

p(y|α0)
p(y|α̂p,q)

]
=

∫
p(y|α0) log

p(y|α0)
p(y|α̂p,q)

dy ≥ 0

and as the integral is always positive, minimizing it implies making p(y|α̂p,q) as close as possible to p(y|α0).

This criterion computes the log-likelihood of each model using the estimates α̂p,q based on the sample and

then compute the expectation with respect to future observations. The model chosen is the one which leads

to a larger expected value of this maximized log-likelihood.

Note that this criterion is related to, although different from, the one given by Akaike (1973). He proposed

to select the estimation which leads to a larger value of,

Ebα [Ey [log p(y|α̂p,q)]] =
∫ ∫

p(y|α0) log p(y|α̂p,q)dydα̂p,q

where α̂ and y are assumed to be independent. Thus, Akaike computes the expected value with respect to

both the distribution of future observations and the distribution of the estimate. Our criterion, is simpler

and in practice leads to the same results, as we show next.

Lemma 1 Under assumption 1, the expectation with respect the true distribution of the data of the logarithm

of the probability of x given the parameters is given by:

1. if the parameters are evaluated at β̂p,q and T
T−(p+q) σ̂

2
p,q:

−T

2
(log 2π + 1)− T

2
log σ̂2

p,q −
1
2

log
∣∣∣QT

(
β̂p,q

)∣∣∣− (p + q) + Op(1), (5)

2. if the parameters are evaluated at β̂p,q and σ̂2
p,q:

−T

2
(log 2π + 1)− T

2
log σ̂2

p,q −
1
2

log
∣∣∣QT

(
β̂p,q

)∣∣∣− T (p + q + 1)
(T − p− q − 2)

+ Op(1). (6)
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Proof. Using (2), we have that,

Eα0 [log p (y | α̂p,q)] = −T

2
log 2π − T

2
log σ̂2

p,q −
1
2

log
∣∣∣QT

(
β̂p,q

)∣∣∣− 1
2
Eα0


Sy

(
β̂p,q

)

σ̂2
p,q


 , (7)

where Sy

(
β̂p,q

)
= y′Q−1

T

(
β̂p,q

)
y. Assuming that the model Mp,q is the right model, Brockwell and Davies

(1991) showed that,

E


Sy

(
β̂p,q

)

σ̂2
p,q


 '

E
[
Sy

(
β̂p,q

)]

E
[
σ̂2

p,q

] =
T (T + p + q)

(T − p− q − 2)
+ Op(1), (8)

that gives (6).

On the other hand, using that T log(1− (p+q)
T ) = − (p + q) + o(1), we have that,

T log 2π + T log
T

T − (p + q)
σ̂2

p,q + log
∣∣∣QT

(
β̂p,q

)∣∣∣ =

= T log 2π − T log
(

1− (p + q)
T

)
+ T log σ̂2

p,q + log
∣∣∣QT

(
β̂p,q

)∣∣∣ =

= T log 2π + T log σ̂2
p,q + (p + q) + log

∣∣∣QT

(
β̂p,q

)∣∣∣ + op(1).

Moreover, from (8),

E


 Sx

(
β̂p,q

)

T
T−(p+q) σ̂

2
p,q


 =

(T + p + q) T
T

T−(p+q) (T − p− q − 2)
+ Op(1) = (T + p + q) + Op(1),

which proves (5).

The expression (5) leads to the criterion:

AIC∗ (p, q) = log σ̂2
p,q +

2 (p + q)
T

+
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

= AIC (p, q) +
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

(9)

which is the corrected version of the Akaike criterion. Expression (6) leads to a model selection criterion of

the form:

AICc∗ (p, q) = log σ̂2
p,q +

2 (p + q + 1)
T − (p + q − 2)

+
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

= AICc (p, q) +
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

(10)
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which is the corrected version of the Hurvich and Tsai criterion.

2.2 A Bayesian approach

We analyze the rule in (3) taking into account that this approach requires prior probabilities of the models,

p(Mp,q) and the parameters, p(αp,q|Mp,q). The Bayesian point of view of maximizing the posterior probability

has been extensively considered, see Schwarz (1978), Chow (1981), Haughton (1988) or Raftery, Madigan

and Volinsky (1996), but, to the best of our knowledge, it has not been analyzed as a discrimination problem.

Lemma 2 Under assumption 1, the logarithm of the probability of x given the parameters is given by:

log p(x|Mp,q) =
1
2

(p + q + 1− T ) log (2π)− 1
2
(p + q + 1) log T − T

2
log σ̂2

p,q (11)

−1
2

log
∣∣∣QT

(
β̂p,q

)∣∣∣− 1
2
T + log p(α̂p,q|Mp,q) + Op(1).

Proof. Let,

h (αp,q) = −T

2
log (2π)− 1

2
log |ΣT (αp,q)| − 1

2
x′ΣT (αp,q)

−1
x + log p(αp,q|Mp,q),

then, applying the Laplace’s method, see Tierney and Kadane (1986), we obtain,

p(x|Mp,q) ≈ (2π)
p+q+1−T

2 |H (α̂p,q)|
1
2 |ΣT (α̂p,q)|−

1
2 exp

(
−1

2
x′ΣT (α̂p,q)

−1
x

)
p(α̂p,q|Mp,q),

where α̂p,q is the maximum likelihood estimate of αp,q and H is minus the inverse Hessian of h evaluated at

α̂p,q. Then,

log p(x|Mp,q) ≈ p + q + 1− T

2
log (2π)+

1
2

log |H (α̂p,q)|−1
2

log |ΣT (α̂p,q)|−1
2
x′ΣT (α̂p,q)

−1
x+log p(α̂p,q|Mp,q).

Raftery, Madigan and Volinsky (1996) proved that log |H (α̂p,q)| = −(p + q + 1) log T + Op(1) because

H (α̂p,q) is asymptotically equal to the inverse of the observed information matrix, which in turn is asymp-
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totically equal to T times a constant matrix. Then,

log p(x|Mp,q) =
1
2

(p + q + 1− T ) log (2π)− 1
2
(p + q + 1) log T − 1

2
log |ΣT (α̂p,q)|

−1
2
x′ΣT (α̂p,q)

−1
x + log p(α̂p,q|Mp,q) + O(1) =

1
2

(p + q + 1− T ) log (2π)− 1
2
(p + q + 1) log T

−T

2
log σ̂2

p,q −
1
2

log
∣∣∣QT

(
β̂p,q

)∣∣∣− 1
2
T + log p(α̂p,q|Mp,q) + Op(1),

which proves the stated result.

Therefore, dividing by T in (11), taking the same prior probabilities for all the parameters and ignoring

some constant terms leads to the corrected BIC selection criterion,

BIC∗ (p, q) = log σ̂2
p,q +

log(T ) (p + q + 1)
T

+
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

= BIC (p, q) +
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T

. (12)

All the criteria obtained can be written in a compact way as members of the family of criteria,

min
(p,q)



log σ̂2

p,q + (p + q)× C(T, p + q + 1) +
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T



 , (13)

where the term
∣∣∣QT

(
β̂p,q

)∣∣∣ is computed as we will show in section 3. Note that the properties of efficiency

and consistency of the criteria in (13) are not affected by the correction term. For that, first we state the

following Theorem whose proof is in the appendix, which shows that the criteria (9) and (10) are efficient.

Theorem 3 Under the assumptions: (A1) {xt} is generated by a stationary process xt−φ1xt−1−φ2xt−2−
. . . = at, t = . . . ,−1, 0, 1, . . . where at is a sequence of independent Gaussian distributed random variables

with zero mean and variance σ2
a and

∑∞
j=1 |φj | < ∞; (A2) The sequence φ (B) = 1 − φ1B − φ2B

2 − . . ., is

nonzero for |B| ≤ 1; (A3) pmax is a sequence of positive integers such that pmax → ∞ and pmax/
√

T → 0

as T → ∞; (A4) {xt} is not degenerate to a finite order autoregressive process, the AIC∗ and AICc∗ are

efficient.

Thus, AIC∗ and AICc∗ are similar to AIC and AICc for large samples, but includes the correction

factor log
∣∣∣QT

(
β̂p,q

)∣∣∣ /T , that we will show is important in finite samples. For the criterion in (12), the

consistency property is preserved due to Theorem 3 in Hannan (1980, p. 1073). Therefore, the criterion (12)

is a consistent criterion.
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Remark: The main contribution of this section is to view the model selection problem as a kind of

discrimination analysis and present an unified approach of criteria proposed in the literature from different

points of view. As far as we known, the connection between this two decision problems has not been

previously made. The technical details in both maximum likelihood and Bayesian points of view are included

for completeness. The inclusion of the correction term was analyzed in Hannan (1980) and concluded that it

can be omitted because it tends to zero with T . We will show in the simulation experiment its importance

in finite sample series. Hannan (1980) omitted this term to derive the consistency properties of the BIC.

Theorem 3 shows that the results in Hannan (1980) and Shibata (1980) are not affected by the inclusion of

this term.

3 ANALYSIS OF THE CORRECTION TERM

A key point in the previous discussion is obtaining a suitable expression for
∣∣∣QT

(
β̂p,q

)∣∣∣. We note that the

determinant depends on the maximum likelihood estimates under the hypothesis of an ARMA(p, q) model.

Leeuw (1994) provides an expression for |QT (βp,q)| in closed form which only depends on the parameters

βp,q and only requires the computation of two determinants of order m = max (p, q). The expression can be

written as:

|QT (βp,q)| =
∣∣(R′R− SS′) + (RV − US)′H ′

1H1 (RV − US)
∣∣

|R′R− SS′| , (14)

where R, S, U and V are m×m matrices given by:

R =





0 i < j

1 i = j

−φi−j i > j

U =





0 i < j

1 i = j

−θi−j i > j

S =





−φm+(i−j) i ≤ j

0 i > j
V =





−θm+(i−j) i ≤ j

0 i > j

and the matrix H1 is the T ×m matrix consisting of the first m columns of the adjoint of the T × T matrix

H, which has the same structure as U with 0 outside the first m inferior diagonals. The φi elements of the

previous matrices are 0 if m > p and the θi are 0 if m > q. Therefore, we can obtain
∣∣∣QT

(
β̂p,q

)∣∣∣ plugging

in the estimates β̂p,q in the formulas for the matrices R, S, U , V and H.

Let us analyze the term |QT (βp,q)|. As QT (βp,q) =
(
σ2

x/σ2
a

)
RT (αp,q), where σ2

x is the variance of xt and

9



RT (αp,q) is the correlation matrix of order T , we have |QT (βp,q)| =
(
σ2

x/σ2
a

)T |RT (αp,q)|. Durbin (1960)

and Ramsey (1974) show that:

σ2
x/σ2

a =
∞∏

i=1

(
1− φ2

ii (βp,q)
)−1

, |RT (αp,q)| =
T−1∏

i=1

(
1− φ2

ii (βp,q)
)T−i

respectively, where φii (βp,q) are the partial autocorrelations of the process. It is important to note that

these partial autocorrelations are obtained under the assumption of an ARMA(p, q) model. Then,

|QT (βp,q)| =

T−1∏
i=1

(
1− φ2

ii (βp,q)
)T−i

∞∏
i=1

(1− φ2
ii (βp,q))

T
=

T−1∏

i=1

(
1− φ2

ii (βp,q)
)−i

∞∏

i=T

(
1− φ2

ii (βp,q)
)−T

. (15)

Consequently, the criteria (13) can be written as follows:

min
(p,q)

{
log σ̂2

p,q + (p + q)× C(T, p + q)−
T−1∑

i=1

i

T
log

(
1− φ2

ii

(
β̂p,q

))
−

∞∑

i=T

log
(
1− φ2

ii

(
β̂p,q

))}
.

To understand further the corrected criteria, let us obtain the difference AIC∗ (p + 1, q)−AIC∗ (p, q)

which is given by

AIC∗ (p + 1, q)−AIC∗ (p, q) = log
σ̂2

p+1,q

σ̂2
p,q

+
2
T
−

T−1∑

i=1

i

T
log

(
1− φ2

ii

(
β̂p+1,q

))
−

−
∞∑

i=T

log
(
1− φ2

ii

(
β̂p+1,q

))
+

T−1∑

i=1

i

T
log

(
1− φ2

ii

(
β̂p,q

))
+

∞∑

i=T

log
(
1− φ2

ii

(
β̂p,q

))
,

and this can be approached by

σ̂2
p+1,q − σ̂2

p,q

σ̂2
p,q

+
2
T

+
T−1∑

i=1

i

T

(
φ2

ii

(
β̂p+1,q

)
− φ2

ii

(
β̂p,q

))
+

∞∑

i=T

(
φ2

ii

(
β̂p+1,q

)
− φ2

ii

(
β̂p,q

))
.

The first term measures the relative change between the variances, σ̂2
p+1,q and σ̂2

p,q. The second term

is a penalization for the inclusion of one additional parameter. The third and the fourth terms measure

the discrepancy between all the partial autocorrelation coefficients under both hypothesis, ARMA(p, q) and

ARMA(p + 1, q), with weights that increase with the lag. Therefore, AIC∗ (p + 1, q) <AIC∗ (p, q) if either:

(a) σ̂2
p+1,q is significantly smaller than σ̂2

p,q, or (b) the weighted sum of the partial autocorrelation coefficients

computed under the ARMA(p, q) model is greater than the corresponding sum under the ARMA(p + 1, q)
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model. The same interpretation applies to BIC∗ and AICc∗, and the only difference is the penalization term

for including one additional parameter.

In the case of autoregressive fitting, where the criteria (13) takes the form:

min
p



log σ̂2

p + p× C(T, p) +
log

∣∣∣QT

(
β̂p

)∣∣∣
T



 , (16)

and we note that then (14) is reduced to:

|QT (βp)| = 1
|R′R− SS′| (17)

and using that σ2
x/σ2

a =
p∏

i=1

(
1− φ2

ii (βp)
)−1 and taking into account that φ2

ii (βp) = 0 if i > p,

|QT (βp)| =

T−1∏
i=1

(
1− φ2

ii (βp)
)T−i

p∏
i=1

(1− φ2
ii (βp))

T
=

p∏

i=1

(
1− φ2

ii (βp)
)−i

. (18)

Therefore, for AR(p) models, the criteria (16) can be written as follows:

min
p

{
log σ̂2

p + p× C(T, p)−
p∑

i=1

i

T
log

(
1− φ2

ii

(
β̂p

))}
,

and the difference AIC∗ (p + 1)−AIC∗ (p) can be approached by

σ̂2
p+1 − σ̂2

p

σ̂2
p

+
2
T

+
p∑

i=1

i

T

(
φ2

ii

(
β̂p+1

)
− φ2

ii

(
β̂p

))
+

p + 1
T

φ2
p+1,p+1

(
β̂p+1

)
.

As in the case of ARMA models, the first term measures the relative change between the variances, σ̂2
p

and σ̂2
p+1, the second term is the penalization for including one additional parameter and the third term

measures the discrepancy between the first p partial autocorrelations under both hypothesis, AR(p) and

AR(p + 1). Finally, the last term measures the significance of the p + 1 autocorrelation coefficient.

4 MODEL SELECTION IN SETAR MODELS

One of the most often used nonlinear time series model is the self-exciting threshold autoregressive (SETAR)

model. A time series data, x = (x1, ..., xT )′ has been generated by the class of SETAR processes if it follows

11



the model:

xt = φj0 +
pj∑

i=1

φjixt−i + ajt, if rj−1 ≤ xt−d < rj (19)

where we assume that ajt, j = 1, . . . , k, is a white noise series with zero mean and finite variances σ2
aj

,

d ∈ {0, ..., dmax} is a positive integer and −∞ = r0 < r1 < . . . < rk−1 < rk = ∞ are the thresholds.

We also assume that pj ∈
{
0, ..., pmax

j

}
where pmax

j are some fixed upper bounds. We call Mp1,...,pk,d the

SETAR(p1, . . . , pk, d) model.

Exact maximum likelihood estimates of the parameters of the model (19) are not considered because the

thresholds r1, . . . , rk−1 are not continuous. Therefore, the parameters of the model (19) are estimated by

conditional likelihood. We assume the following assumption:

Assumption 2: The models Mp1,...,pk,d are stationary and ergodic with finite second moments and the

stationary distribution of x = (x1, ..., xT )′ admits a density that is positive everywhere.

Chan (1993) shows that under assumption 2, the conditional least squares estimators of the parameters

of a stationary ergodic threshold autoregressive model are strongly consistent. Let φj =
(
φj0, . . . , φjpj

)′,
j = 1, . . . , k, be the vector of parameters. The sums of squares function is:

Sx (φ1, . . . , φk, r0, . . . , rk) = Sx (φ1, r0, r1) + · · ·+ Sx (φk, rk−1, rk) = (20)

=
∑

r0<xt−d≤r1

a2
t + · · ·+

∑

rk−1≤xt−d<rk

a2
t ,

and the conditional least squares of (φ1, . . . , φk, r1, . . . , rk−1) are the values that minimize (20), which we

denote by φ̂1, . . . , φ̂k and r̂1, . . . , r̂k−1. The residual variances are defined as,

σ̂2
1 =

Sx

(
φ̂1, r0, r̂1

)

T1
, σ̂2

j =
Sx

(
φ̂j , r̂j−1, r̂j

)

Tj
, j = 2, . . . , k − 1, σ̂2

k =
Sx

(
φ̂k, r̂k−1, rk

)

Tk

where Tj are the number of observations in each regime for the estimates r̂1, . . . , r̂k−1.

Little attention has been paid to model selection in SETAR models. Wong and Li (1998) derive the AICc

for these models for the case k = 2 and propose a procedure for selecting and estimating a SETAR model

and compare via a simulation study three model selection criteria, AIC, AICc and BIC, which for k regimens
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are given by:

BIC (p1, . . . , pk) =
k∑

j=1

{
Tj log σ̂2

j + log Tj (pj + 1)
}

AIC (p1, . . . , pk) =
k∑

j=1

{
Tj log σ̂2

j + 2 (pj + 2)
}

(21)

AICc (p1, . . . , pk) =
k∑

j=1

{
Tj log σ̂2

j +
Tj (Tj + pj + 1)

Tj − pj − 3

}
.

The procedure proposed by Wong and Li (1998) when k = 2 and r1 = r and d are unknown works as follows:

(a) Fix the maximum autoregressive and delay orders {pmax
1 , pmax

2 , dmax}; (b) Assume r ∈ [l, u] ⊂ R, where

l is the 0.25× 100% percentile and u is the 0.75× 100% percentile of xt; (c) Let x(1), . . . , x(T ) be the order

statistics of xt; (d) Let Ir = {[0.25T ] , . . . , [0.75T ]}. Set r = x(i), i ∈ Ir; (e) Calculate,

min
{
C

(
p1, p2, d, x(i)

)
: p1 ∈ {1, . . . , pmax

1 } , p2 ∈ {1, . . . , pmax
2 } , d ∈ {1, . . . , dmax} , x(i) ∈ Ir

}
,

where C
(
p1, p2, d, x(i)

)
is the model selection criteria used. The autoregressive orders

(
p1, p2, d, x(i)

)
, the

delay parameter, d and the estimated threshold are the ones that minimize C
(
p1, p2, d, x(i)

)
.

This procedure gives the autoregressive orders and the delay parameter selected by the criterion and the

estimated threshold. Wong and Li (1998) carried out a Monte Carlo experiment for different models and

sample sizes for the criteria in (21), and conclude that the AICc is the preferable criterion for small sample

sizes but BIC is preferable for medium and large sample sizes.

De Gooijer (2001) proposes a procedure for selecting and estimating the parameters of a SETAR model

for three cross-validation criteria. The first four steps of the procedure proposed for the first criterion that

we denote by C1 are as in Wong and Li (1998). The rest of the procedure works as follows: (e) Omit one

observation of the series and with the remaining data set obtain conditional least squares estimates of the

parameters of the corresponding model, which we denote by φ̂t
j , predict the omitted observation and obtain

the predictive residual, at

(
φ̂t

j , r̂j−1, r̂j

)
; (f) Repeat the previous step for all the observations, and the final

model is the one that minimizes the C1 criterion defined as follows:

C1 (p1, . . . , pk) = T log

(
T−1

T∑
t=1

a2
t

(
φ̂t

j , r̂j−1, r̂j

))
. (22)
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Stoica et al (1986) proved that for a given model,

C1 (p1, . . . , pk) = AIC (p1, . . . , pk) + O(T−
1
2 ). (23)

Therefore, based on the definition of AICc and (23), De Gooijer (2001) define the following criterion:

Cc (p1, . . . , pk) = C1 (p1, . . . , pk) +
k∑

j=1

{
Tj (Tj + pj + 1)

Tj − pj − 3

}
. (24)

Moreover, De Gooijer (2001) proposes a generalization of a model selection criterion introduced by

McQuarrie et al (1997) for linear models. This criterion is not efficient or consistent but it has a good

performance in finite samples. This criterion for SETAR models is,

AICu (p1, . . . , pk) = AICc (p1, . . . , pk) +
k∑

j=1

Tj log
{

Tj

Tj − pj − 2

}
, (25)

and the cross validation criteria proposed by De Gooijer (2001) has the form:

Cu (p1, . . . , pk) = Cc (p1, . . . , pk) +
k∑

j=1

Tj log
{

Tj

Tj − pj − 2

}
. (26)

As SETAR models are piecewise linear we can include the correction term in (17) in each regime. There-

fore, we will explore the performance of the Wong and Li (1998) procedure but modifying the criteria BIC,

AIC, AICc and AICu by:

C∗ (p1, . . . , pk) = C (p1, . . . , pk) +
k∑

j=1

log
∣∣∣QTj

(
φ̂j

)∣∣∣ , (27)

where C (p1, . . . , pk) represents by the BIC, AIC, AICc and AICu in (21) and (25) respectively. In order to

compute the correction term in each regime we first estimate the parameters of the model by conditional

likelihood and then obtain the correction term in each regime as in (17).

In the same way, the cross-validation criteria proposed by De Gooijer (2001) can be modified as:

C∗1 (p1, . . . , pk) = C1 (p1, . . . , pk) +
k∑

j=1

log
∣∣∣QTj

(
φ̂j

)∣∣∣ , (28)

where C (p1, . . . , pk) represents C1 (p1, . . . , pk), Cc (p1, . . . , pk) and Cu (p1, . . . , pk). In this case, the pro-
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cedure in De Gooijer (2001) is modified by adding the correction term in the last step by estimating by

conditional least squares with all the observations in the series. Then, the final model selected is the one

that minimizes one of the criteria in (28). The correction term is computed as in the previous case.

5 MONTE CARLO EXPERIMENTS

5.1 Simulations for ARMA models

To evaluate the performance of the proposed criteria for ARMA models and different sample sizes, 1000

realizations were generated from the following six models, (M1) xt = 0.9xt−1 + at, (M2) xt = 1.4xt−1 −
0.7xt−2 + at, (M3) xt = 0.4xt−1 − 0.8xt−2 + 0.6xt−3 + at, (M4) xt = at + 0.8at−1, (M5) xt = 0.8xt−1 + at +

0.7at−1 and (M6) xt = 1.4xt−1 − 0.7xt−2 + at + 0.8at−1, where at are independent identically distributed

standard normal. These models have been chosen to represent different situations. The first three represents

some common AR structures: a strong AR(1) dependency (M1), an AR(2) with two complex roots (M2),

and an AR(3) model with a real factor and two complex ones (M3). The second three models include

ARMA models which require long AR approximations with real roots (M4 and M5) and mixtures of real

and complex roots (M6). The first three models are used to show the performance of the corrected criteria

in finite autoregressive order models and the last three in ARMA processes. Based on the previous sections,

we compare the performance of criteria of the form:

min
p,q

{
log σ̂2

p,q + (p + q)× C(T, p + q)
}

and,

min
p,q



log σ̂2

p,q + (p + q)× C(T, p + q) +
log

∣∣∣QT

(
β̂p,q

)∣∣∣
T



 .

In all cases, 1000 series were generated from each model M1 to M6 with sample sizes T = 31, 51 and 101.

For autoregressive processes, where q = 0, we fit each model to the first T − 1 observations of each series by

maximum likelihood estimation and in each model, we obtain
∣∣∣QT

(
β̂p

)∣∣∣ as in (17). We fix pmax = 15, so

that 16 models are fitted for each series. For ARMA processes we fit the whole set of (pmax + 1)× (qmax + 1)

ARMA orders to the first T−1 observation where pmax = 4 and qmax = 4 by maximum likelihood estimation,

so that 25 models are fitted for each series. In each model, we obtain
∣∣∣QT

(
β̂p,q

)∣∣∣ by (14). In both cases,

with the model chosen by each criteria and the fitted parameters, we obtain the prediction in the least mean
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Table 1: Frequency of times of correct selection and root mean square prediction errors for the models
selected by each criterion. If C is a given criterion, C∗ is the corrected one by including the correction term
proposed in this article

T = 30

M BIC BIC∗ AIC AIC∗ AICc AICc∗ M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 793 851 469 612 667 749 1 1.28 1.16 1.58 1.35 1.17 1.12
2 763 829 454 662 694 782 2 1.13 1.08 1.41 1.26 1.03 0.99
3 566 587 422 578 596 623 3 1.22 1.10 1.39 1.23 1.07 1.03
4 495 595 187 309 360 460 4 1.03 1.01 1.12 1.05 1.07 1.02
5 302 423 101 185 224 352 5 1.09 1.05 1.10 1.02 1.09 1.01
6 314 510 111 270 262 474 6 1.04 0.99 1.07 1.03 1.04 1.03

T = 50

M BIC BIC∗ AIC AIC∗ AICc AICc∗ M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 879 902 538 641 675 727 1 1.06 1.06 1.10 1.10 1.09 1.09
2 878 914 553 677 695 771 2 1.06 1.06 1.10 1.08 1.08 1.07
3 802 819 554 681 690 745 3 1.11 1.11 1.15 1.13 1.12 1.11
4 655 728 246 314 326 399 4 1.09 1.09 1.24 1.16 1.17 1.14
5 554 628 226 283 314 397 5 1.13 1.13 1.18 1.16 1.17 1.14
6 598 725 265 384 385 512 6 1.03 1.00 1.06 1.01 1.01 1.00

T = 100

M BIC BIC∗ AIC AIC∗ AICc AICc∗ M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 931 940 584 629 633 671 1 1.17 1.17 1.17 1.16 1.16 1.16
2 906 917 589 655 663 704 2 0.99 0.98 0.94 0.94 0.93 0.90
3 944 954 622 702 685 758 3 1.09 1.09 1.12 1.10 1.09 1.10
4 833 852 378 418 441 458 4 1.14 1.14 1.23 1.23 1.23 1.22
5 826 843 418 435 463 493 5 0.91 0.89 0.92 0.92 0.92 0.92
6 857 888 500 537 564 607 6 1.02 1.01 1.03 1.03 1.04 1.03

square error sense for the last observation and we compare it with the true value. In this way, we obtain the

prediction error for this observation and the chosen model. As BIC and BIC∗ are consistent criteria, that

is, they aim at choosing the right order, and AIC, AICc, AIC∗ and AICc∗ are efficient criteria, that is, they

aim at choosing the best predictor model, we analyze the consistency and the efficiency properties for all the

criteria in small and medium samples.

It is important to note that the fitting of the (pmax + 1)× (qmax + 1) ARMA models can lead to serious

estimation problems. See Hannan and Rissanen (1982), Hannan and Kavalieris (1984), Poskitt (1987),

Pukkila et al (1990) or Pötscher (1990), among others. These authors have proposed algorithms to estimate

the true orders (p, q) of an ARMA process by means of the consistent estimation of m=max(p, q). Knowing

m avoids the estimation of overparametrized ARMA processes that leads to some inconsistency problems.

Here, for simplicity, we consider the whole search over all the candidate models. When a estimated singular

covariance matrix is found in the Monte-Carlo experiment, it is rejected from the comparison with other
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Table 2: Mean and Standard Error of the model order chosen by the criteria compared for M1, M2 and M3

T = 30

M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 1.50
(1.54)

1.23
(0.73)

3.93
(4.26)

2.04
(1.94)

1.71
(1.41)

1.41
(0.94)

2 2.57
(1.71)

2.19
(0.68)

4.86
(3.99)

2.83
(1.69)

2.60
(1.28)

2.31
(0.81)

3 3.23
(1.69)

2.80
(0.74)

5.12
(3.62)

3.30
(1.42)

3.19
(1.15)

2.89
(0.76)

T = 50

M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 1.20
(0.70)

1.13
(0.48)

3.27
(3.69)

2.13
(2.23)

1.87
(1.81)

1.56
(1.24)

2 2.18
(0.66)

2.10
(0.43)

4.01
(3.39)

2.90
(1.87)

2.78
(1.67)

2.44
(1.05)

3 3.15
(0.77)

3.04
(0.56)

4.53
(2.74)

3.64
(1.52)

3.56
(1.32)

3.31
(0.92)

T = 100

M BIC BIC∗ AIC AIC∗ AICc AICc∗

1 1.09
(0.40)

1.07
(0.33)

2.66
(3.00)

2.20
(2.33)

2.13
(2.15)

1.86
(1.72)

2 2.12
(0.44)

2.10
(0.36)

3.69
(2.90)

3.13
(2.18)

3.04
(2.01)

2.76
(1.63)

3 3.07
(0.36)

3.05
(0.31)

4.38
(2.59)

3.86
(1.89)

3.89
(1.87)

3.56
(1.32)

models.

We will compare the 3 criteria with their corrected versions in the six models, so that 54 comparisons

are made. The frequencies over 1000 where the criteria chose the right order for the six models are shown

in columns 2 to 7 in Table 1. It can be seen that for small sample size, T = 30, the improvement in the

number of times in which the correct model is selected can be as large as 143% (see AIC and AIC∗ in M6)

and for T = 100 as large as 13% (see AIC and AIC∗ in M3). On the other hand, columns 9 to 14 in Table 1

show the root mean square prediction error estimated for each criteria in all the sample sizes. For T = 30,

the corrected criteria improves the forecast performance of the original ones. For T = 50 and T = 100, the

root mean square prediction errors of the corrected criteria are also smaller in most of the cases, but the

differences between the corrected and the original criteria are small, especially for T = 100.

Table 2 presents the mean and the standard error or the orders chosen by each criteria for the autore-

gressive fitting for the first three models. For all the sample sizes considered, the corrected criteria performs

better than the original versions. Note that the inclusion of the term
∣∣∣QT

(
β̂p

)∣∣∣ is very effective in reducing

the standard error of the order taken by the criteria, especially for the case of T = 30, where the standard

deviation is reduced by more than 50% by introducing the correction term.

Finally, we carried out a last experiment to analyze the forecasting performance of AR approximations to
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Table 3: Root Mean Square Prediction Error for M4

T BIC BIC∗ AIC AIC∗ AICc AICc∗

30 1.33 1.23 1.51 1.36 1.13 1.11
50 1.15 1.14 1.17 1.14 1.12 1.13
100 1.09 1.10 1.09 1.08 1.09 1.09

ARMA models. We generate 1000 series from the model M4 for the sample sizes T = 31, 51 and 101. We fit

an autoregressive model by maximum likelihood with pmax = 15 for the first T − 1 observations, and obtain

the prediction error for the last observation for the model chosen by each criterion. With the 1000 series we

estimate the root mean square prediction error. Table 3 shows the results. For T = 30, in all the cases, the

corrected criteria outperform the original criteria. For the sample sizes T = 50 and T = 100, the corrected

criteria perform better than the original ones in the cases of BIC and AIC, but the differences between the

original and the corrected criteria are quite small. We conclude that the correction term improves the small

and medium sample performance of all the corrected criteria.

5.2 Simulations for SETAR models

To evaluate the performance of the proposed criteria for SETAR models and different sample sizes, 1000

realizations were generated from the following two stationary SETAR models,

(M7)





xt = −0.8xt−1 + a1t, xt−1 ≤ 0

xt = −0.2xt−1 + a2t, xt−1 > 0
(M8)





xt = 0.5xt−1 + a1t, xt−1 ≤ 0

xt = −0.5xt−1 + a2t, xt−1 > 0

where ajt ∼ N (0, 1), j = 1, 2. Based on section 4, we compare the performance of the criteria in (21),

(25) with respect to the criteria in (27) and the criteria in (22), (24) and (26) with respect to the criteria

in (28). In all cases, 1000 series were generated from models M7 and M8 with sample sizes T = 31, 51 and

101. We proceed as in Wong and Li (1998) and De Gooijer (2001) by using a grid to estimate the threshold

parameter r. We fit each model to the first T − 1 observations of each series by conditional likelihood in

each model, we obtain the correction term in (17) in each regime. We first assume that the delay parameter

is known and fix pmax
1 = pmax

2 = 5 for T = 31, 51 and 101, so that taking into account that the number of

possible values of the threshold parameter is (T − 1)/2, we compare 375, 625 and 1250 models respectively.

In every case, we consider the following measures of the performance of the model selection criteria: (a) the

frequency detection of the correct order (p1, p2) = (1, 1), (b) the root mean square error of estimation of
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Table 4: Frequency of times of correct selection, root mean square errors of the threshold parameter and
root mean square prediction errors assuming that d is known

M T = 30 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 306 377 254 331 800 856 903 923 363 474 818 854 895 923
7 RMSE 0.62 0.62 0.60 0.60 0.41 0.40 0.40 0.39 0.55 0.54 0.40 0.40 0.40 0.39
7 RMSPE 1.41 1.37 1.38 1.32 1.13 1.13 1.12 1.12 1.22 1.22 1.14 1.12 1.12 1.11

8 (p1, p2) 306 361 243 310 779 825 876 913 378 450 786 840 890 921
8 RMSE 0.84 0.84 0.82 0.82 0.65 0.66 0.65 0.65 0.73 0.74 0.64 0.65 0.63 0.63
8 RMSPE 1.64 1.63 1.64 1.64 1.16 1.15 1.13 1.12 1.31 1.31 1.14 1.13 1.12 1.12

M T = 50 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 420 512 198 298 629 686 789 827 286 395 634 688 796 836
7 RMSE 0.58 0.56 0.55 0.54 0.47 0.47 0.47 0.47 0.53 0.52 0.45 0.45 0.45 0.44
7 RMSPE 1.15 1.14 1.19 1.19 1.06 1.06 1.06 1.06 1.15 1.15 1.07 1.07 1.07 1.06

8 (p1, p2) 412 507 216 307 633 704 802 846 313 406 659 724 820 855
8 RMSE 0.74 0.74 0.73 0.74 0.63 0.63 0.63 0.64 0.70 0.70 0.63 0.65 0.64 0.64
8 RMSPE 1.19 1.19 1.24 1.23 1.15 1.15 1.13 1.12 1.22 1.22 1.15 1.14 1.12 1.12

M T = 100 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 743 796 359 431 537 591 753 789 358 439 522 589 765 799
7 RMSE 0.54 0.52 0.52 0.51 0.50 0.48 0.50 0.47 0.51 0.49 0.49 0.47 0.48 0.46
7 MSPE 1.06 1.06 1.08 1.06 1.07 1.06 1.06 1.06 1.08 1.08 1.07 1.07 1.06 1.06

8 (p1, p2) 771 819 365 446 545 600 773 816 398 461 542 611 773 805
8 RMSE 0.59 0.59 0.58 0.59 0.57 0.58 0.57 0.57 0.58 0.58 0.56 0.57 0.56 0.57
8 RMSPE 1.06 1.05 1.07 1.07 1.07 1.07 1.06 1.05 1.07 1.07 1.07 1.06 1.06 1.06

the threshold parameter and (c) the root mean square prediction error for the last observation based on the

model chosen by each criteria, the fitted parameters and the true value. The results are in Table 4. It can

be seen that for small sample size, T = 30, the improvement in the number of times in which the correct

model is selected can be as large as 30.5 % (see C1 and C∗1 in M7), for T = 50 as large as 50.5 % (see AIC

and AIC∗ in M7) and for T = 100 as large as 22.6 % (see AIC and AIC∗ in M7). We note that the AICu,

AICu∗, Cu and Cu∗ have larger frequency detection for T = 30 but the frequency detection decreases when

the sample size increases.

On the other hand, the root mean square error of estimation (RMSE) of the threshold parameter are

very close for the original and corrected criteria, whereas the root mean square prediction error (RMSPE)

is usually smaller for the corrected criteria.

Now, we assume that the delay is unknown and fix pmax
1 = pmax

2 = 5 and dmax = 4 for T = 31, 51

and 101, so that taking into account that the number of possible values of the threshold parameter is

(T − 1)/2, we compare the 1500, 2500 and 5000 models respectively. In every case, we consider the following

measures of the performance of the model selection criteria: (a) the frequency detection of the correct order
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Table 5: Frequency of times of correct selection, root mean square errors of the threshold parameter and
root mean square prediction errors assuming that d is unknown

M T = 30 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 205 303 163 248 739 808 862 897 292 403 765 824 863 913
7 d 540 559 553 571 582 616 589 617 540 540 573 578 573 575
7 (p1, p2, d) 135 187 117 165 463 517 527 566 187 240 469 499 517 536
7 RMSE 0.65 0.64 0.63 0.62 0.43 0.42 0.42 0.41 0.55 0.55 0.41 0.41 0.41 0.41
7 RMSPE 1.62 1.61 1.64 1.62 1.18 1.17 1.17 1.17 1.29 1.28 1.19 1.19 1.18 1.18

8 (p1, p2) 184 249 147 221 733 802 846 879 292 390 754 809 860 885
8 d 569 555 562 568 601 590 608 598 611 599 649 632 653 633
8 (p1, p2, d) 119 146 98 141 461 485 527 538 203 254 512 526 577 570
8 RMSE 0.90 0.90 0.88 0.88 0.68 0.69 0.67 0.67 0.78 0.78 0.67 0.68 0.66 0.67
8 RMSPE 1.90 1.86 1.90 1.86 1.27 1.25 1.24 1.22 1.52 1.51 1.28 1.27 1.25 1.24

M T = 50 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 223 340 85 168 529 624 744 800 187 292 554 645 746 812
7 d 335 337 337 320 364 365 369 371 384 380 394 403 406 419
7 (p1, p2, d) 99 130 40 63 225 250 296 318 107 149 252 288 326 360
7 RMSE 0.63 0.61 0.61 0.60 0.48 0.47 0.47 0.47 0.53 0.53 0.46 0.46 0.45 0.45
7 RMSPE 1.25 1.22 1.30 1.26 1.17 1.16 1.14 1.14 1.24 1.23 1.18 1.18 1.16 1.15

8 (p1, p2) 247 325 105 183 570 655 773 824 217 293 594 668 784 834
8 d 419 421 400 423 483 474 500 483 480 478 528 521 544 529
8 (p1, p2, d) 146 182 66 115 325 347 419 427 143 178 359 380 455 460
8 RMSE 0.84 0.84 0.82 0.82 0.68 0.68 0.68 0.68 0.72 0.72 0.66 0.66 0.65 0.66
8 RMSPE 1.44 1.44 1.39 1.35 1.20 1.20 1.17 1.16 1.31 1.29 1.20 1.19 1.18 1.18

M T = 100 BIC BIC∗ AIC AIC∗ AICc AICc∗ AICu AICu∗ C1 C∗1 Cc Cc∗ Cu Cu∗

7 (p1, p2) 652 747 221 330 388 480 667 773 235 316 401 481 662 773
7 d 491 542 489 527 504 542 522 527 552 567 567 572 582 582
7 (p1, p2, d) 351 421 135 192 210 286 376 436 195 251 301 351 436 481
7 RMSE 0.53 0.52 0.52 0.50 0.49 0.46 0.49 0.47 0.49 0.49 0.48 0.47 0.49 0.46
7 MSPE 1.04 1.03 1.05 1.05 1.06 1.06 1.04 1.02 1.06 1.06 1.04 1.02 1.04 1.03

8 (p1, p2) 808 888 371 466 547 632 838 863 421 532 602 662 798 863
8 d 732 727 667 667 677 692 717 712 747 773 773 788 788 793
8 (p1, p2, d) 632 662 291 371 431 486 632 637 376 456 517 562 657 697
8 RMSE 0.58 0.59 0.60 0.59 0.56 0.57 0.56 0.56 0.56 0.56 0.54 0.57 0.55 0.56
8 RMSPE 1.04 1.03 1.05 1.05 1.04 1.04 1.04 1.03 1.06 1.06 1.07 1.05 1.05 1.05
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(p1, p2) = (1, 1), (b) the frequency detection of selecting the correct delay parameter d = 1, (c) the frequency

detection of the correct order and delay parameter, (d) the root mean squared error of estimation of the

threshold parameter and (e) the root mean square prediction error for the last observation based on the

model chosen by each criteria, the fitted parameters and the true value. The results are given in Table 5. It

can be seen that for small sample size, T = 30, the improvement in the number of times in which the correct

orders (p1, p2, d)=(1, 1, 1) are selected can be as large as 43.8 % (see AIC and AIC∗ in M8), for T = 50 as

large as 74.2 % (see AIC and AIC∗ in M8) and for T = 100 as large as 42.2 % (see AIC and AIC∗ in M7). As

in the case in which d is assumed known, the AICu, AICu∗, Cu and Cu∗ have the larger frequency detection

for the true autoregression orders and delay parameters for T = 30 but the frequency detection decreases

when the sample size increases. We note that sometimes the corrected criteria have a shorter frequency

detection of the delay parameter but this is not a drawback for them because in this simulation the interest

is in detecting the true autoregressive orders and delay parameter and not only the delay parameter.

Regarding the RMSE and the RMSPE, the results are similar to the case in which d is assumed known.

A APPENDIX

Proof of Theorem 3. Shibata (1980) considers order selection criteria of the form:

So
T (p) = (T − pmax + δT (p) + 2p) σ̂2

p.

The order chosen for the selection criteria So
T (p) is efficient if δT (p) verifies the conditions imposed in

Theorem 4.2 of Shibata:

1. p lim
T→∞

(
max

1≤p≤pmax

|δT (p)|
T−pmax

)
= 0,

2. p lim
T→∞

(
max

1≤p≤pmax

|δT (p)−δT (p∗T )|
(T−pmax)LT (p)

)
= 0,

where plim denotes limit in probability, LT (p), is the following function,

LT (p) =
pσ2

a

T − pmax
+

∞∑

i=p+1

∞∑

j=p+1

φiφjΣij

where Σij = Cov
(
xt, xt−|i−j|

)
and p∗T is a sequence of positive integers with 1 ≤ p∗T ≤ pmax which attain

the minimum of LT (p) for each T (see Shibata, 1980, p.154). The AIC can be written in terms of So
T (p)
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taking δT (p) = δAIC
T (p) = T exp

(
2p
T

) − (T − pmax) − 2p. Shibata (1980) has shown that this term verifies

the two conditions, and this gives the asymptotic efficiency of AIC. We can write AIC∗ in terms of So
T (p)

taking δT (p) = δAIC∗
T (p) = T exp

(
2p
T

) (
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T − (T − pmax)− 2p. Therefore,

δAIC∗
T (p) = δAIC

T (p)− T exp
(

2p

T

) (
1−

(
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T

)
.

We show that δAIC∗
T (p) verifies both conditions. First we write,

∣∣δAIC∗
T (p)

∣∣
T − pmax

=

∣∣∣∣∣∣∣

exp
(

2p
T

) (
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T

1− pmax
T

−
2p
T

1− pmax
T

− 1

∣∣∣∣∣∣∣
. (29)

Hannan (1973) shows that (log |QT (γ)|) 1
T → 1, for every γ belonging to the parametric space, and

consequently,
(
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T → 1 and the limit when T →∞ of the maximum of the values (29) in the

set 1 ≤ p ≤ pmax is 0. This proves the first condition.

For the second condition, we write the following decomposition,

∣∣δAIC∗
T (p)− δAIC∗

T (p∗T )
∣∣

(T − pmax)LT (p)
≤

∣∣δAIC
T (p)− δAIC

T (p∗T )
∣∣

(T − pmax) LT (p)
+

+

∣∣∣∣T exp
(

2p∗T
T

)(
1−

(
log

∣∣∣QT

(
β̂p∗T

)∣∣∣
) 1

T

)
− T exp

(
2p
T

) (
1−

(
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T

)∣∣∣∣
(T − pmax) LT (p)

.

Shibata (1980) showed that the first term tends to 0 implying that AIC is efficient. For the second

expression, for any p such that 1 ≤ p ≤ pmax including p∗T , it can be shown that,

lim
T→∞

T exp
(

2p

T

)(
1−

(
log

∣∣∣QT

(
β̂p

)∣∣∣
) 1

T

)
= − log

(
−

p∑

i=1

i log
(
1− φ2

ii(βp)
)
)

< ∞.

As this limit is bounded for every p and (T − pmax) LT (p) → ∞ when T → ∞, for every 1 ≤ p ≤ pmax,

the second expression also tends to 0. Then, δAIC∗
T (p) verifies the second condition. Therefore, AIC∗ is

efficient. As AICc∗ is asymptotically equivalent to AIC∗, AICc∗ is also efficient.
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Stoica, P., Eykhoff, P., Janssen, P. and Söderström, T. (1986) Model-structure selection by cross-validation.

Int. J. Control 43, 1841-1878.

Tierney, L. and Kadane, J. B. (1986) Accurate approximations for posterior moments and marginal densi-

ties. J. Amer. Stat. Assoc. 81, 82-86.

Tong, J. (1990) Non-linear Time Series: A Dynamical System Approach. Oxford: Oxford University Press.

Wong, C. S. and Li, W. K. (1998) A note on the corrected Akaike information criterion for the threshold

autoregressive models. J. Time Ser. Anal., 19, 113-124.

24


