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Abstract

This paper presents of number of cointegration tests that exploit the statistical

properties of the records from the original time series variables. We prove their

consistency and obtain their asymptotic null distributions. Among the advan-

tages of this novel methodology, the new tests are invariant with respect to the

individual series’ variances and also with respect to monotonic transformations

applied to these series. In addition, these tests are robust against the presence of

level breaks as long as the number of these breaks increases slowly enough with

the sample size. Finally, an alternative scheme is proposed to deal with additive

outliers, which prevent them from causing size distortions.

Key Words and Phrases: Cointegrating relationships, records, counting process, co-

records, ranges, monotonic nonlinearities, structural breaks, additive outliers, robustness, in-

variance.
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1 INTRODUCTION

1.1 Generalities

Many real-world time series are not stationary in their levels and exhibit some

type of stochastic trend. Such time series are often called integrated as they

require successive di¤erencing to yield a stationary and invertible AutoRegressive

Moving-Average (ARMA) representation. Formally, a time series xt is said to be

integrated of order d, or brie‡y, xt » I(d) if d is the smallest number of times

2 that xt has to be di¤erenced so as to have an ARMA or I(0) representation.

That is, if we de…ne the …rst di¤erence operator ¢ as ¢xt = xt ¡ xt¡1 and by

recursion the i-th di¤erence operator as ¢ixt = ¢i¡1xt ¡ ¢i¡1xt¡1; then

xt » I(d) , d = min
©

i 2 Z+; ¢ixt » I(0)
ª

:

The de…nition of an I(0) process can also be extended to include a much wider

class of time series models by just requiring the time series to satisfy a functional

central limit theory, as in Davidson (1998). The presence of stochastic trends

prompts some technical problems for the analyst, one of which occurs when test-

ing a theory establishing that a given variable is formally linked to another in the

long run. The problem stems from the fact that unrelated series of this type have

nonsense spurious regressions ( Granger and Newbold, 1974; Phillips, 1986; and

Phillips and Durlauf, 1986). This means that an empirical relationship is found

more often than it should; a problem which does not dissappear with increasing
2The case of fractional di¤erencing is out of the scope of this paper.
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sample size. Therefore such theories cannot be tested empirically using the stan-

dard regression procedures based on the examination of the determination or R2

coe¢cient. When a couple of univariate time series, xt and yt; have a long-run

relationship they cannot wander far from each other and therefore deviations

from this long run path must be stationary. The concept of cointegration was

coined by Granger (1981) to describe this property. Two time series are said to

be (linearly) cointegrated if their long-run relationship is signi…cant and linear, or

in other words, if there is a nonzero real number ® so that ²t = yt ¡®xt is an I(0)

process. For this to be possible both time series must be integrated of the same

order d. A most interesting case arises when d = 1, since many economic time

series seem to have a unit root. Rather than inspecting the quality of the adjust-

ment in the regression between two I(1) processes, a test of unit roots such as

the standard Dickey-Fuller (DF) and the Augmented Dickey-Fuller (ADF) tests

(Dickey and Fuller, 1979), or the related Phillips-Perron (PP) test ( Phillips and

Perron, 1988), is often applied to the OLS residuals from that static regression

of the variables. Such devices are known as residual-based tests for cointegration,

and they all exploit the fact that in the spurious regression case (null hypothesis

of non-cointegration) the residuals are not I(0): A DF test, for example, would

examine the statistical signi…cance of the t ratio on ½ ¡ 1 in the regression:

¢b²t = a0 + (½ ¡ 1)b²t¡1 + ut;
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where ut is supposed to be an iid sequence. The evidence against the null of

non-cointegration increases as this t ratio becomes more negative. The critical

values to be used, are not however those of the DF distribution, since the DF

test is applied on the estimated residuals, b²t; and not on ²t:

Unfortunately, the standard DF test has other drawbacks. One of them is

that its power depends critically on the value of the AR parameter ½ (< 1) and

is usually very low for values of ½ close to unity. The DF test also relies on

the assumption that the variable follows an AR(1) process with iid disturbances

futgt¸1, which is rarely met in practice in economic time series, since these dis-

turbances are usually correlated. A well-known solution to this serial correlation

problem is to run an ADF test on the series. This modi…cation is ‡exible enough

to account for the serial dependence in the disturbances by entering lagged values

of the dependent variable in the regression

¢²t = a0 + (½ ¡ 1)²t¡1 +

pX
i=1

ai¢²t¡i + wt;

where p is chosen so as to ensure that the residuals wt are white noise. Another

device that accounts for serial correlation is the nonparametric correction to the

standard DF test, referred to as the PP test, after Phillips and Perron (1988),

which eliminate the nuisance parameters present in the DF test statistic when

the disturbances futgt¸1 are not an iid sequence.

Residual-based cointegration tests have, in general, low power since they focus

on the error dynamics ignoring the static equation dynamics. The existence of an
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Error Correction Model (ECM) representation for any cointegrating relationship,

as shown by Engle and Granger (1987), suggests an alternative class of cointegra-

tion tests with improved power performances. These tests consist of two stages.

In the …rst one, the cointegrating parameter ® is “superconsistently” estimated

by an OLS regression. In the second, the cointegrating residuals, ²t = yt ¡ b®xt;

are plugged in the short-run dynamics of yt; as follows:

¢yt = £(B)¢xt + ©(B)¢yt¡1 ¡ ¸(yt¡1 ¡ b®xt¡1);

where £(B) and ©(B) are polynomials in the delay operator B. The previous

equation represents the ECM in its basic form, and suggests the idea that changes

in the variables are constrained by the …nal objective of reaching a target equilib-

rium, namely yt = ®xt: An alternative interpretation considers this equilibrium

error as the result of agents’ forecasts of these changes (Campbell and Shiller,

1988). Testing for ¸ = 0 in the ECM equation amounts at testing the null hy-

pothesis of no cointegration, with the advantage that such test now takes into

account the contemporaneous e¤ect of ¢xt on ¢yt.

Today, cointegration tests are widely used in the econometric practice. They

suggest restrictions to be imposed on multivariate or vector autoregressive (VAR)

models and can be used to test economic theories such as the market e¢ciency

hypothesis (the hypothesis that the prices in two di¤erent markets have a long-

run equilibrium), or the purchasing power parity (establishing that the exchange

rate between two countries are proportional to the ratio of their price levels).
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Cointegration analysis also provides answers to a number of related questions

of practical relevance, such as how fast and in which way (linear or nonlinear)

arbitrage removes price di¤erences, and for which commodities (see Maddala and

Moo-Kim, 1998, for details).

1.2 Departures from the standard assumptions

Economic variables are often transformed, usually by taking logarithms or other

monotonic transformations (i.e. Box-Cox-type transformations) before the mod-

eling and analysis stages. On the other hand, the economic theory often suggests

a nonlinear relationship for two or more variables. As shown by Granger and

Hallman (1988,1991a) and by Ermini and Granger (1993), many transformations

of an integrated time series still yield time series with similar long-run proper-

ties. Thus the concept of cointegration could be extended in the following sense

(see Granger and Terasvirta, 1993, for a de…nition of nonlinear cointegrating re-

lationships): two I(d) (d > 0) univariate time series xt and yt are nonlinearly

cointegrated if there exist a couple of functions f(:) and g(:) so that f(xt) and

g(yt) are integrated, or I(d0) (d0 > 0); but f(xt)¡g(yt) is I(0): If f(:) is invertible

the previous condition amounts at …nding a function h = f¡1 ±g so that xt ¡h(yt)

is I(0):

In practice, …nding the appropriate transformations is often an impossible

task, thus the interest focusses on the construction of cointegration testing devices
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that are invariant to transformations of the series, or at least to transformations

within a given class (i.e. the class of monotonic transformations). Motivated

by the bad performance of the DF unit root test on monotonically transformed

I(1) time series, Granger and Hallman (1991b) proposed using the ADF test on

the ranks series from the original variables and their regression residuals (the

so-called RADF test) so as to obtain a unit root test invariant to monotonic non-

linear transformations. Breitung and Gouriéroux (1997) derived the asymptotic

properties of the RADF test. The former also proposed a rank test for cointe-

gration (Breitung, 1998) that explotes the intuition that the sequences of ranks

diverge under non-cointegration and evolve similarly otherwise. This test seems

to outperform its parametric counterparts when the true relationship is nonlinear

and monotonic. However, it su¤ers from size bias when the series have short-run

correlations and the null hypothesis required independent random walks. In the

same line of research, Aparicio and Escribano (1998) proposed a few test statis-

tics based on the mutual information in an attempt to provide a nonparametric

characterisation of strong serial dependence, on the one hand, and a device which

detects nonlinearities in cointegrating relationships, on the other.

Another problem which can alter dramatically the outcome of cointegration

analysis is the omission of relevant variables in the model to account, for example,

for the presence of breaks. Breaks a¤ect both unit root and cointegration tests.

Standard unit root tests tend to be “over-conservative” of the null hypothesis

on time series with breaks (Perron, 1990) and the bias increases with increasing
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break magnitude (Montañés and Reyes, 2000). In addition, certain variables

co-evolve in the long-run only when other explanatory variables are taken into

account. This could explain why, for example, the US wages and prices do not

seem to be cointegrated, as remarked by Engle and Granger (1987). Finally, as

shown by Malliaropulos (2000) when analysing the relationship between in‡ation

and nominal interest rates (the so-called “Fisher e¤ect”), it is also possible that

cointegration be just an artifact of two I(0) series being a¤ected by a common

break. Most cointegration devices dealing with level breaks focus on, …rst, testing

for the presence of structural changes at a given time instant, and second, …ltering

them out after testing for their number and their locations (see Maddala and Moo

Kim, 1998, for a nice review of the major contributions).

Besides structural breaks and neglected nonlinearities, outliers or atypical ob-

servations may also have deleterious e¤ects on unit root and cointegration tests.

As shown by Franses and Haldrup (1994), outliers induce a negative moving av-

erage component in the model errors of a unit root time series. As a consequence,

standard unit root tests may exhibit important size distortions and a tendency

towards spuriously rejecting the null hypothesis. Robust unit root testing pro-

cedures against outlying observations have been suggested by Stock (1999) and

Vogelsang (1999), but these suggestions have not been analysed in the context of

cointegration testing.

The possibility of structural breaks and outliers in real time series have pos-

sibly led to an overuse of proxy and dummy variables in the modeling practice,
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at the risk of explaining what is in reality a cointegrating relationship in a small

sample of data. An alternative avenue of research in cointegration analysis is

semiparametric and nonparametric testing. In this paper, we propose a nonpara-

metric cointegration test which exploits the statistical properties of the records

from a time series, and inherit a number of desirable properties from them. is

invariant to monotonic nonlinearities and robust to the presence of level breaks

and additive outliers.

The structure of the paper is as follows. In Section 1 we introduce a number

of test statistics for the purpose of testing cointegration. These statistics are

related to record counting processes. The asymptotic distribution under the

null of independent random walks is obtained for the test statistic based on the

standardized number of co-records from the pair of time series variables. This

null distribution is also useful when stationary forms of weak dependence are

allowed in the time series variables, either because of the statistical properties

of records or because a prewhitening …lter has been previously applied on the

regression residuals. We also discuss the null distribution of another record-

based test statistic, which tests for unit roots on these residuals, an that we

call the single record-counting cointegration (SRCC) test. The latter inherits

the properties of the Range Unit Root (RUR) test of Aparicio, Escribano and

Garcia (2003a). The behavior of the CRCC test is presented in Section 2. In

particular, we analyse its consistency, its invariance with respect to monomotinic

nonlinearities, and its robustness to level breaks. However, the CRCC test is
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a¤ected by the presence of early additive ouliers. Thus a modi…cation of the

CRCC test is introduced and analysed in Section 3 to cope succesfully with this

problem. After the concluding remarks in Section 4, an Appendix is devoted to

proving the main results.

2 RECORD-BASED COINTEGRATION TEST STATISTICS

In this section, we discuss a few alternative ways of using record counting statistics

for the purpose of testing cointegration in a pair of time series variables. All

these statistics are related to the total number of records in a sample of size n.

This quantity can be represented by
Pn

i=1 1(¢R
(x)
i > 0); where 1(:) denotes the

indicator function and .fR
(x)
i gi¸1 represents the range sequence for xt.

Range statistics are well-known in the analysis of the distributions of partial

sums and empirical process (see for instance, Shorack and Wellner, 1986). The

range of a data sample is de…ned in terms of its extremes. Formally, for a given

time series xt, the statistics x1;i = min fx1; ¢ ¢ ¢ ; xig and xi;i = max fx1; ¢ ¢ ¢ ; xig

are called the i-th extremes. When the sample comes from a time series xt, a

monotonically increasing sequence of ranges can be obtained as R(x)
i = xi;i ¡ x1;i,

for i = 1; 2; 3; ¢ ¢ ¢ ; n, where n denotes the sample size.

Aparicio, Escribano and Garcia (2000) proposed a pair of complementary

nonparametric test statistics, ½
(n)
x;y and ´

(n)
x;y ; for testing cointegration using the

12



range sequences of the variables. These statistics were de…ned as follows:

½(n)
x;y =

Pn
i=2 ¢R

(x)
i ¢R

(y)
iµPn

i=2

h
¢R(x)

i

i2
¶1=2 µPn

i=2

h
¢R(y)

i

i2
¶1=2

(1)

´(n)
x;y =

Pn
i=1

h
1(¢R

(x)
i > 0)1(¢R

(y)
i = 0) + 1(¢R

(x)
i = 0)1(¢R

(y)
i > 0)

i
Pn

i=1 1(¢R
(x)
i = 0)1(¢R

(y)
i = 0)

: (2)

By means of Monte Carlo simulations, these authors showed the possibility of

combining the outcomes of the corresponding tests to discriminate between lin-

ear cointegration, monotonic nonlinear cointegration, independent random walks,

and comoving or short-run dependent random walks in …nite samples. However,

nothing was said about the asymptotic behavior of such tests.

Another pair of record statistics were later proposed by the same authors

(Aparicio, Escribano and Garcia, 2003a,b) for robust unit root testing. The key

idea relied on the di¤erent vanishing rates of the long-run frequency of a new

record, n¡1
Pn

t=1 1(¢R
(x)
t > 0); for an I(1) and an I(0) time series, in such a way

that the normalized long-run frequency of records

J (n)
x = n¡1=2

nX
t=1

1(¢R
(x)
t > 0) (3)

converged in probability to zero under the alternative of stationarity, and to a

nondegenerate positive random variable under the null hypothesis of a unit root.

In this paper, we discuss and analyse the properties of two alternative robust

cointegration testing devices involving the records of the time series. One of such

devices is based on the evaluation of the test statistic J
(n)
x on the residuals from
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the regression of yt on xt, while the other is closely connected with the joint

number of records (hereafter, co-records) of the series, that is with:

T (n)
x;y =

nX
t=1

1(¢R(x)
t > 0)1(¢R(y)

t > 0): (4)

2.1 The asymptotic distribution of the number of co-records under

the null of independent random walks

Here we establish the asymptotic distribution of the standardized test statistic

based on the number of co-records, T
(n)
x;y (hereafter Co-Record Counting Cointe-

gration -CRCC- test statistic); under the null of two independent random walks:

Then we will show that this result can be exploited for testing the null hypothesis

of non-cointegration.

Theorem 1 Let the processes xt =
Pt

i=1 ²i; yt =
Pt

i=1 »i for t = 1; 2; ::; 1;

where ²i and »i are independent continuous zero-mean iid sequences with …nite

variances ¾2
² y .¾2

» , respectively, and symmetric pdf 0s. Let T
(n)
x;y be the number of

joint records of xt and yt in a sample of size n, that is:

T (n)
x;y =

nX
t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0); (5)

then

(log n)¡1T (n)
x;y

p! 1 (6)
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and

lim
n!1

P
©

(¾2 log n)¡1=2
£
T (n)

x;y ¡ ¹ log n
¤

> z
ª

= 1 ¡ Á(z) (7)

for any positive real number z; and for two constants ¹ and ¾ which can be

consistently estimated as:

b¹n = lim
m!1

1

m log n

mX
i=1

T (n)(i)
x;y (8)

b¾2
n = lim

m!1
1

m log n

mX
i=1

¡
T (n)(i)

x;y ¡ b¹n log n
¢2

; (9)

with T
(n)(i)
x;y representing the number of co-records for the i-th pair of independent

random walks xt and yt with sample size n:

Proof. See Appendix A1.

It is surprising that an identical limit distribution and scaling behavior for

both the mean and the variance is exhibited by the standardized record counting

process of an iid sequences, as shown in Embrechts, Kluppelberg and Mikosch

(1997, p. 257). This suggests that record counting process have similar asymp-

totic properties for iid sequences; for stationary time series, and even for het-

erogeneous but weakly-dependent time series as the …rst di¤erences of the range

sequences from I(1) time series.

Indeed, a well-known result from extremal theory is that the statistical proper-

ties of records from iid sequences of random variables are shared by a wide class

of dependent stationary time series (see for instance, Lindgren and Rootzén,

1987, and Leadbetter and Rootzén, 1988). This prompts the question of whether
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short-run dependencies and cross-dependencies may have an impact or not on

a record-based test for cointegration. Thus consider, for example, as our null

hypothesis the hypothesis of non-cointegration in its simpler form, which can be

expressed as:

H0 : ¢yt = a¢xt + w1t; ¢xt = w2t; (10)

where fw1tgt and fw2tgt are independent sequences of iid zero-mean random

variables, and a is the short-run correlation parameter. Letting

wt =
tX

i=1

w1i; (11)

it can be seen that, for any a 6= 0; we have:

nX
t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0)

=
nX

t=1

1(¢R
(ax)
t > 0)1(¢R

(y)
t > 0) (12)

=
nX

t=1

1(¢R
(y¡w)
t > 0)1(¢R

(y)
t > 0):

Therefore the limit behavior of (log n)¡1=2T
(n)
x;y does not depend on a as long as

a 6= 0. This is an important result since the asymptotic null distribution of

standard cointegration tests is a¤ected by short-run dependencies.

2.2 Alternative record-based cointegration testing schemes

In this section we propose three alternative testing strategies based on record

counting statistics. Consider again the null hypothesis H0 of non-cointegration of
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the previous section, and suppose we have a consistent estimator of the parameter

a which describes the short-run relationship between the random walks xt and

yt: Let ban represent such estimator for a sample size n and de…ne the short-run

regression residuals as bwt = ¢yt ¡ ban¢xt. Now ewt =
Pt

i=1 bw1i will be an I(1)

process uncorrelated in the short-run with xt, that is E f¢ ewt¢xtg = 0: Under

the null of non-cointegration, and assuming Gaussianity for the innovations w1t

and w2t; ewt will be independent of xt: Therefore the conditions of Theorem 1 hold

for the pair of series f ewt; xtg;and we could …nd two non-negative real numbers ¾

and ¹ such that:

(¾2 log n)¡1=2
³

T
(n)ew;x ¡ ¹ log n

´
) N(0; 1) under H0 (13)

Under the alternative hypothesis H1 of cointegration, it will be shown in the next

section that the CRCC test statistic

(log n)¡1=2
³

T
(n)ew;x ¡ ¹ log n

´
diverges to in…nity.

Another possibility consists in applying the RUR test of Aparicio, Escribano

and Garcia (2003a) on the residuals b»t estimated from the long-run relation ewt =

®xt + »t; that is b»t = ewt ¡ b®nxt, where b®n could be the OLS estimate of ®

based on the sample of size n: We call this device the Single-Record Counting

Cointegration (SRCC) test. An improved version of the RUR test known as the

Forward-Backward RUR ( FB-RUR) test (see Aparicio, Escribano and Garcia,
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2003b) could also be used for this purpose. The FB-RUR test was conceived to

prevent size distortions from eventual early additive outliers in the series.

In the followin, we use ewt as the dependent variable instead of yt in order

to avoid the small-sample biases caused by unremoved short-run dependencies

between the series. For convenience, we recall the expressions of both range-

based unit root test statistics when applied on these residuals:

J
(n)b» = n¡1=2

nX
t=1

1(¢R
(b»)
t > 0), for the RUR test, (14)

J
(n)(¤)b» = (2n)¡1=2

nX
t=1

n
1(¢R

(b»)
t > 0) + 1(¢R

(b»0)
t > 0)

o
; for the FB-RUR test,

(15)

where b»0
t = b»n¡t+1:

Under the null of non-cointegration, b»t » I(1); and according to lemma 2:

PfJ
(1)b» < hg =

1

2
p

2¼

Z h

0

exp( ¡ v2+2

4
)[1 ¡ Á(v)]dv; (16)

whereas under the alternative of cointegration, b»t » I(0); which gives J
(n)b» p!

0:

Notice that this testing device does not require the Gaussianity of the inno-

vations w1t and w2t; and since P (J (1) = 0jxt; yt independent random walks) = 0,

the test is consistent.

Finally, a third testing device exploits the range properties of the integrated

long-run residuals e»t =
Pt

i=1
b»i by means of the record test statistic T

(n)
:;x : Un-

der the null of non-cointegration, H0;we have e»t » I(2). Consequently, under
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H0 (log n)¡1=2
³

T
(n)e»;x

¡ ¹ log n
´

» (log n)¡1=2n1=2 (see Appendix A2 for details)

which diverges as n grows to in…nity. We should then expect rejection of the

null. Under the alternative of cointegration e»t » I(1); which will also be in-

dependent of xt if we assume the Gaussianity of the innovations w1t and w2t.

Inverting the hypotheses for convenience, under the null H 0
0 of cointegration,

(log n)¡1=2
³

T
(n)e»;x

¡ ¹ log n
´

= O(1) and will converge to a non-degenerate ran-

dom variable whose distribution is given in the theorem. Under the alternative

H 0
1 of cointegration (log n)¡1=2

³
T

(n)e»;x
¡ ¹ log n

´
will diverge. Such a procedure is

equivalent to the evaluation of (log n)¡1=2
³

T
(n)ew;x ¡ ¹ log n

´
; since in both cases

the test statistic diverges under the alternative at the same rate of (log n)¡1=2n1=2

(see Appendix A2).

Cointegration tests based on either RUR test statistics inherit the robustness

and invariance properties of the latter in the face of certain deviations from

the standard assumptions. Thus for instance, these tests will be invariant with

respect to monotonic transformations of the individual series and with respect to

the innovations variances. Besides, they will be robust in the presence of level

breaks or additive outliers. In the sequel, it is shown that these properties are

also shared by the CRCC test.
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3 PROPERTIES OF THE CRCC TEST

3.1 Consistency

If xt and yt are cointegrated then for some a 6= 0 there exists an I(0) sequence,

´t; such that yt = axt + ´t:

Since for large t xt will dominate ´t, we can write:

T (n)
x;y =

nX
t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0) '

nX
t=1

1(¢R
(x)
t > 0): (17)

But from lemma 2:

nX
t=1

1(¢R
(x)
t > 0) = J (n)

x = O(n1=2): (18)

Thus under the alternative hypothesis of cointegration, the normalized test statis-

tic will satisfy:

(log n)¡1=2
¡
T (n)

x;y ¡ ¹ log n
¢ p! 1: (19)

Now suppose zt » I(0) and independent of xt: It is shown in Appendix 2 that

for any ¹ > 0:

(log n)¡1=2(T (n)
z;x ¡ ¹ log n)

p! ¡1: (20)

Therefore the standardized number of co-records allows the discrimination

between pairs of independent or comoving random walks, pairs of cointegrated

variables, and pairs of stationary time series and random walks.
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3.2 Invariance against Monotonic Nonlinearities

Monotonic transformations preserve the ordering of the observations in any time

series, and thus the inter-record times. As a consequence, if we let f(:) and g(:)

be monotonic nonlinear transformations, we must have:

T
(n)
f(x);g(y) = T (n)

x;y : (21)

More generally, let xt and yt be I(1) time series variables, and let x0
t = f(xt)+

"t; y0
t = g(yt)+´t, where f"tgt¸1 ; f´tgt¸1 are independent iid sequences with zero-

mean and …nite variances. Since for large t; f(xt) and g(yt) will dominate "t and

´t respectively, the records of x0
t (y0

t) will occur at almost the same instants as

those of xt (yt): As a consequence, the co-record counts will tend to be the same

for both pairs of series. That is:

T
(n)
x0;y0 =

nX
t=1

1(¢R
(x0)
t > 0)1(¢R

(y0)
t > 0)

' T (n)
x;y =

nX
t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0): (22)

In …nite samples, the actual size will oscillate around the nominal size de-

pending on the type of transformations. For example, certain classes of transfor-

mations can emphasize the I(1) part over the I(0) part. This feature may lead,

in …nite samples, to size ‡uctuations around the nominal one.
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3.3 Robustness against level breaks

Unit root and cointegration tests implicitely assume that the deterministic trend

is properly speci…ed. This need not be the case in practice, especially when deal-

ing with long series. Policy changes, economic depressions, price shocks entail

parameter changes in a time series model. These parameter changes are usu-

ally referred to as structural breaks. Several authors (see for instance Rappoport

and Reichelin,1989; Perron 1989; Hendry and Neale, 1991; Gregory, Nason and

Watt, 1996; Campos, Ericsson and Hendry, 1996, to name a few) have reported

on a tendency of standard unit root tests to underreject the null of a unit root

in the presence of a break. On the other hand, unaccounted breaks can change

dramatically the outcome of a cointegration test. For example, Muscatelli and

Papi (1990) …nd no evidence of a cointegrating relationship among the variables

“money”, “prices”, “income” and “interest rate” unless a dummy variable for

…nancial innovation in the 70’s and 80’s is included in the model. Other authors

have reported similar …ndings in modeling other long-run relationships (see for

instance, Drobny and Hall, 1989; Hall et al., 1989; Muscatelli et al., 1990). Also,

the omission of variables is also the reason why no empirical evidence of cointe-

gration was found between US wages and prices, or US money and prices (Engle

and Granger, 1987). This problem has prompted researchers to increasingly use

dummy variables as a way of explaining structural changes and preventing the

latter from inducing an spurious long-run relationship.
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The trouble with the previous approach is that a set of dummies can always be

found to account for the eventual I(1) nature of the regression residuals, thereby

biasing a cointegration test towards rejecting the null of non-cointegration. An

alternative approach to the use of dummy variables consists in allowing for a

time-varying cointegration parameter, as suggested by Granger (1986). But time-

varying relationships are di¢cult to estimate on small data samples as those

frequently encountered in macroeconomics.

Our approach bypasses the previous di¢culties by proposing a cointegration

test robust to the presence of structural breaks in the series. In this way, there

is no need to explicitedly account for such changes in the model.

De…ne the processes:

xt = ½1xt¡1 + ²t; (23)

zt = ½1zt¡1 + ²t +
mX

i=1

si1(t = ti); (24)

yt = ½2yt¡1 + »t; (25)

where j½ij < 1 and ²t; »t representing independent sequences of zero-mean iid

random variables. Notice that zt is the same process as xt except for the presence

of m level breaks of magnitud si at instants ti 2 [1; n] : Suppose without loss of

generality that si >> 0; 8i, so that ¢R
(z)
ti

= si with probability 1: Since the

instants ftigi=1;m form a set of Lebesgue measure zero, we have with probability

one that (log n)¡1=2(T
(n)
x;y ¡ T

(n)
z;y ) = 0 and for any value of m as long as m =

o(log n):
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Indeed,

T (n)
z;y =

nX
t=1
t6=ti

1(¢R
(z)
t > 0)1(¢R

(y)
t > 0) +

mX
i=1

1(¢R
(z)
ti

> 0)1(¢R
(y)
ti

> 0)

=
nX

t=1
t6=ti

1(¢R
(z)
t > 0)1(¢R

(y)
t > 0) +

mX
i=1

1(¢R
(y)
ti

> 0)

·
nX

t=1
t 6=ti

1(¢R
(z)
t > 0)1(¢R

(y)
t > 0) + m (26)

·
nX

t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0) + m

· T (n)
x;y + m:

Therefore

(log n)¡1=2(T (n)
z;y ¡ T (n)

x;y ) · m(log n)¡1=2 ! 0; (27)

as n ! 1 and as long as m = o(log n)1=2:

3.4 Robustness against Additive Outliers

Let ut = ut¡1 +²t, yt = yt¡1 +»t; with ²t; »t representing independent sequences of

zero-mean iid random variables. Suppose ut is contaminated by Additive Oultiers

(AO’s). For simplicity, we may restrict our analysis to the case of a single AO of

magnitude s > 0 ocurring at time t = t1. The contaminated series, xt, can be

written as:

xt = ut + s 1(t = t1): (28)
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Notice that

¢R
(x)
t1

= s + ¢R
(u)
t1

> 0 (29)

and that for s large enough

¢R
(x)
t = 0 8t > t1; (30)

with probability one. In such case

T (n)
x;y =

t1X
t=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0) = T (t1)

u;y : (31)

Now since

(log n)¡1=2T (n)
x;y = (log n)¡1=2 T (t1)

u;y » (log n)¡1=2 log t1; (32)

for any positive real numbers ¾ and ¹:

(¾2 log n)¡1=2
¡
T (n)

x;y ¡ ¹ log n
¢ p! ¡1, as n ! 1 when t1 = o(n): (33)

Thus the actual size of the test, given by P
n

(¾2 log n)¡1=2
³

T
(n)
x;y ¡ ¹ log n

´
> t®;njH0

o
with t®;n denoting the critical value of the null distribution of (¾2 log n)¡1=2

³
T

(n)
x;y ¡ ¹ log n

´
at the ® signi…cance level, will tend to be below the nominal size, ®;and will ap-

proach zero as n grows to in…nity:

P
©

(¾2 log n)¡1=2
¡
T (n)

x;y ¡ ¹ log n
¢

> t®;njH0

ª ! 0; as n ! 1: (34)
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4 THE FORWARD-BACKWARD RECORD COUNTING COINTE-

GRATION (FB-CRCC) TEST

A Forward-Backward Record-Counting Cointegration (FB-CRCC) test, similar in

spirit to the FB-RUR test proposed in Aparicio, Escribano and Garcia (2003b),

can be used to cope with the size distortion problem caused by early large outliers

in the series. Consider test statistic:

T (n)(¤)
x;y = T (n)

x;y + T (n)
x0;y0 ; (35)

where x0
t and y0

t are the specular images of xt and yt; that is:

x0
t = xn¡t+1; t = 1; :::; n (36)

y0
t = yn¡t+1; t = 1; :::; n

Since the e¤ective sample size is now twice the original the appropriate scaling

for T
(n)(¤)
x;y would be (log 2n)¡1: However notice that

(log 2n)¡1=2T (n)(¤)
x;y

=
(log n)¡1=2

1 +
³

log 2
log n

´1=2

nX
t=1

n
1(¢R

(x)
t > 0)1(¢R

(y)
t > 0) + 1(¢R

(x0)
t > 0)1(¢R

(y0)
t > 0)

o

(37)

' (log n)¡1=2
n

T (n)
x;y + T

(n)
x0;y0

o
; for large enough n.

When xt is the contaminated I(1) series of the previous section, given by xt =

ut + s 1(t = t1); where s >> 0; then for large n:

(log 2n)¡1=2T (n)(¤)
x;y ' (log n)¡1=2 T (t1)

u;y + (log n)¡1=2 T (n¡t1)
u0;y0 : (38)
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Thus in the most insidious case of an early outlier at t1 = o(n), we have for large

n:

(¾2 log 2n)¡1=2
¡
T (n)(¤)

x;y ¡ ¹ log 2n
¢ » ¡

¾2 log n
¢¡1=2

³
T

(n)
u0;y0 ¡ ¹ log n

´
: (39)

If the distribution of disturbances ²t and »t are symmetric around their zero mean

then the random walks ut and yt are reversible and, for appropriate positive values

of ¾2 and ¹; (¾2 log 2n)¡1=2
³

T
(n)(¤)
x;y ¡ ¹ log 2n

´
will converge weakly towards a

standard Normal random variable, as claimed in Theorem 1.

5 CONCLUDING REMARKS

In this paper, a number of consistent cointegration testing methods based on

record counting processes have been proposed. These methods exploit the ro-

bustness of record statistics in the face of deviations from the assumptions made

by standard cointegration tests. In particular, it is shown that the new statistics

are invariant with respect to both monotonic transformations and to the variance

of the individual series. The tests are robust to level breaks, and can be made ro-

bust to additive outliers by means of a simple device which averages the statistic

values for the original and the time-reversed series. A comparison of the per-

formances between this novel methodology and the standard cointegration tests,

and its application to real data, will be considered in a second paper. Possible

extensions to more general scenarios will also be discussed.
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Appendix A1

Lemma 2 Let xt =
Pt

i=1 ²i where f²igi¸1 :are continuous iid random variables

with bounded and symmetric pdf , zero mean and …nite variance ¾2
² . Suppose that

x0 has also a bounded pdf and …nite variance. And let J
(n)
x = n¡1=2

Pn
t=1 1(¢R

(x)
t >

0). Then we have

P
©

J (1)
x · h

ª
=

1

2
p

2¼

Z h

0

exp( ¡ v2+2

4
)[1 ¡ ©(v)]dv;

where ©(:) is the probability distribution function of a standard Normal random

variable.

Proof. See Aparicio, Escribano and Garcia (2003a).

Lemma 3 Let the processes xt = xt¡1 + ²t; zt = ½zt¡1 + ²t; yt = yt¡1 + xt for

t = 1; 2; ::; 1; where j½j < 1 and f²tgt¸1 is a sequence of zero-mean and …nite

variance ¾2
² :iid random variables. Then for any t:

P
n

¢R
(x)
t+j > 0j¢R

(x)
t > 0

o
= P

n
¢R

(x)
j > 0

o
lim

j!1
P

n
¢R

(x)
t+j > 0j¢R

(x)
t > 0

o
= lim

j!1
P

n
¢R

(x)
t+j > 0

o
= 0

lim
j!1

P
n

¢R
(z)
t+j > 0j¢R

(z)
t > 0

o
= lim

j!1
P

n
¢R

(z)
t+j > 0

o
P

n
¢R

(y)
t+j > 0j¢R

(y)
t > 0

o
= P

n
¢R

(y)
j > 0

o
= P

n
¢R

(y)
t+j > 0

o
= 1; 8j.

Proof. Let us denote by ¿
(x)
1 the …rst ladder epoch of xt; that is the …rst time

instant at which a record for xt occurs, and denote by ¿
(x)
1 + ::: + ¿

(x)
k the kth
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ladder index or kth record time of xt. Following Feller (1971, vol. 2, 1971), the

random variables
n

¿
(x)
i

o
i¸1

are iid. We use this property to prove this lemma.

P
n

¢R
(x)
t+j > 0j¢R

(x)
t > 0

o
= P

n
t + ¿

(x)
1 + ::: + ¿

(x)
k = t + j; for some integer k 2 (0; j] j t is a ladder index

o
= P

n
¿

(x)
1 + ::: + ¿

(x)
k = j; for some integer k 2 (0; j] j t is a ladder index

o
= P

n
¿

(x)
1 + ::: + ¿

(x)
k = j; for some integer k 2 (0; j]

o
= P

n
¢R

(x)
j > 0

o
:

It can be shown similarly that

P
n

¢R
(y)
t+j > 0j¢R

(y)
t > 0

o
= P

n
¢R

(y)
j > 0

o
:

Now following lemma 2:

P
n

¢R
(x)
t+j > 0

o
¡ P

n
¢R

(x)
j > 0

o
» (t + j)¡1=2 ¡ j¡1=2 ! 0; as j ! 1:

For zt the amount of serial dependence in the sequence
n

¢R
(z)
t

o
t¸1

is even

smaller, so we may expect a similar result. In fact, if zt is Gaussian then the

statistical properties of records are the same as in the iid case (see Lindgren and

Rootzén, 1987, and Leadbetter and Rootzén, 1988), and therefore

P
n

¢R
(z)
t > 0

o
= Of(ln t)¡1g

P
n

¢R
(x)
t+j > 0

o
¡ P

n
¢R

(x)
j > 0

o
» (ln[t + j])¡1 ¡ (ln t)¡1 ! 0; .. as j ! 1:
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Finally when yt » I(2) the independence of the events
n

¢R
(y)
t+j > 0

o
and

n
¢R

(y)
t > 0

o
follows from (see Feller, 1971):

P
n

¢R
(y)
t+j > 0

o
= P

n
¢R

(y)
j > 0

o
= 1; 8j:

Lemma 4 Let B1 and B2 two independent random variables. And let A be an-

other random variable independent of B1 and B2. De…ne two new random vari-

ables as B¤
1 = AB1 and B¤

2 = AB2: Then B¤
1 and B¤

2 are independent.

Proof. We may assume without loss of generality that the variables are

discrete. Let a be any value such that P (A = a) > 0: Since

P (B1jB2) = P (B1)

we could also write for any such scalar a:

P (aB1jaB2) = P (aB1):

And also:

P (aB1jaB2)P (A = a) = P (aB1)P (A = a);

Therefore

P (AB1jAB2) =
X

a

P (AB1jAB2; A = a)P (A = a)

=
X

a

P (AB1jA = a)P (A = a) = P (AB1):
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Lemma 5 Let f»igi¸1 a sequence of random variables such that limi!1E(»i) =

¹; and limi!1V ar(»i) = 0: Then

»i
p! ¹:

Proof. See Arnold (1990).

Lemma 6 Let fZn;i; i = 1; :::; rng denote a zero-mean stochastic array, where rn

is a positive, increasing integer-valued function of n, and let

Trn =
rnY

i=1

(1 + i¸Zn;i); with ¸ > 0:

Then

Srn =
rnX

i=1

Zn;i ) N(0; 1),

if the following conditions hold: (a) Trn is uniformly integrable, (b) E(Trn) ! 1

as n ! 1; (c)
Prn

i=1 Z2
n;;i

p! 1 as n ! 1; and (d) max1·i·rn jZn;ij p! 0 as

n ! 1:

Proof. See Davidson (1994, pp. 380-81)

Lemma 7 From the stochastic array fZn;ig de…ned in lemma 5, de…ne

eZn;i = Zn;i1(
i¡1X
j=1

Z2
n;k · 2);

and let eTrn =
Qrn

i=1(1 + i¸ eZn;i); where ¸ > 0: Then eTrn is uniformly integrable if

supn E
¡
max1·i·rn Z2

n;i

¢
< 1: Moreover, if

Prn

i=1 Z2
n;i

p! 1 then: (a)
Prn

i=1
eZ2

n;i

p!

1 and (b) eSrn =
Prn

i=1
eZn;i has the same limiting distribution as Srn:
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Proof. See Davidson (1994, pp. 382-83).

PROOF OF THEOREM 1. Since xt is a random walk we have from

lemma 2:

nX
t=1

P (¢R
(x)
t > 0) = O(n1=2)

) P (¢R
(x)
t > 0) = O(t¡1=2)

)
h
P (¢R

(x)
t > 0)

i2

= O(t¡1)

)
nX

t=1

h
P (¢R

(x)
t > 0)

i2

= O(log n);

since from Euler’s formula (see Abramowitz and Stegun, 1972) we can write

nX
t=1

t¡1 = log n + ° +
1

2n
+

1

12n2
+ O(n¡4)

with ° = 0:57721566 (Euler’s constant).

Now if xt and yt are independent we have:

E
©

T (n)
x;y

ª
=

nX
t=1

P (¢R
(x)
t > 0)P (¢R

(y)
t > 0)

=
nX

t=1

h
P (¢R

(x)
t > 0)

i2

= O(log n):

Therefore, under H0; we can write for some positive constant ¹:

T (n)
x;y = ¹ log n + ±nV;
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where V denotes a non-degenerate random variable with unit variance and ±n

de…nes the asymptotic order for the standard deviation of T
(n)
x;y : Our next objective

is to determine ±n: To do this, …rst note that

E
¡
T (n)

x;y ¡ ¹ log n
¢2

= E
n£

T (n)
x;y

¤2
o

¡ ¹2(log n)2 = ±2
nE(V 2):

E
n£

T (n)
x;y

¤2
o

= E

(
nX

t=1

nX
t0=1

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0)1(¢R

(x)
t0 > 0)1(¢R

(y)
t0 > 0)

)

=
nX

t=1

h
P (¢R

(x)
t > 0)

i2

+ 2
n¡1X
t=1

nX
t0=t+1

h
P (¢R

(x)
t ¢R

(x)
t0 > 0)

i2

=
nX

t=1

h
P (¢R

(x)
t > 0)

i2

+ W (n)
x;y

= ¹
nX

t=1

t¡1 + W (n)
x;y

' ¹ log n + W (n)
x;y ;

where we let

W (n)
x;y = 2

n¡1X
t=1

nX
t0=t+1

h
P (¢R

(x)
t ¢R

(x)
t0 > 0)

i2

= 2
n¡1X
t=1

nX
t0=t+1

h
P (¢R

(x)
t0 > 0j¢R

(x)
t > 0)

i2 h
P (¢R

(x)
t > 0)

i2

= 2
n¡1X
t=1

h
P (¢R(x)

t > 0)
i2

nX
t0=t+1

h
P (¢R(x)

t0¡t > 0)
i2

:

Now observing that
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n¡1X
t=1

h
P (¢R

(x)
t > 0)

i2
nX

t0=t+1

h
P (¢R

(x)
t0¡t > 0)

i2

= ¹2

n¡1X
t=1

t¡1(log n ¡ log t)

= ¹2 (log n)2 ¡ ¹2

n¡1X
t=1

t¡1 log t

= ¹2 (log n)2 ¡ ¹2

(
nX

t=1

µ
t

n

¶¡1 µ
log

t

n
+ log n

¶
1

n

)

= ¹2 (log n)2 ¡ ¹2(log n)2 ¡ ¹2

(
nX

t=1

1

n

µ
t

n

¶¡1

log
t

n

)

' ¡¹2

Z 1

1=n

log x

x
dx; for large enough n;

=
1

2
¹2(log n)2;

it follows:

V ar
©

T (n)
x;y

ª ' ¹ log n + ¹2(log n)2 ¡ £
EfT (n)

x;y g¤2
= ¹ log n:

This entails that ±n = O((log n)1=2) and

(log n)¡1T (n)
x;y

p! 1:

Our next step in the proof is to show that the events
nn

¢R
(x)
t > 0

o
\

n
¢R

(y)
t > 0

oo
t
,

or equivalently, the sequence
n

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0)

o
t
; satisfy some sort of

mixing property. This will allows us to invoke a CLT for weakly dependent

and heterogenous random variables: From lemma 4 we only need to prove the

asymptotic (j ! 1) independence of the events
n

¢R(x)
t+j > 0

o
and

n
¢R(x)

t > 0
o

:

Moreover, from lemma 2 we have:

lim
i!1

P
n

¢R
(x)
t+i > 0j¢R

(x)
t > 0

o
= lim

i!1
P

n
¢R

(x)
i > 0

o
= 0 = lim

i!1
P

n
¢R

(x)
t+i > 0

o
:
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The binary random variables 1(¢R
(x)
t+i > 0) and 1(¢R

(x)
t > 0) are thereby asymp-

totically (i ! 1) independent and the sequence
n

1(¢R(x)
t > 0)

o
t

is said to be

uniformly mixing. It follows trivially that, under the null hypothesis of inde-

pendence, the sequence
n

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0)

o
t

is also uniformly mixing

since:

P
n

¢R
(x)
t+i¢R

(y)
t+i > 0j¢R

(x)
t ¢R

(y)
t > 0

o
= P

n
¢R

(x)
t+i > 0j¢R

(x)
t > 0

o
P

n
¢R

(y)
t+i > 0j¢R

(y)
t > 0

o
=

³
P

n
¢R

(x)
t+i > 0j¢R

(x)
t > 0

o´2

! 0 as i ! 1; for any t,

and on the other hand Pf¢R
(x)
t+i > 0gPf¢R

(y)
t+i > 0g ! 0, as i ! 1; for any t:

The asymptotic independence of the variables in the partial sum T
(n)
x;y under

the null hypothesis is the …rst step in proving that a CLT exists for such a sum. To

complete the proof we use Bernstein blocking method ( see for instance Davidson,

1994). The heuristic reasoning goes as follows. Recalling that

E
n

1(¢R
(x)
t > 0)1(¢R

(y)
t > 0)

o
= P

n
¢R

(x)
t > 0; ¢R

(y)
t > 0

o
=

³
P

n
¢R

(x)
t > 0

o´2

; under H0

= ¹t¡1; for some positive constant ¹;

we now consider the array of zero-mean random variables de…ned by:

Wn;t = (¾2 log n)¡1=2
n

1(¢R(x)
t > 0)1(¢R(y)

t > 0) ¡ ¹t¡1
o

:
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Also de…ne bn = n1¡¯ and rn = [n=bn] » n¯; for some ¯ 2 (0; 1) and with [:]

denoting the integer part: We can then write:

S(n)
x;y

¢
= (¾2 log n)¡1=2(T (n)

x;y ¡ ¹ log n)

=
nX

t=1

Wn;t

=
rnX

i=1

Zn;i + Wn;rnbn+1 + ::: + Wn;n;

with

Zn;i =
ibnX

t=(i¡1)bn+1

Wn;t:

Notice that
Prn

i=1 Zn;i contains bnrn terms while the sum Wn;rnbn+1 + ::: + Wn;n

contains less than bn terms. Therefore Wn;rnbn+1 + ::: + Wn;n is asymptotically

(n ! 1) negligeable with respect to
Prn

i=1 Zn;i, so we can write for large enough

n:

S(n)
x;y »

rnX
i=1

Zn;i:

In order to make the components within the previous sum asymptotically inde-

pendent, we need to approximate Zn;i by a censored variable eZn;i which we de…ne

as:

eZn;i =
iebnX

t=(i¡1)ebn+1

Wn;t;

where ebn = bn¡±n, with ±n denoting any increasing sequence of integers satisfying

±n = o(bn); in such a way that
Prn

i=1(Zn;i¡ eZn;i) becomes asymptotically (n ! 1)
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negligeable with respect to
Prn

i=1
eZn;i (Notice that

Prn

i=1(Zn;i ¡ eZn;i) contains

about rn±n terms, while
Prn

i=1
eZn;i contains rn

ebn): From the previous discussion

one obtains:

S(n)
x;y »

rnX
i=1

eZn;i;

where now the variables
n eZn;i

o
1·i·n

are asymptotically (n ! 1) independent.

Therefore a CLT can be sought for the standardized sum S
(n)
xy so that if s > 0:

P
¡
S(n)

x;y > s
¢ ! 1 ¡ Á(s); asn ! 1:

with Á(:) denoting the standard Normal distribution function.Now we invoke

lemma 6 to prove our weak convergence result under the null hypothesis of

independence of the series. This requires showing that the sequence Trn =Qrn

i=1(1 + i¸Zn;i) is uniformly integrable for any ¸ > 0: To avoid this rather bur-

dersome requirement, we can equivalently work out the proof from the truncated

series

eZn;i =

0@ iebnX
t=(i¡1)ebn+1

Wn;t

1A 1(
i¡1X
j=1

Z2
n;k · 2);

by invoking lemma 7. To prove that eTrn is uniformly integrable it is enough then

to show that supn E
¡
max1·i·rn Z2

n;i

¢
< 1: We have:

Z2
n;i =

0@ iebnX
t=(i¡1)ebn+1

Wn;t

1A2

» (log n)¡1 log
i

i ¡ 1
» i¡1(log n)¡1:
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Thus E
¡
max1·i·rn Z2

n;i

¢ » (log n)¡1 < 1 8n: Our next step is to show thatPrn

i=1 Z2
n;i

p! 1:

rnX
i=1

Z2
n;i =

rnX
i=1

0@ iebnX
t=(i¡1)ebn+1

Wn;t

1A2

=
rnX

i=1

iebnX
t=(i¡1)ebn+1

W 2
n;t + 2

rnX
i=1

iebn¡1X
t=(i¡1)ebn+1

Wn;t

iebnX
t0=t+1

Wn;t0:

But

iebnX
t0=t+1

Wn;t0 » (log n)¡1=2
h
(log iebn)1=2 ¡ (log t)1=2

i
» (log n)¡1=2(log iebn)¡1=2 log

iebn

t

= (log n)¡1=2(log iebn)¡1=2 log

Ã
iebn

(i ¡ 1)ebn + cn
ebn

!
; with cn 2 (0; 1)

» (log n)¡1=2(log iebn)¡1=2 log

µ
i

i ¡ 1

¶
; for large i

» (log n)¡1=2(log iebn)¡1=2i¡1:

Therefore

iebn¡1X
t=(i¡1)ebn+1

Wn;t

iebnX
t0=t+1

Wn;t0

» (log n)¡1
³

log iebn

´¡1=2

i¡1
h
(log iebn)1=2 ¡ (log(i ¡ 1)ebn)1=2

i
» (log n)¡1

³
log iebn

´¡1

i¡2:
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Finally,

rnX
i=1

Z2
n;i =

rnX
i=1

iebnX
t=(i¡1)ebn+1

W 2
n;t + 2

rnX
i=1

iebn¡1X
t=(i¡1)ebn+1

Wn;t

iebnX
t0=t+1

Wn;t0

» (log n)¡1

rnX
i=1

h
(log iebn) ¡ (log(i ¡ 1)ebn)

i
+ (log n)¡1

rnX
i=1

³
log iebn

´¡1

i¡2

» (log n)¡1

rnX
i=1

log
i

i ¡ 1

» (log n)¡1

rnX
i=1

i¡1

» (log n)¡1 log rn = ¯:

Another condition that needs being proved is that max1·i·rn j eZn;ij p! 0: This can

be obtained by noting that

eZn;i ·
iebnX

t=(i¡1)ebn+1

Wn;t » (log n)¡1=2
h
(log iebn)1=2 ¡ (log(i ¡ 1)ebn)1=2

i

» (log n)¡1=2(log iebn)¡1=2 log
i

i ¡ 1

» (log n)¡1=2(log iebn)¡1=2i¡1;

Thus

max
1·i·rn

j eZn;ij » (log n)¡1=2(logebn)¡1=2 ! 0 as n ! 1:

The last condition which must be checked before concluding from direct applica-

tion of lemmas 6 and 7 is that E( eTrn) ! 1 as n ! 1: This follows straightfor-

wardly from the asymptotic independence of the zero-mean variables eZn;i: Indeed,

E( eTrn) = E

(
rnY

i=1

(1 + i¸ eZn;i)

)
!

rnY
i=1

h
1 + i¸E( eZn;i)

i
= 1:
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Appendix A2

Let yt » I(2) and xt » I(1) be independent series. Since

P (¢R
(y)
t > 0) = O(1)

P (¢R
(x)
t > 0) = O(t¡1=2);

we get

E
©

T (n)
y;x

ª
=

nX
t=1

P (¢R
(y)
t > 0)P (¢R

(x)
t > 0)

»
nX

t=1

t¡1=2; since P (¢R
(y)
t > 0) = 1

» n1=2
nX

t=1

µ
t

n

¶¡1=2
1

n

» n1=2

Z 1

0

x¡1=2dx

» n1=2:

Therefore

(log n)¡1=2E(T (n)
y;x ¡ ¹ log n) = O((log n)¡1=2n1=2) ! 1; as n ! 1:

As for the variance:

V ar
©

(log n)¡1=2T (n)
y;x

ª
= (log n)¡1E

n£
T (n)

y;x

¤2
o

¡ (log n)¡1
£
E

©
T (n)

y;x

ª¤2
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and since

£
E

©
T (n)

y;x

ª¤2 » n

E
n£

T (n)
y;x

¤2
o

=
nX

t=1

P (¢R(y)
t > 0)P (¢R(x)

t > 0) + 2
n¡1X
t=1

nX
t0=t+1

P (¢R(x)
t ¢R

(x)
t0 > 0)P (¢R(y)

t ¢R
(y)
t0 > 0)

=
nX

t=1

P (¢R(y)
t > 0)P (¢R(x)

t > 0)

+2
n¡1X
t=1

P (¢R(x)
t > 0)P (¢R(y)

t > 0)
nX

t0=t+1

P (¢R
(x)
t0 > 0j¢R(x)

t > 0)P (¢R
(y)
t0 > 0j¢R(y)

t > 0)

»
nX

t=1

P (¢R(x)
t > 0) + 2

n¡1X
t=1

P (¢R(x)
t > 0)

n¡tX
¿=1

P (¢R(x)
¿ > 0)

» n1=2 +
n¡1X
t=1

t¡1=2(n ¡ t)1=2

' n1=2 + n

Z 1

0

r
1 ¡ x

x
dx; for large n

» n1=2 + n

Finally, we get:

V ar
©

(log n)¡1=2T (n)
y;x

ª
= O((log n)¡1n1=2) ! 1; as n ! 1r

V ar
n

(log n)¡1=2(T
(n)
y;x ¡ ¹ log n)

o
= O((log n)¡1=2n1=4) = o

¡
(log n)¡1=2E(T (n)

y;x ¡ ¹ log n)
¢

;

which tells us that the standard deviation of our standardised CRCC statistic

grows more slowly than its mean. Therefore

(log n)¡1=2(T (n)
y;x ¡ ¹ log n)

p! 1; as n ! 1:

Now let zt be an I(0) process independent of xt: We have:
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E(T (n)
z;x ) =

nX
t=1

P (¢R(z)
t > 0)P (¢R(x)

t > 0):

And for t large enough:

P (¢R
(z)
t > 0) = O(t¡1);

P (¢R
(x)
t > 0) = O(t¡1=2):

Therefore:

E(T (n)
z;x ) = O(

nX
t=1

t¡3=2)

(log n)¡1=2E(T (n)
z;x ¡ ¹ log n) = O

(
(log n)¡1=2

Ã
nX

t=1

t¡3=2 ¡ ¹ log n

!)
:

But
Pn

t=1 t¡3=2 = O(1); and consequently:

E(T (n)
z;x ) = O(1)

(log n)¡1=2E(T (n)
z;x ¡ ¹ log n) ! ¡1, as n ! 1:

On the other hand,

E
©

(T (n)
z;x )2

ª
=

nX
t=1

P (¢R(z)
t > 0)P (¢R(x)

t > 0) + 2
n¡1X
t=1

nX
t0=t+1

P (¢R(x)
t ¢R

(x)
t0 > 0)P (¢R(z)

t ¢R
(z)
t0 > 0)

»
nX

t=1

t¡3=2 + 2
n¡1X
t=1

P (¢R(x)
t > 0)P (¢R(z)

t > 0)
nX

t0=t+1

P (¢R
(x)
t0 > 0j¢R(x)

t > 0)P (¢R
(z)
t0 > 0j¢R(z)

t > 0)

»
nX

t=1

t¡3=2 + 2
n¡1X
t=1

t¡3=2

n¡tX
¿=1

P (¢R(x)
¿ > 0)P (¢R(z)

¿ > 0)

»
nX

t=1

t¡3=2 + 2
n¡1X
t=1

t¡3=2

n¡tX
¿=1

¿¡3=2 = O(1):
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And …nally, for the variance:

V ar
©

(log n)¡1=2T (n)
z;x

ª » (log n)¡1 ! 0, as n ! 1:

Accordingly from lemma 5:

(log n)¡1=2(T (n)
z;x ¡ ¹ log n)

p! ¡1:
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