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Abstract

The objective of this paper is to analyze the finite sample performance of two

variants of the likelihood ratio test for detecting a level shift in uncorrelated

conditionally heteroscedastic time series. We show that the behavior of the

likelihood ratio test is not appropriate in this context whereas if the test

statistic is appropriately standardized, it works better. We also compare

two alternative procedures for testing for several level shifts. The results are

illustrated by analyzing daily returns of exchange rates.

Keywords: EGARCH, GARCH, Likelihood Ratio, Stochastic Volatility.
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1 Introduction

It is well known that high frequency financial time series are often char-

acterized by being uncorrelated and conditionally heteroscedastic; see, for

example, Bollerslev et al. (1994), Ghysels et al. (1996) and Shephard (1996)

among many others. In empirical studies of these series using several years

of observations, we often find level shifts which may be caused by wars, fi-

nancial crisis, policy interventions, etc. There is a vast literature on testing

for level shifts in time series; see, for example, Hawkings (1977), Worsley

(1986), Tsay (1988), Krämer et al. (1988), Andrews (1993), Balke (1993)

and Bai (1994) among many others. One of the main problems when testing

for a level shift with unknown change point, τ , is that τ only appears un-

der the alternative hypothesis and not under the null. Consequently, usual

tests like, for example, the Likelihood Ratio (LR) test, do not have standard

asymptotic distributions even under ideal assumptions on the properties of

the series analyzed. Although there are variants of the LR test with well de-

fined asymptotic distributions, their properties in the presence of conditional

heteroscedasticity are still unknown. The objective of this paper is to ana-

lyze the performance of these tests for detecting a level shift at an unknown

point in uncorrelated conditionally heteroscedastic series.

The paper is organized as follows. Section 2 describes several variants of

the LR statistic proposed to test for a level shift in uncorrelated time series.

In Section 3, we analyze the finite sample size and power of these tests in

conditionally heteroscedastic series. In particular, we consider series gen-

erated by the following models: Generalized Autoregressive Conditionally
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Heteroscedastic (GARCH), Exponential GARCH (EGARCH) and Autore-

gressive Stochastic Volatility (ARSV). In Section 4, we extend the analysis

to the case when there are several level shifts in the series of interest and com-

pare two alternative procedures often used in this case. Section 5 contains

an empirical application where a series of daily US Dollar/Spanish Peseta

exchange rate returns is analyzed. Finally, Section 6 concludes the paper.

2 Likelihood Ratio tests for level shifts

Consider the series of interest given by

yt = µ + at, t = 1, ..., T (1)

where µ is the mean and at is an uncorrelated white noise process with zero

mean and finite variance, σ2. If there is a level shift at time τ , the observed

series, zt, is given by

zt = yt + ωI(t ≥ τ) (2)

where w is the size of the shift and I(t ≥ τ) is the indicator function. We

are interested in testing the null hypothesis of no level shifts in the series,

i.e. H0 : w = 0 against the alternative H1 : w 6= 0. The LR statistic can be

derived from the t-statistic of the Ordinary Least Squares (OLS) estimator

of the parameter ω in the following regression:

zt = µ + ωI(t ≥ m) + at, t = 1, ..., T, m = 2, ..., T (3)

obtained substituting (1) in (2) where, given that τ is unknown, the change

point, m, can occur at any moment between t = 2 to T.
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The t-statistic of the OLS estimator of ω is given by

λm =

∑T
t=m(zt − z̄)

σ̂m

√
(m−1)(T−m+1)

T

, m = 2, . . . , T. (4)

where z̄ =
∑T

t=1 zt/T and σ̂2
m = σ̂2

z − 1
(m−1)(T−m+1)

[∑T
t=m(zt − z̄)

]2

and σ̂2
z

is the sample variance of zt. From (4), it is easy to obtain the following

alternative expression of λm

λm =
z̄2 − z̄1√

(m−1)σ̂2
1+(T−m+1)σ̂2

2

(m−1)(T−m+1)

, m = 2, . . . , T, (5)

where z̄1 =
∑m−1

t=1 zt/(m− 1) and z̄2 =
∑T

t=m zt/(T −m + 1) are the sample

means before and after time m respectively and σ̂2
1 and σ̂2

2 are the correspond-

ing sample variances. Therefore, λm can be interpreted as the t-statistic for

the difference of the sample means of the first m− 1 and the last T −m + 1

observations.

The LR statistic is given by λ = maxm=2,...,T |λm|. If λ is greater than

the chosen critical value, then t? such that λ = |λt? | = maxm=2,...,T |λm|, is

identified as the instant of the change; see, for example, Hawking (1977),

Tsay (1988) and Andrews (1993). If at is a Gaussian process, λm is, under

the null hypothesis, N(0, 1), for all m. However, λ diverges asymptotically to

infinity; see Hawking (1977) and Andrews (1993) for heuristic and analytic

proofs respectively. Figure 1, illustrates this point plotting kernel estimates1

of the densities of λ computed from 10000 replicates of Gaussian series with

zero mean and variance one and T = 25, 200 and 15000. Consequently, Tsay

(1988) obtained the critical values for λ based on Monte Carlo experiments

1The kernel estimates of the densities have been obtained using S-plus 4.5 with a
Normal kernel.
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and proposed using 3.5, 3 or 2.5 as critical values. Table 1, that reports

empirical percentiles of λ based on the same simulated series as before, shows

that, for large enough samples, these critical values correspond approximately

to sizes of 5%, 15% and 25% respectively. However, notice that the critical

values strongly depend on the sample size of the series analyzed.

Andrews (1993) shows that when the change point is bounded away from

both extremes of the sample, λ converges in distribution to a function of

the supremum of a Brownian bridge that depends on the proportion of ob-

servations discarded on both extremes of the sample; see also Bai (1994).

Andrews (1993) suggests to discard 15% of the observations in each extreme

and consider m = [0.15T ] , ..., [0.85T ] where [·] is the integer-valued function.

However, the main disadvantage of this alternative to obtain a well defined

asymptotic distribution is that different tables should be used depending on

the particular proportion of the sample discarded.

On the other hand, Bai (1994) shows that using an alternative standard-

ization of the difference between means in (5), it is possible to obtain a statis-

tic that converges asymptotically in distribution2. In particular, consider the

statistic e = maxm=2,...,T |em|, where

em =
(T −m + 1)(m− 1)(z1 − z2)

σ̂zT 3/2
. (6)

Comparing the λm and em statistics in expressions (5) and (6) respec-

tively, it is possible to derive the following relationship among them

em = −
√

(m− 1)(T −m + 1)

T

σ̂m

σ̂z

λm, m = 2, . . . , T.

2A similar test has been proposed by Inclan and Tiao (1994) who use cumulative sums
(CUSUM) of squares to detect changes in the variance of independent processes.

6



Observe that σ̂m < σ̂z, and therefore

√
(m−1)(T−m+1)

T
σ̂m

σ̂z
< 1. Conse-

quently, λ is always greater than e.

Bai (1994) shows that, under the null hypothesis, the asymptotic dis-

tribution of e is given by the distribution of the supremum of a Brownian

bridge, i.e. P (e ≤ x) −→ G(x) where

G(x) =

{
0 if x < 0

1− 2
∑∞

k=1(−1)k+1e−2k2x2
if x ≥ 0

. (7)

Table 2 contains percentiles of the asymptotic and empirical distributions

of the statistic e, computed from 10000 replicates of Gaussian white noise

process with zero mean and variance one for the same sample sizes considered

before. Figure 2, which plots kernel estimates of the densities of e, illustrates

that the asymptotic distribution is an adequate approximation to the finite

sample distribution even for moderately small sample sizes like, for example,

T = 200.

The power of the λ and e tests to detect a level shift in uncorrelated ho-

moscedastic series has been analyzed when the size is 5% and 5000 replicates

are generated by model (3) with µ = 0 and at a Gaussian process with zero

mean and variance one. We consider different sizes and moments of the level

shift, ω and τ respectively. In particular, we consider increments of ω of 0.2

from 0 to 1 and τ = T/10, T/2 and 9T/10 to analyze the differences on the

power when the change occurs at the beginning, the middle or the end of

the sample respectively. Finally, the sample sizes considered are T = 500,

1000 and 5000. Table 3 reports the results of the corresponding Monte Carlo

experiments for λ. As expected, the power increases with the sample size

and with the size of the shift and it is higher when the shift occurs in the
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middle of the sample than when it happens at the beginning or the end. In

any case, for the sample sizes considered, the power is rather high even when

ω is relatively small. For example, if ω = 0.2 and T = 5000, the power is

approximately 0.9 in the extremes and 1 in the middle. Even when T = 1000,

the power is 0.83 in the extremes and 1 in the center if ω = 0.4. Notice that

although these sample sizes could seem too large, they are rather usual when

analyzing high frequency financial series.

Table 4 reports, the percentage of rejections of the null hypothesis ob-

tained using the e test when the series are generated by the same models as

above. Comparing Tables 3 and 4, it is possible to observe that the power of

λ is higher when the change occurs at the extremes of the sample while the

power of e is higher in the middle. On the other hand, the relationship of

the latter test with respect the sample size and the size and moment of the

change is the same as observed for the LR test.

3 Level shifts and conditional heteroscedas-

ticity

Conditionally heteroscedastic time series are often characterized by being

uncorrelated although non-independent. The dynamic evolution of the con-

ditional variances generates autocorrelations of non-linear transformations of

absolute observations and non-Gaussian marginal distributions. In this sec-

tion, we analyze whether the presence of conditional heteroscedasticity affects

the performance of the λ and e tests described in the previous section.

The Monte Carlo results reported in this section are based on series gen-

erated by four different conditionally heteroscedastic models:
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(i) GARCH(1,1) models with Gaussian errors, given by

yt = εtσt (8)

σ2
t = α0 + α1y

2
t−1 + βσ2

t−1

where εt is a Gaussian white noise with zero mean and variance one.

(ii) GARCH(1,1) models defined as in (10) with εt having a Student-t

with 7 degrees of freedom distribution standardized to have variance one.

(iii) EGARCH(1,1) models with Gaussian errors where yt is generated as

in (10) but the conditional variance is given by

log(σ2
t ) = α0 + β log(σ2

t−1) + α1 |εt−1 − E |εt−1||+ γεt−1

(iv) ARSV(1) models with Gaussian errors given by

yt = σ∗εtσt

log(σ2
t ) = φ log(σ2

t−1) + ηt

where ηt is a Gaussian white noise process with zero mean and variance σ2
η

independently distributed of εt.

The description of these models and their properties can be found, for

example, in Carnero et al. (2001). The values of the parameters of the

previous models, reported in Table 5, have been chosen to represent the

parameters usually estimated with real time series of financial returns. We

have considered three alternative sample sizes: T = 500, 1000 and 5000. The

number of replicates when analyzing the size of the tests is 10000 while we

generate 5000 replicates to study the power. All the experiments have been

carried out in a Pentium III computer using our own Fortran codes.
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We analyze first whether the presence of the types of conditional het-

eroscedasticity considered in this paper, affects the size of the λ and e tests.

Table 5 reports their empirical sizes when the nominal size is 5%3. The crit-

ical value for λ has been taken from Table 1 as the value corresponding to

the sample distribution when T = 15000, i.e. 3.43. The critical value for

e has been taken from its asymptotic distribution. Looking at the results

for the λ test, the first conclusion is that, with one exception, the empirical

size is greater than the nominal. This result seems surprising looking at the

results in Table 1 for the Gaussian series, because we are using a critical

value larger than the values corresponding to the sample sizes considered in

Table 5. Therefore, a smaller size should be expected. In some cases, the size

distortions are huge; see, for example, the ARSV(1) models, where some of

the empirical sizes are double than the nominal. It seems that, the size dis-

tortions of λ are larger the larger the kurtosis of yt. For models with similar

kurtosis, the distortions are larger in the more persistent cases. Furthermore,

the gap between the nominal and empirical sizes increases with the sample

size.

To analyze whether these size distortions of the λ test are attributable

only to the conditional heteroscedasticity or they are the result of the lack of

Gaussianity of the GARCH and ARSV models, Table 5 also reports the sizes

of λ when the series are generated by homoscedastic although leptokurtic

white noises. In particular, we generate series by two Student-t distributions

with 5 and 7 degrees of freedom. It can be observed that, in these cases, the

size of λ is close to the nominal. Therefore, it is possible to conclude that the

3Results for alternative nominal sizes are available from the authors upon request.
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size distortions observed before are mainly due to the presence of conditional

heteroscedasticity.

Looking at the size results of the e test, we can observe that, for all the

models and sample sizes considered, the empirical size is very close to the

nominal. Consequently, the results reported in Table 5 suggest that when

the series are GARCH or ARSV, the size of the e test is not affected.

Now, we study the power of the λ and e tests when the series are condi-

tionally heteroscedastic. Table 6 shows the empirical powers of the LR test,

λ, when there is a level shift for some selected conditionally heteroscedastic

models. In particular, we consider two GARCH(1,1) models, with Gaus-

sian and Student-t innovations respectively, and parameters (α0, α1, β) =

(0.02, 0.10, 0.88) in both cases. We also consider an EGARCH model with

parameters (α0, α1, β, γ) = (−0.001, 0.10, 0.98,−0.05) and, finally, an ARSV

model with parameters (σ2
?, φ, σ2

η) = (0.8, 0.98, 0.02). The design for the level

shift is the same considered in the previous section.

Comparing Tables 3 and 6, it is possible to observe that for all, ω, τ

and T , the power of λ decreases when the series are generated by condition-

ally heteroscedastic models with respect to the powers obtained in Gaussian

white noise series. Notice that, in some cases, the lost of power can be very

important. For example, when ω = 0.2, τ = T/2 and T = 1000, the power is

0.66 when the series is Gaussian while, if the series is GARCH, the powers are

0.51 and 0.37 depending on whether the innovations are Gaussian or Student-

t. On the other hand, if the series is EGARCH the power is 0.56 while if

it is ARSV is 0.31, less than half than in the conditionally homoscedastic

Gaussian model.
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To show that the reduction of power of the λ test in the presence of con-

ditional heteroscedasticity is not only attributable to the models considered

in Table 6, Table 7 reports the corresponding powers for all the models con-

sidered when analyzing the size. It is rather obvious that the power of λ

decreases for all the models considered and that the reduction in power is

larger the larger the kurtosis of yt. It is also interesting to notice that the

behavior of the power is similar between the GARCH-t and ARSV models

and between the GARCH-N and EGARCH models, being much smaller in

the former than in the latter. This result is consistent with the results in

Carnero et al. (2003) who show that the statistical properties of the first two

and the last two models are similar. Finally, Table 7 also reports the powers

of the λ test when the series are generated by homoscedastic Student-t white

noises. Notice that, in these cases, the loss of power is rather small. Conse-

quently, the problems of the λ test to detect level shifts can be attributable

to the dynamic evolution of the conditional variance.

Table 8 reports the powers of the e test when artificial series are generated

by the same models as in Table 6. Comparing Tables 4 and 8, it is possible to

observe that the power of the e test is only marginally affected by the presence

of conditional heteroscedasticity. Given that in these circumstances, as we

have seen before, the power of λ decreases, there is an important increase

in the power of e with respect to λ, specially when the change happens in

the middle of the sample. Consider, for example, the series generated by the

GARCH-t7 model with T = 1000 and ω = 0.2. If the level shift occurs at

τ = T/2, the powers of λ and e are 0.37 and 0.82 respectively. Table 7 shows

that, for this particular case, the power of the e test is not affected by the
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presence of conditional heteroscedasticity.

Summarizing, for the λ test, the size is larger than the nominal and the

power is smaller than in homoscedastic series. However, for the e test, both

the size and power are similar to the ones obtained in homoscedastic series.

4 Multiple level shifts

The LR-type tests considered before are designed to detect just one level shift

at a time. However, in practice, it is possible to encounter real series that

contain more than one shift. In this case, Tsay (1988) proposes the following

procedure that we denote as C (for correct): i) identify the moment of time

when the biggest shift occurs, ii) estimate its size and, iii) correct the series

for the estimated size. These three steps should be repeated until no further

shifts are detected. Then, the joint estimation of all the level shifts detected is

recommended by, for example, Chen and Liu (1993). However this procedure

can be misleading and inefficient because of the biases of the magnitudes of

the shifts estimated in each step. Consider, for example, a series that has

two level shifts at times τ1 and τ2 respectively. Therefore,

zt = µ + ω1I(t ≥ τ1) + ω2I(t ≥ τ2) + at. (9)

Without lost of generality, we will consider µ = 0. Suppose that, in

the first step, a level shift is detected at time t = τ1 and its magnitude is

estimated. The OLS estimate of ω1 is given by ω̂1 = z2− z1 where z1 and z2

are the sample means before and after time τ1. The expected value of ω̂1 is

given by:

E(ω̂1) = ω1 +
T − τ2 + 1

T − τ1 + 1
ω2 (10)
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Depending on the relationship between the magnitudes and signs of the

two level shifts, correcting the original series by ω̂1 can generate spurious

shifts. To illustrate this problem, Figure 3 plots a zero mean white noise

Gaussian series of size T = 500, yt, that has been contaminated with two level

shifts of size w = 2, in observations t = 50 and 100 respectively, obtaining

the series zt = yt + 2I(t > 50) + 2I(t > 100). By applying procedure C to

the LR test, the original series yt is only recovered after four corrections. In

the first step, λ = |λ100| = 23.01 and, consequently, a level shift is detected

at time t = 100. The shift size is estimated as ω̂1 = 2.85. The corrected

series, denoted as z1t is given by z1t = zt − 2.85I(t > 100) and has also been

plotted in Figure 3. Then, when the LR test is implemented to the series

z1t, we obtain λ = |λ49| = 7.65 and a second level shift is detected in the

series z1t at time t = 49. Its estimated size is ω̂2 = 1.18. Once this new level

shift is corrected, the new series is given by z2t = z1t − 1.19I(t > 49). If

the λ test is again implemented to the series z2t, the null hypothesis of no

level shifts is again rejected with λ = |λ148| = 5.20. Therefore, the third

level shift is detected at time t = 148 and its estimated size is ω̂3 = −0.51.

Then, the series z3t = z2t + 0.51I(t > 148) is obtained and, in this case,

λ = |λ29| = 3.60, is again significant and the estimated size is 0.57. Finally,

when the λ test is implemented to the series z4t = z3t − 0.57I(t > 29), the

statistic is not significant. If the four level shifts are estimated jointly the

result is

ŷt = −0.08
(−0.39)

+0.42
(1.39)

I(t > 29)+ 2.20
(10.75)

I(t > 49)+1.81
(6.74)

I(t > 100)− 0.35
(−2.23)

I(t > 148)

The quantities in parenthesis are the t-statistics. Notice that this procedure
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can be rather time consuming. Alternatively, it is possible to estimate jointly

all the shifts detected up to a particular moment. In our example, if when

the second level shift is detected, we estimate jointly the first and second

level shift, the estimated model is

ŷt = 0.10
(0.66)

+ 1.89
(12.55)

I(t > 49) + 2.05
(10.00)

I(t > 100)

When the λ test is implemented to the residuals of the above model, we

obtain λ = 2.17 which is not significant and, therefore, no spurious level

shifts are detected in the corrected series. This problem is the same when

the e statistic is used.

To illustrate the performance of the C procedure, we have simulated

10000 replicates of size T = 1000 by model (11) with at being a Gaussian

white noise process with zero mean and variance one4. Each series has been

contaminated with two level shifts of the same size ω1 = ω2 = 1, in different

positions in the series: τ1 = T/10, T/4, T/2, 3T/4 and 9T/10 and different

distances between shifts τ2 = τ1+ T/10 and τ2 = τ1+ T/4. Table 9 reports

the percentage of rejections of the null hypothesis when the e test is imple-

mented to a detect level shift in the contaminated series. The null is rejected

in all the simulated series. The second column shows the median through all

the Monte Carlo replicates of the period of time when the shift is detected.

It can be observed that this time is rather close to one of the actual level

shifts. The next two columns of Table 9 report results when the C procedure

is used after detecting the first level shift. First, we show the percentage

4Artificial series have also been generated by conditionally heteroscedastic models with
similar results that are not reported here to save space. These results are available from
the authors upon request.
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of rejections after each series has been corrected by the estimated shift to-

gether with the median time for the second level shift when it is detected.

Observe that once the series is corrected by the first level shift detected, the

percentage of rejections of the null decreases in some cases even to 84.32.

However, if the second shift is detected, the median time of the shift is close

to the true time. Finally, the next two columns report the same quantities

if a second shift is detected. Notice that, even when the series have not any

more level shifts, the percentage of rejections of the null hypothesis is much

higher than the nominal size. Therefore, spurious level shifts are detected in

a larger number of series. Consider, for example, the case of two level shifts

at τ1 = 250 and τ2 = 350. In this case, a level shift is detected in median at

time 349, corresponding to the second shift. After the series are corrected

by the corresponding estimated changes, the null is rejected in 99.72% of the

series. The median of the period for the second level shift is 249 correspond-

ing to the first level shift. If the series are again corrected by this second

shift, the test rejects the null in 99.38% of the series when there are not

more level shifts. The third spurious level shift is detected in median at time

t = 365. The results for all the other cases considered in Table 9 are similar.

In general, we can conclude that the C procedure detects correctly the two

level shifts but also detects spurious shifts that are not in the original data

and apparently occur in moments of time relatively close to the first shift

detected. Even if the joint estimation of all the shifts detected is adequate,

this procedure is rather inefficient in the sense that it requires quite a lot

of steps before the right answer is obtained. The results for the LR test,

conditional heteroscedasticity models and for other sample sizes are similar.
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Some authors suggest to estimate the second break using all observations but

those close to the break previously detected; see, for example, Altissimo and

Corradi (2003). However, it is not clear which observations should be taken

out when estimating the second break as, in some of the simulated series, we

have observed that the spurious breaks can be detected at points which are

rather far from the detected shifts.

Given the problems encountered when the C procedure is implemented in

the presence of two or more level shifts, we consider an alternative procedure

that consists on splitting the sample into two subsamples after a level shift

has been identified. If, for example, a level shift is detected at time t = τ1,

the series is divided into two subseries: one up to the time t = τ1−1 and the

other, from that time on. Then, the test to detect level shifts is implemented

in each of the two subseries. The procedure should continue until no further

shifts are detected in any of the subseries. The main disadvantage of this

procedure, denoted by D (for divide), is that, in the successive subdivisions

of the original series, the sample sizes of the subseries decrease and conse-

quently, the power of the test also decreases. However, when dealing with

financial series, the sample sizes are usually very large and, consequently,

in this context, this is a minor problem. Table 9 also reports the results

of the Monte Carlo experiments carried out with the same design as before

when the procedure D is implemented. In this case, after a level shift has

been detected, the sample is split into two subsamples. The first and second

columns of Table 9 corresponding to procedure D, show the percentage of

rejections and the median time of the shift in the first subsample and the

following two columns are the same quantities for the second subsample. For
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example, looking at the same case considered above when the shifts occur at

times τ1 = 250 and τ2 = 350, we observe that once a shift is detected, at time

349, the test detects a second shift in the first subsample in all the simulated

series and only in 4.24% of the series in the second subsample, which is close

to the nominal size of the test which is 5%. In general, the results reported

in Table 8 show that, when two level shifts occur in a time series, the D

procedure gets quicker to the correct answer than the C procedure. It seems

that the advantage of the former over the latter procedures will be even more

important when more than two shifts occur.

Finally, it is interesting to notice that the D procedure seems to work

better when the shifts are far apart than when they occur close in time. On

the other hand, the procedure works better when the shifts happen in the

extremes than when they occur in the middle of the series.

5 Empirical Application

In this section we implement the λ and e tests to detect level shifts in a

series of Spanish Peseta/US Dollar exchange rate returns5, observed daily

from January 2, 1980 to April 18, 2001 with T = 5371 observations. The

series of returns, yt, has been plotted in Figure 4 together with a kernel

estimate of its density and the correlogram of squared returns. Table 10,

that contains some descriptive statistics of yt, shows that returns exhibit high

kurtosis. Furthermore, the statistics proposed by Peña and Rodriguez (2002)

5The exchange rates, pt, have been downloaded from the web page
http://pacific.commerce.ubc.ca/xr/ provided by Prof. Werner Antweiler, University
of British Columbia, Vancouver, Canada. The series analysed in this paper is the series
of returns defined as yt = 100(log(pt)− log(pt−1)).
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to test for uncorrelatedness of yt and y2
t , D(k) and D2(k) respectively, shows

that although the series yt is uncorrelated, the autocorrelations of squared

observations are significantly different from zero. These are properties that

usually characterize conditional heteroscedasticity.

First, we test for a level shift in the series of returns using the LR test.

Figure 5 plots the values of the λm statistic, m = 2, ..., 5371 wich has a

maximum λ = |λ1289| = 3.75 which is larger than 3.43, the 5% critical value

for T = 1500 in Table 1. Therefore, a level shift is detected at time t =

1289 that corresponds to February, 26, 1985. Notice that in 1985 the G5

decided, in Washington D.C., devaluate the Dollar with the objective of

improve exportations. Once the shift is detected, we estimate its magnitude

by OLS with the following results:

ŷt = 0.08
(4.26)

− 0.08
(−3.72)

I(t ≥ 1289) (11)

Then, the series is corrected and the test is applied again to look for

another shift. Figure 5, also shows the new values of the λm statistic applied

to the corrected series. In this case, no more changes are detected.

We also compute the λm statistic in each of the two subsamples obtained

splitting the sample before and after February, 26, 1985. In this case, a new

shift is detected at time t = 1290, i.e. in the first observation of the second

subseries. If the test is applied to the subseries y2t for t = 1291, . . . , 5371 no

more shifts are detected.

Alternatively, we test for level shifts in the returns series implementing

the e statistic. Figure 6 plots the values of em that reaches a maximum at

time t = 1289, e = |e1289| = 1.60 which is larger than 1.4, the 5% asymptotic
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critical value. Therefore, the null hypothesis is rejected, indicating that there

is a level shift at February, 26, 1985, in agreement with the LR test. Then,

the series is split into two subseries y1t and y2t, the first one from t = 1

up to t = 1289 and the second from t = 1290 up to t = 5371. Then, the

procedure is applied again to each of the subseries. As we can see in Figure

6, the values of em do not cross the critical value in the first subsample, while,

in the second subsample, the maximum is e = |e3189| = 1.66 which is larger

than the critical value and, consequently, a new level shift is detected at time

t = 3189 corresponding to September, 2, 1992. Notice that, in September

1992 the Peseta was devaluated several times. If we apply again the procedure

to the two new subseries: the first one from t = 1290 up to t = 3189 and the

second from t = 3190 up to t = 5371, no more level shifts are detected. As

Table 10 shows, the means of the three subseries are different.

If the e test is implemented after correcting the series, it detects another

shift at time t = 3189. Therefore, for this particular example, the statistic

e detects two level shifts and λ detects just one shift independently of the

procedure used. This result agrees with the Monte Carlo results that show the

lack of power of the λ test to detect level shifts in the presence of conditional

heteroscedasticity.

6 Conclusions

In this paper we have studied the properties of two variants of the LR statis-

tic for detecting a level shift in uncorrelated conditionally heteroscedastic

time series. We show that while the standard LR test, λ, suffers from im-
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portant size distortions, the e test is robust, at least when the conditional

heteroscedasticity is generated by some of the most popular models in the

literature. Furthermore, the e test does not lose power while the λ test

may have important decreases in power and, therefore may have problems to

detect shifts actually present in the series.

We have also compared two procedures for detecting multiple level shifts.

When a level shift is detected, the first one corrects the series by the estimated

size, whereas the second divides the series at the time detected. For the large

sample sizes usually encountered when analyzing financial time series, the

second procedure seems to get quicker to the right answer.

Finally, both tests are applied to a daily series of returns of the Spanish

Peseta/US Dollar exchange rates. In this particular series, the λ test only

detects one shift while the e test finds two shifts that are justified by the

characteristics of the series analyzed.
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Tables and figures

Table 1: Percentiles of the empirical distribution of the likelihood ratio test
statistic, λ, for Gaussian white noise processes

Percentil T=25 T=200 T=500 T=1000 T=5000 T=15000
80% 2.62 2.65 2.73 2.77 2.88 2.91
85% 2.78 2.79 2.84 2.89 3.01 3.03
90% 2.98 2.97 3.01 3.04 3.15 3.18
95% 3.36 3.23 3.26 3.28 3.39 3.43
99% 4.12 3.77 3.78 3.77 3.87 3.90

Figure 1: Kernel estimates of the density of λ for different sample sizes

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T=25   
T=200  
T=15000

24



Table 2: Percentiles of the empirical distribution of the statistic e for Gaus-
sian white noise processes

Percentil T=25 T=200 T=500 T=1000 T=5000 T=15000 Asymptotic
80% 0.98 1.03 1.05 1.05 1.07 1.07 1.07
85% 1.04 1.10 1.12 1.12 1.13 1.13 1.14
90% 1.11 1.19 1.20 1.21 1.22 1.22 1.22
95% 1.23 1.32 1.34 1.34 1.35 1.36 1.36
99% 1.44 1.60 1.62 1.62 1.64 1.64 1.63

Table 3: Power of the likelihood ratio test for Gaussian white noise processes

τ = T/10 τ = T/2 τ = 9T/10
ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.12 0.24 0.91 0.35 0.66 1.00 0.14 0.23 0.90
0.4 0.47 0.83 1.00 0.94 1.00 1.00 0.49 0.83 1.00
0.6 0.88 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00
0.8 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: Power of the e test for Gaussian white noise processes

τ = T/10 τ = T/2 τ = 9T/10
ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.08 0.12 0.69 0.51 0.82 1.00 0.09 0.14 0.70
0.4 0.24 0.55 1.00 0.98 1.00 1.00 0.26 0.57 1.00
0.6 0.57 0.95 1.00 1.00 1.00 1.00 0.63 0.96 1.00
0.8 0.90 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00
1 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
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Figure 2: Kernel estimates of the density of e for different sample sizes
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Table 6: Power of the likelihood ratio test for conditionally heteroscedastic
time series

Gaussian GARCH(1,1) with parameters (0.02,0.10,0.88)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.10 0.16 0.76 0.25 0.51 1.00 0.09 0.15 0.77
0.4 0.35 0.69 1.00 0.87 0.99 1.00 0.37 0.69 1.00
0.6 0.76 0.97 1.00 0.99 1.00 1.00 0.79 0.97 1.00
0.8 0.95 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00
1 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

GARCH(1,1)-t7 with parameters (0.02,0.10,0.88)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.07 0.11 0.60 0.16 0.37 0.99 0.07 0.10 0.60
0.4 0.26 0.56 1.00 0.78 0.97 1.00 0.25 0.56 1.00
0.6 0.65 0.93 1.00 0.97 1.00 1.00 0.67 0.94 1.00
0.8 0.89 0.99 1.00 1.00 1.00 1.00 0.91 0.99 1.00
1 0.97 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00

Gaussian EGARCH(1,1) with parameters (-0.001,0.10,0.98,-0.05)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.12 0.19 0.84 0.26 0.56 1.00 0.09 0.16 0.85
0.4 0.38 0.72 1.00 0.90 1.00 1.00 0.38 0.76 1.00
0.6 0.79 0.99 1.00 1.00 1.00 1.00 0.82 0.99 1.00
0.8 0.97 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian ARSV(1) with parameters (0.8,0.98,0.02)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.09 0.12 0.64 0.13 0.31 1.00 0.07 0.09 0.66
0.4 0.26 0.50 1.00 0.69 0.98 1.00 0.18 0.47 1.00
0.6 0.58 0.90 1.00 0.98 1.00 1.00 0.55 0.94 1.00
0.8 0.85 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00
1 0.97 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00
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Table 7: Power of the λ and e tests for different conditional heteroscedastic
and leptokurtic models when T = 1000 and the level shift occurs at τ = T/2
with a size of 0.2

Model Parameters Kurtosis λ e
(0.10,0.10,0.80) 3.35 0.58 0.82

GARCH (0.02,0.10,0.88) 6.06 0.51 0.81
(α0, α1, β) (0.07,0.05,0.88) 3.11 0.62 0.82

(0.05,0.15,0.80) 5.57 0.48 0.82
(0.10,0.10,0.80) 6.33 0.47 0.82

GARCH-t7 (0.02,0.10,0.88) @ 0.37 0.82
(α0, α1, β) (0.07,0.05,0.88) 5.40 0.52 0.82

(0.05,0.15,0.80) 65 0.36 0.83
(-0.004,0.20,0.95,0.05) 3.66 0.53 0.82

EGARCH (-0.001,0.10,0.98,-0.05) 3.56 0.56 0.82
(α0, α1, β, γ) (-0.004,0.15,0.95,0.10) 3.74 0.47 0.81

(-0.010,0.30,0.98,-0.10) 11.47 0.34 0.81
(0.77,0.90,0.10) 5.08 0.44 0.82

ARSV (0.78,0.95,0.05) 5.01 0.36 0.81
(σ2

?, φ, σ2
η) (0.29,0.98,0.10) 37.48 0.29 0.77

(0.80,0.98,0.02) 4.97 0.31 0.78
Student-tν ν = 5 9 0.61 0.83
Student-tν ν = 7 5 0.61 0.82
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Table 8: Power of the e test for conditionally heteroscedastic time series

Gaussian GARCH(1,1) with parameters (0.02,0.10,0.88)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.09 0.14 0.68 0.53 0.81 1.00 0.09 0.14 0.69
0.4 0.28 0.56 1.00 0.97 1.00 1.00 0.29 0.57 1.00
0.6 0.63 0.93 1.00 1.00 1.00 1.00 0.66 0.94 1.00
0.8 0.89 0.99 1.00 1.00 1.00 1.00 0.91 0.99 1.00
1 0.97 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00

GARCH(1,1)-t7 with parameters (0.02,0.10,0.88)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.10 0.15 0.69 0.55 0.82 1.00 0.10 0.15 0.69
0.4 0.29 0.58 1.00 0.96 1.00 1.00 0.29 0.59 1.00
0.6 0.64 0.93 1.00 1.00 1.00 1.00 0.66 0.93 1.00
0.8 0.88 0.99 1.00 1.00 1.00 1.00 0.89 0.99 1.00
1 0.97 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00

Gaussian EGARCH(1,1) with parameters (-0.001,0.10,0.98,-0.05)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.11 0.15 0.69 0.51 0.82 1.00 0.10 0.14 0.69
0.4 0.28 0.56 1.00 0.98 1.00 1.00 0.27 0.57 1.00
0.6 0.62 0.95 1.00 1.00 1.00 1.00 0.64 0.95 1.00
0.8 0.91 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00
1 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Gaussian ARSV(1) with parameters (0.8,0.98,0.02)
τ = T/10 τ = T/2 τ = 9T/10

ω T=500 T=1000 T=5000 T=500 T=1000 T=5000 T=500 T=1000 T=5000
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.09 0.15 0.67 0.43 0.78 1.00 0.08 0.14 0.67
0.4 0.24 0.53 1.00 0.95 1.00 1.00 0.21 0.52 1.00
0.6 0.52 0.91 1.00 1.00 1.00 1.00 0.51 0.92 1.00
0.8 0.80 0.99 1.00 1.00 1.00 1.00 0.83 1.00 1.00
1 0.95 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00
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Figure 3: Artificial series contaminated with two level shifts and corrected
using procedure C
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Figure 4: Exchange rates of Spanish Peseta/ US Dollar observed daily from
January, 2, 1980 to April, 18, 2001
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Table 10: Descriptive statistics for the return series yt and the corresponding
sub-series

yt y1t y2t y3t

T 5371 1289 1900 2182
Jan. 2, 1980 Jan. 2, 1980 Feb. 27, 1985 Sept. 3, 1992
Apr. 18, 2001 Feb. 26, 1980 Sept. 2, 1985 Apr. 18, 2001

Mean 0.02∗ 0.08∗ -0.04∗ 0.03∗

S.D. 0.69 0.67 0.73 0.67
Skewness 0.37∗ 1.39∗ 0.06 0.16∗

Kurtosis 10.81∗ 25.18∗ 6.82∗ 7.04∗

r(1) -0.02 -0.10∗ 0.00 -0.02
D(20) 11.77 21.43∗ 16.03 20.52∗

Autocorrelation of y2
t

r2(1) 0.12∗ 0.02 0.29∗ 0.14∗

r2(2) 0.06∗ 0.01 0.09∗ 0.11∗

r2(5) 0.07∗ 0.02 0.08∗ 0.20∗

r2(10) 0.02 0.00 0.04∗ 0.04∗

D2(20) 129.11∗ 2.05 179.48∗ 167.74∗

T: Sample size.
r(τ): Order τ autocorrelation of yt.
r2(τ): Order τ autocorrelation of y2

t .
*Statistically significant at 95% of confidence.
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Figure 5: Values of the λ statistic for the Spanish Peseta/US Dollar returns
and the corrected series
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Figure 6: Values of the e statistic for the Spanish Peseta/US Dollar returns
and the corresponding sub-series
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