Working Paper 03-52
Statistics and Econometrics Series 11
October 2003

Departamento de Estadística y Econometría
Universidad Carlos III de Madrid
Calle Madrid, 126
28903 Getafe (Spain)
Fax (34) 91 624-98-49

OPTIMAL RANDOM SAMPLING DESIGNS IN RANDOM FIELD SAMPLING

José E. Rodríguez and Fernando Ávila*

Abstract

A Horvitz-Thompson predictor is proposed for spatial sampling when the characteristic of interest is modeled as a random field. Optimal sampling designs are deduced under this context. Fixed and variable sample size are considered.

Keywords: Horvitz-Thompson estimator; Spatial sampling; Optimal random sampling designs; Variable size samples.
*Rodríguez, Departamento de Estadística y Econometría, Universidad Carlos III de Madrid, C/ Madrid, 126, 28903 Getafe. Madrid, e-mail: jerodrig@est-econ.uc3m.es y School of Mathematics, University of Guanajuato, México, e-mail: elias@cimat.mx; Ávila, Centro de Investigación en Matemáticas, Guanajuato, México. This work was completed while the first author was a visiting professor at the Carlos III of Madrid University. Supported, in part, by CONCYTEG grant $03-16-\mathrm{K} 118-027$ to José E. Rodríguez.

The Horvitz-Thompson Predictor in Random Field Sampling

José E . Rodríguez ${ }^{1}$
School of Mathematics, University of Guanajuato, Guanajuato, México
Fernando Á vila
Centro de Investigación en M atemáticas, Guanajuato, M éxico
A bstract:A Horvitz-Thompson predictor is proposed for spatial sampling when the characteristic of interest is modeled as a random ..eld. Optimal sampling designs are deduced under this context. Fixed and variable sample size are considered.

K eywords: H orvitz-T hompson estimator; spatial sampling; optimal random sampling designs; variable size samples.

1 Introduction

The Horvitz-Thompson type estimators are widely used in ..nite population estimation when the estimation procedure is based on probability sampling. Cordy (1993) extends this type of estimator to populations distributed over spatial domains where the characteristic of interest is conceptualized as a deterministic continuous function de..ned on these domains. The Horvitz-T hompson estimator proposed in Cordy (1993) has been generally used on environmental sampling, see Stevens (1997). In the present work, this characteristic is mod-

[^0]eled by a random ..eld and a Horvitz-T hompson predictor is proposed. Optimal sampling designs are deduced under this context.

W hen the region of interest is discretized to a ..nite grid of points, optimal sampling designs were established in Aldworth \& Cressie (1999) among others. In the present work, the random sampling designs, including the optimal designs, are de..ned over all the points of the region of interest.

In order to introduce the Horvitz-Thompson predictor and their optimal sampling designs, ..rst the spatial estimation is brie $\ddagger y$ reviewed. Secondly, The Horvitz-T hompson predictor is proposed and his related optimal sampling designs are deduced. Finally, this predictor is studied under variable size samples.

2 Spatial estimation

In this work, the population is a subset of $\mathrm{R}^{d}, \mathrm{U} \underset{1}{1 / 2} \mathrm{R}^{d}$ such that $\mathrm{jUj}>0$ (jq denotes volume under Lebesgue measure). The characteristic of interest of the population is represented by $z_{\mathrm{U}}=\mathrm{f} z(x): x \mathbf{2 U g}$, where $z(x) 2 \mathbf{R}$, for all $x 2 \mathrm{U}$.

A ..nite sample is a set of points $\mathfrak{f} x_{1}, \ldots, x_{n} \mathbf{g}$, such that each $d \boldsymbol{i}$ dimensional $x_{k} 2 \mathrm{U}$ and n is the .. xed sample size.

A sampling design, of size n, is the joint distribution function G_{n} of a set of random variables $\mathrm{f} X_{1}, \ldots, X_{n} \mathrm{~g}$, where each X_{k} is a $d \mathrm{i}$ dimensional random variable with support in U. The sample points $\mathrm{f} x_{1}, \ldots, x_{n} \mathrm{~g}$ are possible realizations of these random variables. If G_{n} has density function g_{n}, then g_{n} is also
named the sampling design. Additionally, if the random variables $\mathrm{f} X_{1}, \ldots, X_{n} \mathrm{~g}$ are independent and identically distributed with marginal distribution function G, then either G or its respect ive density function is called a random sampling design.

The population parameter to be estimated is the total $t:={ }_{\mathrm{u}}^{\mathrm{R}} z(x) d x$, provided that this integral exists.

The Horvitz-Thompson est imator of t is given by

$$
\begin{equation*}
t_{\pi_{n}}:=X_{k=1}^{X_{n}} \frac{z\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)}, \tag{1}
\end{equation*}
$$

where $\pi_{n}=\mathrm{P}_{\substack{n=1 \\ k}}$, provided that $\pi_{n}>0$ on U , and g_{k} is the marginal density function of X_{k}. The estimator (1) was proposed by Cordy (1993).

The estimator (1) has the following properties: a) it is unbiased; b) its variance is

$$
\begin{equation*}
\mathbf{Z} \frac{z^{2}(x)}{\pi_{n}(x)} d x+\mathbf{U ~ Z}_{\mathrm{u}} \frac{z(x) z(y)}{\pi_{n}(x) \pi_{n}(y)} \pi_{n}(x, y) d x d y \text { i } t^{2} \tag{2}
\end{equation*}
$$

where $\pi_{n}(\phi \subseteq)=\mathrm{P}_{\substack{n \\ j=1}}^{\mathrm{P}} \underset{k \notin j}{ } h_{j k}(\phi \Phi)$ and $h_{j k}$ is the marginal bivariate density function of $\left(X_{j}, X_{k}\right)$; c) if $\pi_{n}(\Phi \subseteq>0$ on $\cup £(\mathrm{U}$, then an unbiased estimator of the variance in (2) is

$$
\mathrm{X}_{k=1}^{n} \frac{z^{2}\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)}+\mathrm{X}_{j=1 k \notin j}^{n} \frac{z\left(X_{j}\right) z\left(X_{k}\right)}{\pi_{n}\left(X_{j}\right) \pi_{n}\left(X_{k}\right)} \mathrm{i}_{j=1 k \notin j}^{\mathrm{X}^{n} \mathrm{X}} \frac{z\left(X_{j}\right) z\left(X_{k}\right)}{\pi_{n}\left(X_{j}, X_{k}\right)} .
$$

Some restrictions over z_{U}, π_{n} and $\pi_{n}(\Phi \Phi$ have been established in Cordy
(1993) in order that the estimator (1) has the above properties.

3 The Horvitz-Thompson predictor

Here the characteristic z_{u} is conceptualized as a realization of the second-order random ..eld $Z_{U}=\mathrm{f} Z(x): x 2 \mathrm{Ug}$, such that ${ }_{\mathrm{R}} E{ }^{£} Z^{2}(x)^{\mathrm{a}}<1$. Additionally, this random ..eld is assumed to be continuous in quadratic mean.

Similarly, as in the previous section, the statistic of interest is the total value $T:={ }^{\mathrm{R}}{ }_{\mathrm{U}} Z(x) d x$.

In addition, the set of random variables Z_{U} and the set $f X_{1}, \ldots, X_{n} \mathrm{~g}$ are de..ned over the same probability space. M oreover, we assume that the ..eld Z_{U} and the set $\mathrm{f} X_{1}, \ldots, X_{n} \mathrm{~g}$ are stochastic independent, in particular the sampling design G_{n} will not depend on Z_{U}.

The above sampling scheme has two sources of randomness. O ne comes from our uncertainty about the particular values of the quantity of interest on each point of U. The other is generated by the sampling procedure. The ..rst kind of randomness is modeled by the random ..eld and the second one is described by the random sampling design. Furthermore, the random ..eld is used for modeling the dependency among the observations in dixerent sampling points. This random ..eld will be also used for obtaining optimal sampling designs.

Using the form of the total T, a natural predictor is a linear homogeneous
predictor, based on the design G_{n}, as

$$
\begin{equation*}
T_{\lambda_{n}}:=\frac{1}{n}_{k=1}^{X_{n}^{n}} \lambda_{n}\left(X_{k}\right) Z\left(X_{k}\right) \tag{3}
\end{equation*}
$$

where $\lambda_{n}: U!R$ is a function of coed cients. T he same predictor can be found in Schoenfelder \& Cambanis (1982). The coed cients of this predictor do not require knowledge of the random ..eld model and thus this predictor is nonparametric.

Schoenfelder \& Cambanis (1982) obtained the necessary and suф cient conditions in order that the M SE of the predictor (3) tends to zero as $n!1$.

Now, the bias of the predictor (3) is

$$
B^{\mathbf{i}} T_{n}^{\lambda^{\dagger}}:={ }_{\mathrm{U}}^{\lambda_{n}}(x) E(Z(x)) d \bar{G}_{n}(x) \mathbf{i}_{\mathrm{U}}^{\mathbf{Z}} E(Z(x)) d x
$$

where $\bar{G}_{n}=\frac{1}{n} \mathrm{P}_{k=1}^{n} G_{k}, G_{k}$ is the marginal distribution function of X_{k}. If the mean function $E[Z(x)]$ is known for all $x 2 \mathrm{U}$, then it is possible to ..nd a function of coeф cients λ_{n} such that $B^{\mathrm{i}}{T_{n}{ }^{\dagger}}^{\dagger}=0$. For example, if $E(Z(x))=m \in 0$ for all $x 2 \mathrm{U}$ and if the sample design and λ_{n} are such that ${ }_{\mathrm{u}}^{\mathrm{R}} \lambda_{n}(x) \overline{d G_{n}}(x)=\mathrm{jUj}$, then the predictor (3) is unbiased. On the other hand, if the uniform sampling design is used and $\lambda_{n}=j U j$ a.e., then the predictor (3) is al so unbiased.

But if the mean function is not known and a non-uniform sampling design is desired, there is still the possibility of obtaining an unbiased predictor.

Proposition 1 Let G_{n} be a sampling design and λ_{n} be a nonnegative function on U , such that ${ }^{\mathrm{R}}{ }_{A} \lambda_{n}(x) \overline{d G}_{n}(x)=\mathrm{j} A \mathrm{j}$, for all Borel subsets A of U . If moreover the mean function of Z_{U} is Lebesgue-integrable on U , then the predictor (3) is unbiased.

G iven the assumptions for the function λ_{n} and the mean function of Z_{U}, the proof of the last proposition is a direct application of the chain rule.

The conditions for the sampling design and thefunction of coed cients in the last proposition imply uniform unbiasedness. The predictor (3) is unbiased for all Lebesgue-integrable mean functions under the conditions of the last proposition. In the spatial prediction by K riging, the uniform unbiasedness property is also held by the K riging predictor (e.g. Cressie, 1993, p. 120).

The utility of Proposition 1 is that under this choice of the sampling design and the function of coed cients, if \bar{G}_{n} has density \bar{g}_{n}, then
for all Borel subsets A of U . This also means that the predictor (3) is unbiased if $\lambda_{n} \bar{g}_{n}=1$ a.e. [Lebesgue] over U .

Using the above random sampling design as well as the function of coed cients, the following proposition can be proved.

Proposition 2 If the sample design associated with $f X_{1}, \ldots, X_{n} \mathrm{~g}$ is such that the distribution function \bar{G}_{n} has a density function \bar{g}_{n} and $\lambda_{n} \bar{g}_{n}=1$ a.e.
[Lebesgue] over U, then the predictor (3) becomes the unbiased predictor

$$
\begin{equation*}
T_{\pi_{n}}=\mathrm{X}_{k=1}^{n} \frac{Z\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)} \tag{4}
\end{equation*}
$$

where π_{n} is as before, provided that $\pi_{n}>0$ on U.

The unbiased predictor (4) is the Horvitz-T hompson predictor of T when z_{U} is modeled with the random ..eld Z_{U}. This predictor extends the work of Cordy (1993).

Furthermore, if an unbiased linear homogeneous predictor of T is required, then the two previous propositions mean that the Horvitz-Thompson predictor should be used. If another exists, this is equal to the Horvitz-T hompson predictor a.s.

Now, the MSE of the predictor (4) is
where $\pi_{n}(\$, \Phi$ is as before.
If $\pi_{n}(\Phi \Phi>0$ on $U £ \mathrm{U}$, then an unbiased estimator of the M SE (5) is

$$
\begin{equation*}
\mathrm{X}^{n} \frac{Z^{2}\left(X_{k}\right)}{\pi_{n}^{2}\left(X_{k}\right)}+\mathrm{X}^{n=1 k \notin j} \frac{Z\left(X_{j}\right) Z\left(X_{k}\right)}{\pi_{n}\left(X_{j}\right) \pi_{n}\left(X_{k}\right)} \mathrm{i} \mathrm{X}_{j=1 k \notin j}^{n} \frac{Z\left(X_{j}\right) Z\left(X_{k}\right)}{\pi_{n}\left(X_{j}, X_{k}\right)} . \tag{6}
\end{equation*}
$$

3.1 Simple random sampling

Here the simple random sampling design means that the set of random variables f X_{1}, \ldots, X_{n} g are independent and identically distributed as G. Note that the marginal distribution function G does not change with n. The same de..nition is given in Schoenfedder \& Cambanis (1982).

Under this sampling design the predictor (4) of the total T has the form

$$
\begin{equation*}
T_{\pi_{n}, S R S}=\frac{1}{n}_{k=1}^{X_{n}} \frac{Z\left(X_{k}\right)}{g\left(X_{k}\right)}, \tag{7}
\end{equation*}
$$

where g is the density function of the design G with support in U .
The mean squared error of this predictor is

$$
\begin{equation*}
\frac{1}{n}{ }^{(} \mathbf{Z} \frac{E^{£} Z^{2}(x)^{\mathbf{\alpha}}}{g(x)} d x ; E^{\mathbf{i}} T^{2^{\text {¢ }}} . \tag{8}
\end{equation*}
$$

Note that this M SE tends to zero as $n!1$, which shows the consistency in quadratic mean of the predictor (7).

To minimize the MSE (8) with respect to the design g, it is necessary to minimize the ..rst part of that expression.

Proposition 3 For simple random sampling, the MSE (8) is minimized if and only if the sampling design G has a density of the form

$$
\begin{equation*}
g(x)=\underset{u}{\mathrm{p}} \underset{\mathrm{p}}{\mathrm{p}} \overline{E\left[Z^{2}(x)\right]} \overline{E\left[Z^{2}(y)\right]} d y . \tag{9}
\end{equation*}
$$

Utilizing the Cauchy-Schwarz inequality, we can derive the optimal ran-
dom sampling design (9). This Proposition corresponds to P roposition (3.1) of Schoenfelder \& C ambanis (1982).

Remark 4 A necessary condition to obtain the last optimal random sampling design is to know the second moment function $E^{£} Z^{2}(x)^{\text {² }}$ for all $x 2 \mathrm{U}$. This is not a common situation. However, if any information about the variability of the ..eld Z_{U} is available (e.g. information about $E^{£} Z^{2}(x)^{\text { }}$), then a sampling design must be constructed using this information. A subset of U with high variability should have a high selection probability. Conversely, a subset with low variability should have a low selection probability.

4 Variable size samples

O ccasionally, the required random sample is a variable size sample. In this situation, it is necessary to refor mulate the sample concept given in Section 2. Now, the variable size samples are the realizations of a spatial (or multidimensional) random point process over U . This is denoted by $\mathrm{f} X_{1 \mathrm{n}}, \ldots, X_{\mathrm{n} \mathrm{n}} \mathrm{g}$, where each $X_{k \mathrm{n}}$ is a $d \mathrm{i}$ dimensional random variable over U , and n is a counting process also over U . Moreover, the random variables Z_{U} and the spatial random point process $\mathrm{f} X_{1 \mathrm{n}}, \ldots, X_{\mathrm{nn}} \mathrm{g}$ are de..ned over the same probability space as well as being stochastically independents.

In addition, the support of the random variable $\mathrm{n}(\mathrm{U})$ is assumed to be in the positive integers. Furthermore, it is supposed that each value of the random variable $\mathrm{n}(\mathrm{U})$ has been assigned a sampling design $G_{\mathrm{n}(\mathrm{U})}$, the joint distribution
function of ${ }^{\circledR} X_{1 \mathrm{n}(\mathrm{U})}, \ldots, X_{\mathrm{n}(\mathrm{U}) \mathrm{n}(\mathrm{U})} \stackrel{\text { a }}{ }$.
In the work of Cordy (1993), the variable size samples are not considered as the realizations of a spatial random point process. There, a variable size sample is only one element from the set of possible variable size samples.

Under this context, a possible Horvitz-T hompson predictor of the total T is

$$
\begin{equation*}
T_{\pi}={ }_{k=1}^{\mathrm{XU}^{\mathrm{U})}} \frac{Z^{\mathrm{i}} X_{k \mathrm{n}(\mathrm{U})}{ }^{\mathrm{i}} X_{k \mathrm{n}(\mathrm{U})}}{\Phi} \tag{10}
\end{equation*}
$$

where $\pi(x)=E^{£} \pi_{\mathrm{n}(\mathrm{U})}(x)^{\text {T }}$, provided that it exists and $\pi>0, \pi_{\mathrm{n}(\mathrm{U})}(x)=$ $\mathrm{P}_{\mathrm{n}(\mathrm{U})} g_{k \mathrm{n}(\mathrm{U})}(x)$, and $g_{k \mathrm{n}(\mathrm{U})}$ is the marginal density function of $X_{k \mathrm{n}(\mathrm{U})}$ as before. The predictor (10) extends the estimator given in the Theorem 3 of Cordy (1993).

It is not diф cult to show that $E\left(T_{\pi} \mathrm{j} \mathrm{n}(\mathrm{U})\right)=\mathrm{R}_{\mathrm{u}} \frac{E(Z(x))}{\pi(x)} \pi_{\mathrm{n}(\mathrm{U})}(x) d x$ a.s. From this expression, it is possible to show that the predictor (10) is unbiased.

If the simple random sampling is applied for each value of $n(U)$, then the predictor (10) takes the form
where g is the density function of the SR S and it is invariant with the values of $\mathrm{n}(\mathrm{U})$. The corresponding M SE of this predictor is

$$
\begin{equation*}
\frac{1}{E[\mathrm{n}(\mathrm{U})]}{ }^{(\mathrm{Z}} \frac{E^{\mathbf{i}} Z^{2}(x)}{g(x)} d x \mathbf{i} \quad E^{\mathbf{i}} T^{2^{\Phi}}{ }^{\mathbf{q}}+\frac{\operatorname{Var}[\mathrm{n}(\mathrm{U})]}{E^{2}[\mathrm{n}(\mathrm{U})]} E^{\mathbf{i}} T^{2^{\Phi}} \tag{11}
\end{equation*}
$$

O bserve that for given values of the ..rst two moments of $n(U)$, the optimal sampling design is given by the expression (9) .

A nother possible Horvitz-T hompson predictor of the total T is

$$
\begin{equation*}
T_{\pi_{\mathrm{n}(\mathrm{U})}}={ }_{k=1}^{\mathrm{n}(\mathrm{U})} \frac{Z^{\mathrm{i}} X_{\mathrm{i} k \mathrm{n}(\mathrm{U})}{ }^{\Phi}}{\pi_{\mathrm{n}(\mathrm{U})} X_{k \mathrm{n}(\mathrm{U})}} \oplus, \tag{12}
\end{equation*}
$$

where $\pi_{n(U)}$ is given in the description of the formula (10), provided that $\pi_{n(U)}>$ 0 for each value of $n(U)$.

Given the sample size $n(U)$, the predictor (12) is conditionally unbiased, that is $E^{£} T_{\pi_{\mathrm{n}(\mathrm{U})}} \mathrm{i}^{T^{-} \mathrm{n}(\mathrm{U})^{\mathrm{a}}}=0$ a.s.

Under simple random sampling, the predictor (12) has the form

$$
T_{\pi_{\mathrm{n}(\mathrm{U}), S R S}}=\frac{1}{\mathrm{n}(\mathrm{U})}_{k=1}^{\mathrm{n}(\mathrm{U})} \frac{Z^{\mathrm{i}} X_{k \mathrm{n}(\mathrm{U})}}{g^{\mathrm{i}} X_{k \mathrm{n}(\mathrm{U})}} \stackrel{\Phi}{ }
$$

Its corresponding M SE is

$$
\begin{equation*}
E \frac{1}{\mathrm{n}(\mathrm{U})}{ }^{\prime}{ }^{(\mathrm{Z}} \frac{E^{\mathbf{i}} Z^{2}(x)^{\dagger}}{g(x)} d x \mathbf{i} E^{\mathbf{i}} T^{\mathbf{Q}^{\AA}} \tag{13}
\end{equation*}
$$

O nce more, observe that for a given value of the ..rst moment of $1 / n(U)$, the optimal sampling design is also given by expression (9) .

E xamples of optimal sampling designs are given in Rodríguez (2002) for ..xed and variable size samples.

5 Final remarks

The optimal sampling design associated with the Horvitz-T hompson predictor is a function of the second moment function of the random ..eld (see P roposition 3). If this function is unknown, it is necessary to evaluate the impact on the M SE of the Horvitz-Thompson predictor from not using the correct second moment function. The problem of using an incorrect second moment function in the context of the K riging predictor has been analyzed in Stein \& Handcock (1989) among others. The methods used in that reference could be used for analyzing the exect of an incorrect second moment function on the optimality of the sampling design.

R eferences

Aldworth, J. and N. A. C. Cressie (1999), Sampling Designs and Prediction M ethods for Gaussian Spatial Processes, in: S. Ghosh, ed. Multivariate A nalysis, Design of Experiments and Survey Sampling (M arcel Dekker) pp. 1-54. Cordy, C. B. (1993), An extension of the Horvitz-T hompson theorem to point sampling from a continuous universe, Statistics \& Probability Letters 18, 353362.

Cressie, N. A. C. (1993), Statistics for spati al data (W iley-Interscience, revised ed.).

Rodríguez, J. E. (2002), Optimal Sampling Designs and the Horvitz-T hompson Predictor in Random Fields Sampling, Doctoral Dissertation (Centro de Inves-
tigación en M atemáticas, M éxico).
Schoenfelder, C. and S. Cambanis (1982), Random Designs for Estimating Integrals of Stochastic Processes, The Annals of Statistics 10, 526-538.

Stein, M. L. and M. S. Handcock. (1989). Some Asymptotic Properties of K riging W hen the Covariance Function Is Misspeci..ed. Mathematical Geology, 21, 171-190.

Stevens, D. L. (1997), Variable Density Grid-B ased Sampling Designs for Continuous Spatial Populations, E nvi ronmetrics 8, 167-195.

Proofs of results

${ }^{2}$ P roperties of the estimator (1). a) unbiasedness:

$$
\begin{aligned}
E\left(t_{\pi_{n}}\right) & =\mathrm{X}^{n} E \frac{z\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)} \\
& =\mathrm{X}_{k=1}^{\mathrm{X}^{n} \mathrm{Z}} \frac{z(x)}{\pi_{n}(x)} g_{k}(x) d x
\end{aligned}
$$

Given that $\pi_{n}=\mathrm{P}_{n=1}^{n} g_{k}$, then

$$
\begin{aligned}
E\left(t_{\pi_{n}}\right) & =\mathrm{Z} \frac{z(x)}{\mathrm{Z}^{\mathrm{U}} \pi_{n}(x) d x} \\
& =\mathrm{u}^{z(x) d x=t}
\end{aligned}
$$

b) Its variance:

$$
\begin{aligned}
& \operatorname{Var}\left(t_{\pi_{n}}\right)=E^{\mathbf{i}} t_{\pi_{n}}^{2}{ }^{\Phi} \mathbf{i} t^{2}
\end{aligned}
$$

G iven that $\pi_{n}(x, y)=\mathrm{P}_{j=1}^{n} \mathrm{P}{ }_{k \notin j} h_{j k}(x, y)$, then

$$
\begin{aligned}
\operatorname{Var}\left(t_{\pi_{n}}\right) & =\mathbf{Z} \frac{z^{2}(x)}{\pi_{n}^{2}(x)} \pi_{n}(x) d x+\mathbf{Z} \frac{z(x) z(y)}{\pi_{n}(x) \pi_{n}(y)} \pi_{n}(x, y) d x d y \mathbf{i} t^{2} \\
& =\frac{z^{2}(x)}{\pi_{n}(x)} d x+\quad \mathbf{Z} \frac{z(x) z(y)}{\pi_{n}(x) \pi_{n}(y)} \pi_{n}(x, y) d x d y \mathbf{i} t^{2}
\end{aligned}
$$

O bserve that

$$
t^{2}=\mathrm{U}_{\mathrm{U} \mathbf{Z}}^{z(x) z(y) d x d y}
$$

then the last variance can be rewritten as:

$$
\mathbf{Z} \frac{z^{2}(x)}{\pi_{n}(x)} d x+\mathbf{U ~ Z ~}_{\mathrm{u}} \frac{\pi_{n}(x, y) \mathbf{i} \pi_{n}(x) \pi_{n}(y)}{\pi_{n}(x) \pi_{n}(y)} z(x) z(y) d x d y
$$

This is the expression given in Cordy (1993) for the variance.
c) Unbiasedness of the estimator of its variance: If the steps of part (a) are followed, then it is possible to show that

$$
E^{\text {" }}{ }_{k=1}^{n} \frac{z^{2}\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)}=\mathbf{Z}_{\mathrm{u}} \frac{z^{2}(x)}{\pi_{n}(x)} d x .
$$

Now

$$
\begin{aligned}
& =\mathrm{U}_{\mathrm{U}} \frac{z(x) z(y)}{\pi_{n}(x) \pi_{n}(y)} \pi_{n}(x, y) d x d y .
\end{aligned}
$$

Similarly, it is possible to show that

$$
\begin{aligned}
& E^{4^{2} \text { X }^{n} \mathrm{X}} \frac{z\left(X_{j}\right) z\left(X_{k}\right)}{\pi_{n}\left(X_{j}, X_{k}\right)} 5=\mathrm{U}^{3} \mathrm{Z} \text { Z } z(x) z(y) d x d y \\
& =t^{2} \text {. }
\end{aligned}
$$

The last thre expressions show that the variance estimator

$$
\mathrm{X}_{k=1}^{n} \frac{z^{2}\left(X_{k}\right)}{\pi_{n}\left(X_{k}\right)}+\mathrm{X}_{j=1 k \notin j}^{n} \frac{z\left(X_{j}\right) z\left(X_{k}\right)}{\pi_{n}\left(X_{j}\right) \pi_{n}\left(X_{k}\right)} \mathbf{i}_{j=1 k \notin j}^{\mathrm{X}^{n} \mathrm{X}} \frac{z\left(X_{j}\right) z\left(X_{k}\right)}{\pi_{n}\left(X_{j}, X_{k}\right)}
$$

is unbiased. \&
${ }^{2}$ Proof of Proposition 1. The expected value of the predictor $T_{\lambda_{n}}$ is

$$
\begin{aligned}
& E\left(T_{\lambda_{n}}\right)=\frac{1}{n}_{k=1}^{X^{n}} E E\left[\lambda_{n}\left(X_{k}\right) Z\left(X_{k}\right) \mathrm{j} X_{1}, \ldots, X_{n}\right] \\
&=\frac{1}{n}^{X^{n}} E f \lambda_{n}\left(X_{k}\right) E\left[Z\left(X_{k}\right)\right] \mathrm{g} \\
&=\frac{1}{n}^{k=1} \mathrm{X}^{n} \mathrm{Z} \\
& \mathrm{~K}_{n}(x) E[Z(x)] d G_{k}(x) .
\end{aligned}
$$

Given that $\bar{G}_{n}=\frac{1}{n} \mathrm{P}_{k=1}^{n} G_{k}$, then

$$
\begin{equation*}
E\left(T_{\lambda_{n}}\right)={ }_{\mathrm{U}}^{\lambda_{n}(x) E[Z(x)] d \bar{G}_{n}(x) .} \tag{14}
\end{equation*}
$$

On the other hand, given that λ_{n} is a nonnegative function on U , such that ${ }^{\mathrm{R}}{ }_{A} \lambda_{n}(x) d \bar{G}_{n}(x)={ }_{A}{ }_{A} d x$ for all Borel subsets A of U , and the mean function $E[Z(x)]$ is Lebesgue-integrable on U , then by the chain rule (see P. Billingsley, 1995, P robability and M easure, Wiley, New York, 3rd ed., p. 214)

$$
\begin{align*}
& \mathrm{Z} \tag{1}\\
& \begin{aligned}
& \lambda_{n}(x) E[Z(x)] d \bar{G}_{n}(x)= \\
& \mathrm{Z} \\
& \mathrm{U}
\end{aligned} \mathrm{E}[Z(x)] d(x) \\
&=E(T) .
\end{align*}
$$

Combining the expressions (14) and (15), the unbiasedness property is obtained.
ぬ
${ }^{2}$ P roof of Proposition 2. Observe that $\bar{g}_{n}=\frac{1}{n} \quad{ }_{k=1}^{n} g_{k}$, where g_{k} is the marginal density function of X_{k}, which has support in U .

Now, given that $\lambda_{n} \bar{g}_{n}=1$ a.e. [Lebesgue], then $\lambda_{n}=1 / \bar{g}_{n}$ a.e. $\left[\bar{g}_{n}\right]$. T hus,

$$
\begin{aligned}
& T_{\lambda_{n}}=\frac{1}{n}_{k=1}^{X_{n}} \frac{Z\left(X_{k}\right)}{\bar{g}_{n}\left(X_{k}\right)} \quad \text { a.s. } \\
& =\mathrm{X}^{n} \underset{\substack{n \\
\mathrm{P}=1 \\
\underset{j=1}{n} g_{j}\left(X_{k}\right)}}{Z\left(X_{k}\right)}
\end{aligned}
$$

If we de.ne $\pi_{n}=\mathrm{P}_{j=1}^{n} g_{j}$, then $T_{\lambda_{n}}=T_{\pi_{n}}$ a.s. \nless
${ }^{2}$ M SE (5) :

$$
\begin{aligned}
& E\left(T_{\pi_{n}} ; T\right)^{2}=E E \underset{2}{T_{\pi_{n}}^{2}} ; 2 T_{\pi_{n}} T+T^{2} \mathrm{j} X_{1}, \ldots, X_{n}{ }^{\text {¢ }} \\
& =E E 4^{\mathrm{X}^{n}} \frac{Z^{2}\left(X_{k}\right)}{\pi_{n}^{2}\left(X_{k}\right)}+\mathrm{X}_{j=1 k \in j}^{\mathrm{X}} \frac{Z\left(X_{j}\right) Z\left(X_{k}\right)}{\pi_{n}\left(X_{j}\right) \pi_{n}\left(X_{k}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } 2^{\text {X }^{n=1}} \mathrm{Z}^{k=1} \frac{E\left[Z\left(X_{k}\right) Z(y)\right]}{\pi_{n}\left(X_{k}\right)} d y \\
& \mathrm{Z}^{k=} \\
& +\quad E[Z(x) Z(y)] d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } 2 \underset{\cup \cup}{ } E[Z(x) Z(y)] d x d y+\cup E[Z(x) Z(y)] d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } E^{\mathrm{i}} T^{2}{ }^{\text {¢ }} \text {. }
\end{aligned}
$$

0
${ }^{2}$ U nbi asedness of the estimator (6) : First,

Now, if a similar procedure is used as before, then it is possible to obtain that
and

$$
\begin{equation*}
E^{2} \mathrm{X}_{j=1 \mathrm{k} \mathfrak{K}_{j}}^{2} \frac{Z\left(X_{j}\right) Z\left(X_{k}\right)}{\pi_{n}\left(X_{j}, X_{k}\right)} 5=E^{\mathrm{i}} T^{2^{\Phi}} \tag{18}
\end{equation*}
$$

Thus, combining in an appropriate way the expressions (16), (17), and (18), the property of unbiasedness of the estimator (6) is obtained
${ }^{2} \mathrm{M}$ SE (8) : From the proof of the MSE (5), it is possible to obtain that

$$
\begin{aligned}
& E\left(T_{\pi_{n}, S R S} \text { i } T\right)^{2}=E 4{\frac{1}{n^{2}}}_{k=1}^{\mathbf{X}^{n}} \frac{E^{£} Z^{2}\left(X_{k}\right)^{\mathfrak{\alpha}}}{g^{2}\left(X_{k}\right)}+{\frac{1}{n^{2}}}^{\mathrm{X}^{n}}{ }_{j=1 k \mathcal{G}_{j}}^{\mathrm{X}} \frac{E\left[Z\left(X_{j}\right) Z\left(X_{k}\right)\right]}{g\left(X_{j}\right) g\left(X_{k}\right)} \\
& \begin{array}{l}
\text { i } 2 \frac{1}{n}^{\text {X }_{n}^{\mathrm{Z}}} \frac{E\left[Z\left(X_{k}\right) Z(x)\right]}{g\left(X_{k}\right)} d x \\
\quad \text { Z } \mathrm{Z}
\end{array} \\
& +\quad E[Z(x) Z(y)] d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } 2 E[Z(x) Z(y)] d x d y+\quad E[Z(x) Z(y)] d x d y
\end{aligned}
$$

\propto
${ }^{2}$ Proof of Proposition 3: From the C auchy-Schwarz inequality,

The equality is achieved if and only if $g(x)=K^{\mathrm{P}} \overline{E\left[Z^{2}(x)\right]}$, where K is a constant. Given that g is a density function, then $K=1 \cdot \mathrm{R}_{\mathrm{u}} \mathrm{p} \overline{E\left[Z^{2}(y)\right]} d y$. This shows that the MSE (8) is minimized if and only if the sampling design G
has density of the form

$$
g(x)=\underset{\cup}{\mathrm{p}} \frac{\mathrm{p}}{\overline{E\left[Z^{2}(x)\right]}}
$$

\propto
${ }^{2}$ M SE (11) : From the proof of the MSE (8), it is possible to obtain that

$$
\begin{aligned}
& =E^{4} \frac{1}{E^{2}[\mathrm{n}(\mathrm{U})]}{ }_{k=1}^{\mathrm{nX}(\mathrm{U})} \frac{E^{£} Z^{2}\left(X_{k}\right)^{\mathrm{D}}}{g^{2}\left(X_{k}\right)}+\frac{1}{E^{2}[\mathrm{n}(\mathrm{U})]}{ }_{j=1 \mathrm{k} \mathfrak{k}_{j}}^{\mathrm{n}(\mathrm{U})} \mathrm{X} \frac{E\left[Z\left(X_{j}\right) Z\left(X_{k}\right)\right]}{g\left(X_{j}\right) g\left(X_{k}\right)} \\
& \text { i } 2 \frac{1}{E[\mathrm{n}(\mathrm{U})]}_{k=1}^{\mathrm{g}(\mathrm{U}) \mathrm{Z}} \frac{E\left[Z\left(X_{k}\right) Z(x)\right]}{g\left(X_{k}\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =E E 4 \frac{1}{E^{2}[\mathrm{n}(\mathrm{U})]}{ }_{k=1}^{\text {XU) }} \frac{E^{£} Z^{2}\left(X_{k}\right)^{\text {® }}}{g^{2}\left(X_{k}\right)}+\frac{1}{E^{2}[\mathrm{n}(\mathrm{U})]}{ }_{j=1 k \notin j}^{\text {n(U) } \mathrm{X}} \frac{E\left[Z\left(X_{j}\right) Z\left(X_{k}\right)\right]}{g\left(X_{j}\right) g\left(X_{k}\right)} \\
& \text { i } 2 \frac{1}{E[\mathrm{n}(\mathrm{U})]}_{k=1}^{\mathrm{x}(\mathrm{U}) \mathrm{Z}} \frac{E\left[Z\left(X_{k}\right) Z(x)\right]}{g\left(X_{k}\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =E \frac{\mathrm{n}(\mathrm{U})}{E^{2}[\mathrm{n}(\mathrm{U})]} \text { Z } \frac{E^{£} Z^{2}(x)^{\mathrm{D}}}{g(x)} d x+\frac{\mathrm{n}(\mathrm{U})[\mathrm{n}(\mathrm{U}) \mathrm{i} 1]}{E^{2}[\mathrm{n}(\mathrm{U})]} \text { Z Z } \quad \text { U } E[Z(x) Z(y)] d x d y \\
& \text { i } 2 \frac{\mathrm{n}(\mathrm{U})}{E[\mathrm{n}(\mathrm{U})]} \mathrm{Z} \mathbf{Z} \mathrm{U}_{\mathrm{f}} E[Z(x) Z(y)] d x d y+\mathrm{Z}_{\mathrm{U}} \mathrm{U} E[Z(x) Z(y)] d x d y \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i } 2 \underset{\cup}{ } E[Z(x) Z(y)] d x d y+\underset{\text { u }}{ } E[Z(x) Z(y)] d x d y \\
& =\frac{1}{E[\mathrm{n}(\mathrm{U})]} \mathrm{Z}^{\mathrm{Z}} \frac{E^{\mathrm{f}} Z^{2}(x)^{\mathbf{\alpha}}}{g(x)} d x ; E^{\mathbf{i}} T^{\mathbf{2}^{\text {¢ }}}
\end{aligned}
$$

${ }^{2}$ M SE (13) : Following the proof of the MSE (8), it is possible to obtain that
\propto

[^0]: ${ }^{1}$ Correspondence to: J osé Elías Rodríguez, A partado Postal 402, 36000 Guanajuato, Gto M éxico, e-mail: elias@cimat.mx
 This work was completed while the ..rst author was a visiting professor at the Carlos III de M adrid U niversity.
 Supported, in part, by CONCY TE G grant 03-16-K 118-027 to J osé E. R odríguez.

