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characteristic of interest is modeled as a random …eld. Optimal sampling designs are

deduced under this context. Fixed and variable sample size are considered.
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1 Introduction

The Horvitz-Thompson type estimators are widely used in …nite population

estimation when the estimation procedure is based on probability sampling.

Cordy (1993) extends this type of estimator to populations distributed over

spatial domains where the characteristic of interest is conceptualized as a deter-

ministic continuous function de…ned on these domains. The Horvitz-Thompson

estimator proposed in Cordy (1993) has been generally used on environmental

sampling, see Stevens (1997). In the present work, this characteristic is mod-

1 Correspondence to: José Elías Rodríguez, Apartado Postal 402, 36000 Guanajuato, Gto
México, e-mail: elias@cimat.mx
This work was completed while the …rst author was a visiting professor at the Carlos III de
Madrid University.
Supported, in part, by CONCYTEG grant 03-16-K118-027 to José E. Rodríguez.
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eled by a random …eld and a Horvitz-Thompson predictor is proposed. Optimal

sampling designs are deduced under this context.

When the region of interest is discretized to a …nite grid of points, optimal

sampling designs were established in Aldworth & Cressie (1999) among others.

In the present work, the random sampling designs, including the optimal designs,

are de…ned over all the points of the region of interest.

In order to introduce the Horvitz-Thompson predictor and their optimal

sampling designs, …rst the spatial estimation is brie‡y reviewed. Secondly, The

Horvitz-Thompson predictor is proposed and his related optimal sampling de-

signs are deduced. Finally, this predictor is studied under variable size samples.

2 Spatial estimation

In this work, the population is a subset of Rd, U ½ Rd such that jUj > 0

(j¢j denotes volume under Lebesgue measure). The characteristic of interest of

the population is represented by zU = fz (x) : x 2 Ug , where z (x) 2 R, for all

x 2 U .

A …nite sample is a set of points fx1, . . . , xng, such that each d¡dimensional

xk 2 U and n is the …xed sample size.

A sampling design, of size n, is the joint distribution function Gn of a set

of random variables fX1, . . . , Xng, where each Xk is a d¡dimensional random

variable with support in U . The sample points fx1, . . . , xng are possible realiza-

tions of these random variables. If Gn has density function gn, then gn is also
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named the sampling design. Additionally, if the random variables fX1, . . . , Xng

are independent and identically distributed with marginal distribution function

G, then either G or its respective density function is called a random sampling

design.

The population parameter to be estimated is the total t :=
R

U z (x)dx, pro-

vided that this integral exists.

The Horvitz-Thompson estimator of t is given by

tπn :=
nX

k=1

z (Xk )
πn (Xk )

, (1)

where πn =
Pn

k=1 gk , provided that πn > 0 on U, and gk is the marginal density

function of Xk. The estimator (1) was proposed by Cordy (1993).

The estimator (1) has the following properties: a) it is unbiased; b) its

variance is

Z

U

z2 (x)
πn (x)

dx +
Z

U

Z

U

z (x) z (y)
πn (x) πn (y)

πn (x, y) dxdy ¡ t2, (2)

where πn (¢, ¢) =
Pn

j=1
P

k 6=j hjk (¢, ¢) and hjk is the marginal bivariate density

function of (Xj , Xk) ; c) if πn (¢, ¢) > 0 on U £ U , then an unbiased estimator of

the variance in (2) is

nX

k=1

z2 (Xk )
πn (Xk)

+
nX

j=1

X

k 6=j

z (Xj ) z (Xk )
πn (Xj )πn (Xk)

¡
nX

j=1

X

k 6=j

z (Xj ) z (Xk )
πn (Xj , Xk)

.

Some restrictions over zU , πn and πn (¢, ¢) have been established in Cordy
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(1993) in order that the estimator (1) has the above properties.

3 The Horvitz-Thompson predictor

Here the characteristic zU is conceptualized as a realization of the second-order

random …eld ZU = fZ (x) : x 2 Ug , such that
R

U E
£
Z2 (x)

¤
< 1. Additionally,

this random …eld is assumed to be continuous in quadratic mean.

Similarly, as in the previous section, the statistic of interest is the total value

T :=
R

U Z (x)dx.

In addition, the set of random variables ZU and the set fX1, . . . , Xng are

de…ned over the same probability space. Moreover, we assume that the …eld ZU

and the set fX1, . . . , Xng are stochastic independent, in particular the sampling

design Gn will not depend on ZU .

The above sampling scheme has two sources of randomness. One comes from

our uncertainty about the particular values of the quantity of interest on each

point of U . The other is generated by the sampling procedure. The …rst kind

of randomness is modeled by the random …eld and the second one is described

by the random sampling design. Furthermore, the random …eld is used for

modeling the dependency among the observations in di¤erent sampling points.

This random …eld will be also used for obtaining optimal sampling designs.

Using the form of the total T , a natural predictor is a linear homogeneous
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predictor, based on the design Gn , as

Tλn :=
1
n

nX

k=1

λn (Xk )Z (Xk ) , (3)

where λn : U ! R is a function of coe¢cients. The same predictor can be

found in Schoenfelder & Cambanis (1982). The coe¢cients of this predictor

do not require knowledge of the random …eld model and thus this predictor is

nonparametric.

Schoenfelder & Cambanis (1982) obtained the necessary and su¢cient con-

ditions in order that the MSE of the predictor (3) tends to zero as n ! 1.

Now, the bias of the predictor (3) is

B
¡
T λ

n
¢

:=
Z

U
λn (x) E (Z (x))dGn (x) ¡

Z

U
E (Z (x))dx,

where Gn =
1
n

Pn
k=1 Gk, Gk is the marginal distribution function of Xk . If

the mean function E [Z (x)] is known for all x 2 U , then it is possible to

…nd a function of coe¢cients λn such that B
¡
T λ

n
¢

= 0. For example, if

E (Z (x)) = m 6= 0 for all x 2 U and if the sample design and λn are such

that
R

U λn (x) dGn (x) = jU j, then the predictor (3) is unbiased. On the other

hand, if the uniform sampling design is used and λn = jU j a.e., then the predic-

tor (3) is also unbiased.

But if the mean function is not known and a non-uniform sampling design

is desired, there is still the possibility of obtaining an unbiased predictor.
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Proposition 1 Let Gn be a sampling design and λn be a nonnegative function

on U , such that
R

A λn (x) dGn (x) = jAj , for al l Borel subsets A of U . If more-

over the mean function of ZU is Lebesgue-integrable on U, then the predictor (3)

is unbiased.

Given the assumptions for the function λn and the mean function of ZU , the

proof of the last proposition is a direct application of the chain rule.

The conditions for the sampling design and the function of coe¢cients in the

last proposition imply uniform unbiasedness. The predictor (3) is unbiased for

all Lebesgue-integrable mean functions under the conditions of the last propo-

sition. In the spatial prediction by Kriging, the uniform unbiasedness property

is also held by the Kriging predictor (e.g. Cressie, 1993, p. 120).

The utility of Proposition 1 is that under this choice of the sampling design

and the function of coe¢cients, if Gn has density gn, then

jAj =
Z

A
λn (x) dGn (x) =

Z

A
λn (x) gn (x)dx,

for all Borel subsets A of U . This also means that the predictor (3) is unbiased

if λngn = 1 a.e. [Lebesgue] over U .

Using the above random sampling design as well as the function of coe¢-

cients, the following proposition can be proved.

Proposition 2 If the sample design associated with fX1, . . . , Xng is such that

the distribution function Gn has a density function gn and λngn = 1 a.e.
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[Lebesgue] over U, then the predictor (3) becomes the unbiased predictor

Tπn =
nX

k=1

Z (Xk )
πn (Xk )

, (4)

where πn is as before, provided that πn > 0 on U .

The unbiased predictor (4) is the Horvitz-Thompson predictor of T when zU

is modeled with the random …eld ZU . This predictor extends the work of Cordy

(1993).

Furthermore, if an unbiased linear homogeneous predictor of T is required,

then the two previous propositions mean that the Horvitz-Thompson predic-

tor should be used. If another exists, this is equal to the Horvitz-Thompson

predictor a.s.

Now, the MSE of the predictor (4) is

Z

U

E
£
Z2 (x)

¤

πn (x)
dx +

Z

U

Z

U

E [Z (x)Z (y)]
πn (x) πn (y)

πn (x, y) dxdy ¡ E
¡
T 2¢ , (5)

where πn (¢, ¢) is as before.

If πn (¢, ¢) > 0 on U £ U, then an unbiased estimator of the MSE (5) is

nX

k=1

Z2 (Xk)
π2

n (Xk )
+

nX

j=1

X

k 6=j

Z (Xj )Z (Xk)
πn (Xj )πn (Xk )

¡
nX

j=1

X

k 6=j

Z (Xj )Z (Xk)
πn (Xj , Xk)

. (6)
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3.1 Simple random sampling

Here the simple random sampling design means that the set of random variables

fX1, . . . ,Xng are independent and identically distributed as G. Note that the

marginal distribution function G does not change with n. The same de…nition

is given in Schoenfelder & Cambanis (1982).

Under this sampling design the predictor (4) of the total T has the form

Tπn,SRS =
1
n

nX

k=1

Z (Xk)
g (Xk )

, (7)

where g is the density function of the design G with support in U .

The mean squared error of this predictor is

1
n

(Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2¢

)
. (8)

Note that this MSE tends to zero as n ! 1, which shows the consistency in

quadratic mean of the predictor (7).

To minimize the MSE (8) with respect to the design g, it is necessary to

minimize the …rst part of that expression.

Proposition 3 For simple random sampling, the MSE (8) is minimized if and

only if the sampling design G has a density of the form

g (x) =

p
E [Z2 (x)]R

U
p

E [Z2 (y)] dy
. (9)

Utilizing the Cauchy-Schwarz inequality, we can derive the optimal ran-
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dom sampling design (9). This Proposition corresponds to Proposition (3.1) of

Schoenfelder & Cambanis (1982).

Remark 4 A necessary condition to obtain the last optimal random sampling

design is to know the second moment function E
£
Z2 (x)

¤
for all x 2 U . This is

not a common situation. However, if any information about the variability of

the …eld ZU is available (e.g. information about E
£
Z2 (x)

¤
), then a sampling

design must be constructed using this information. A subset of U with high

variability should have a high selection probability. Conversely, a subset with

low variability should have a low selection probability.

4 Variable size samples

Occasionally, the required random sample is a variable size sample. In this situ-

ation, it is necessary to reformulate the sample concept given in Section 2. Now,

the variable size samples are the realizations of a spatial (or multidimensional)

random point process over U . This is denoted by fX1n , . . . , Xnng, where each

Xkn is a d ¡ dimensional random variable over U, and n is a counting process

also over U. Moreover, the random variables ZU and the spatial random point

process fX1n, . . . , Xnng are de…ned over the same probability space as well as

being stochastically independents.

In addition, the support of the random variable n (U) is assumed to be in

the positive integers. Furthermore, it is supposed that each value of the random

variable n (U) has been assigned a sampling design Gn(U), the joint distribution
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function of
©
X1n(U ), . . . , Xn(U )n(U)

ª
.

In the work of Cordy (1993), the variable size samples are not considered as

the realizations of a spatial random point process. There, a variable size sample

is only one element from the set of possible variable size samples.

Under this context, a possible Horvitz-Thompson predictor of the total T is

Tπ =
n(U)X

k=1

Z
¡
Xkn(U )

¢

π
¡
Xkn(U )

¢ , (10)

where π (x) = E
£
πn(U ) (x)

¤
, provided that it exists and π > 0, πn(U) (x) =

Pn(U )
k=1 gkn(U) (x), and gkn(U ) is the marginal density function of Xkn(U ) as before.

The predictor (10) extends the estimator given in the Theorem 3 of Cordy

(1993).

It is not di¢cult to show that E (Tπ j n (U )) =
R

U
E (Z (x))

π (x)
πn(U) (x)dx a.s.

From this expression, it is possible to show that the predictor (10) is unbiased.

If the simple random sampling is applied for each value of n (U) , then the

predictor (10) takes the form

Tπ,SRS =
1

E [n (U )]

n(U )X

k=1

Z
¡
Xkn(U )

¢

g
¡
Xkn(U )

¢ ,

where g is the density function of the SRS and it is invariant with the values of

n (U ). The corresponding MSE of this predictor is

1
E [n (U)]

(Z

U

E
¡
Z2 (x)

¢

g (x)
dx ¡ E

¡
T2¢

)
+ V ar [n (U)]

E2 [n (U)]
E

¡
T2¢ . (11)
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Observe that for given values of the …rst two moments of n (U ), the optimal

sampling design is given by the expression (9) .

Another possible Horvitz-Thompson predictor of the total T is

Tπn(U) =
n(U)X

k=1

Z
¡
Xkn(U )

¢

πn(U )
¡
Xkn(U)

¢ , (12)

where πn(U ) is given in the description of the formula (10), provided that πn(U ) >

0 for each value of n (U ).

Given the sample size n (U ), the predictor (12) is conditionally unbiased,

that is E
£
Tπn(U) ¡ T

¯̄
n (U)

¤
= 0 a.s.

Under simple random sampling, the predictor (12) has the form

Tπn(U) ,SRS =
1

n (U)

n(U )X

k=1

Z
¡
Xkn(U)

¢

g
¡
Xkn(U )

¢ .

Its corresponding MSE is

E
·

1
n (U )

¸ (Z

U

E
¡
Z2 (x)

¢

g (x)
dx ¡ E

¡
T 2

¢
)

. (13)

Once more, observe that for a given value of the …rst moment of 1 /n (U) ,

the optimal sampling design is also given by expression (9) .

Examples of optimal sampling designs are given in Rodríguez (2002) for …xed

and variable size samples.
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5 Final remarks

The optimal sampling design associated with the Horvitz-Thompson predictor

is a function of the second moment function of the random …eld (see Proposition

3). If this function is unknown, it is necessary to evaluate the impact on the

MSE of the Horvitz-Thompson predictor from not using the correct second

moment function. The problem of using an incorrect second moment function

in the context of the Kriging predictor has been analyzed in Stein & Handcock

(1989) among others. The methods used in that reference could be used for

analyzing the e¤ect of an incorrect second moment function on the optimality

of the sampling design.
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Proofs of results

²Properties of the estimator (1). a) unbiasedness:

E (tπn ) =
nX

k=1

E
·

z (Xk)
πn (Xk )

¸

=
nX

k=1

Z

U

z (x)
πn (x)

gk (x) dx.

Given that πn =
Pn

k=1 gk , then

E (tπn) =
Z

U

z (x)
πn (x)

πn (x)dx

=
Z

U
z (x) dx = t.

b) Its variance:

V ar (tπn) = E
¡
t2πn

¢
¡ t2

=
nX

k=1

E
·

z2 (Xk)
π2

n (Xk )

¸
+

nX

j=1

X

k 6=j

E
·

z (Xj) z (Xk)
πn (Xj) πn (Xk )

¸
¡ t2.

Given that πn (x, y) =
Pn

j=1
P

k 6=j hjk (x, y) , then

V ar (tπn) =
Z

U

z2 (x)
π2

n (x)
πn (x)dx +

Z

U

Z

U

z (x) z (y)
πn (x) πn (y)

πn (x, y) dxdy ¡ t2

=
Z

U

z2 (x)
πn (x)

dx +
Z

U

Z

U

z (x) z (y)
πn (x)πn (y)

πn (x, y)dxdy ¡ t2.

Observe that

t2 =
Z

U

Z

U
z (x) z (y)dxdy,

1



then the last variance can be rewritten as:

Z

U

z2 (x)
πn (x)

dx +
Z

U

Z

U

πn (x, y) ¡ πn (x) πn (y)
πn (x) πn (y)

z (x) z (y) dxdy.

This is the expression given in Cordy (1993) for the variance.

c) Unbiasedness of the estimator of its variance: If the steps of part (a) are

followed, then it is possible to show that

E

"
nX

k=1

z2 (Xk )
πn (Xk )

#
=

Z

U

z2 (x)
πn (x)

dx.

Now

E

2
4

nX

j=1

X

k 6=j

z (Xj ) z (Xk )
πn (Xj )πn (Xk)

3
5 =

nX

j=1

X

k 6=j

Z

U

Z

U

z (x) z (y)
πn (x) πn (y)

gjk (x, y)dxdy

=
Z

U

Z

U

z (x) z (y)
πn (x) πn (y)

πn (x, y) dxdy.

Similarly, it is possible to show that

E

2
4

nX

j=1

X

k 6=j

z (Xj ) z (Xk )
πn (Xj , Xk)

3
5 =

Z

U

Z

U
z (x) z (y) dxdy

= t2.

The last three expressions show that the variance estimator

nX

k=1

z2 (Xk )
πn (Xk)

+
nX

j=1

X

k6=j

z (Xj ) z (Xk )
πn (Xj )πn (Xk)

¡
nX

j=1

X

k 6=j

z (Xj) z (Xk)
πn (Xj ,Xk )

2



is unbiased. ¤

²Proof of Proposition 1. The expected value of the predictor Tλn is

E (Tλn) =
1
n

nX

k=1

EE [λn (Xk) Z (Xk )j X1, . . . , Xn]

=
1
n

nX

k=1

E fλn (Xk) E [Z (Xk )]g

=
1
n

nX

k=1

Z

U
λn (x)E [Z (x)] dGk (x) .

Given that Gn =
1
n

Pn
k=1 Gk , then

E (Tλn) =
Z

U
λn (x) E [Z (x)] dGn (x) . (14)

On the other hand, given that λn is a nonnegative function on U, such that

R
A λn (x) dGn (x) =

R
A dx for all Borel subsets A of U , and the mean function

E [Z (x)] is Lebesgue-integrable on U, then by the chain rule (see P. Billingsley,

1995, Probability and Measure, Wiley, New York, 3rd ed., p. 214)

Z

U
λn (x)E [Z (x)]dGn (x) =

Z

U
E [Z (x)] d (x) (15)

= E (T) .

Combining the expressions (14) and (15) , the unbiasedness property is obtained.

¤

²Proof of Proposition 2. Observe that gn =
1
n

Pn
k=1 gk, where gk is the marginal

density function of Xk , which has support in U .
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Now, given that λngn = 1 a.e. [Lebesgue], then λn = 1/gn a.e. [gn] . Thus,

Tλn =
1
n

nX

k=1

Z (Xk)
gn (Xk)

a.s.

=
nX

k=1

Z (Xk)Pn
j=1 gj (Xk )

If we de…ne πn =
Pn

j=1 gj , then Tλn = Tπn a.s. ¤

²MSE (5) :

E (Tπn ¡ T)2 = EE
£
T 2

πn ¡ 2TπnT + T2 jX1, . . . , Xn
¤

= EE

2
4

nX

k=1

Z2 (Xk )
π2

n (Xk)
+

nX

j=1

X

k 6=j

Z (Xj) Z (Xk )
πn (Xj) πn (Xk )

¡ 2
nX

k=1

Z

U

Z (Xk )Z (y)
πn (Xk)

dy

+
Z

U

Z

U
Z (x)Z (y)dxdy

¯̄
¯̄ X1, . . . ,Xn

¸

= E

2
4

nX

k=1

E
£
Z2 (Xk)

¤

π2
n (Xk )

+
nX

j=1

X

k 6=j

E [Z (Xj )Z (Xk )]
πn (Xj) πn (Xk )

¡ 2
nX

k=1

Z

U

E [Z (Xk)Z (y)]
πn (Xk)

dy

+
Z

U

Z

U
E [Z (x) Z (y)] dxdy

¸

=
Z

U

E
£
Z2 (x)

¤

πn (x)
dx +

Z

U

Z

U

E [Z (x)Z (y)]
πn (x) πn (y)

πn (x, y) dxdy

¡ 2
Z

U

Z

U
E [Z (x)Z (y)] dxdy +

Z

U

Z

U
E [Z (x)Z (y)]dxdy

=
Z

U

E
£
Z2 (x)

¤

πn (x)
dx +

Z

U

Z

U

E [Z (x)Z (y)]
πn (x) πn (y)

πn (x, y) dxdy

¡ E
¡
T2¢ .
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¤

²Unbiasedness of the estimator (6) : First,

E

"
nX

k=1

Z2 (Xk)
π2

n (Xk )

#
= EE

"
nX

k=1

Z2 (Xk)
π2

n (Xk )

¯̄
¯̄
¯ X1, . . . , Xn

#

= E

(
nX

k=1

E
£
Z2 (Xk)

¤

π 2
n (Xk )

)

=
Z

U

E
£
Z2 (x)

¤

πn (x)
dx. (16)

Now, if a similar procedure is used as before, then it is possible to obtain that

E

2
4

nX

j=1

X

k 6=j

Z (Xj )Z (Xk)
πn (Xj )πn (Xk)

3
5 =

Z

U

Z

U

E [Z (x)Z (y)]
πn (x) πn (y)

πn (x, y)dxdy (17)

and

E

2
4

nX

j=1

X

k6=j

Z (Xj) Z (Xk )
πn (Xj ,Xk )

3
5 = E

¡
T 2

¢
. (18)

Thus, combining in an appropriate way the expressions (16) , (17) , and (18),

the property of unbiasedness of the estimator (6) is obtained
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²MSE (8) : From the proof of the MSE (5) , it is possible to obtain that

E (Tπn,SRS ¡ T)2 = E

2
4 1

n2

nX

k=1

E
£
Z2 (Xk)

¤

g2 (Xk)
+

1
n2

nX

j=1

X

k 6=j

E [Z (Xj )Z (Xk)]
g (Xj ) g (Xk )

¡ 2
1
n

nX

k=1

Z

U

E [Z (Xk )Z (x)]
g (Xk)

dx

+
Z

U

Z

U
E [Z (x)Z (y)] dxdy

¸

=
1
n

Z

U

E
£
Z2 (x)

¤

g (x)
dx +

n (n ¡ 1)
n2

Z

U

Z

U
E [Z (x) Z (y)] dxdy

¡ 2
Z

U

Z

U
E [Z (x)Z (y)]dxdy +

Z

U

Z

U
E [Z (x) Z (y)] dxdy

=
1
n

(Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2¢

)
.

¤

²Proof of Proposition 3: From the Cauchy-Schwarz inequality,

·Z

U

p
E [Z2 (x)] dx

¸2

=

"Z

U

p
E [Z2 (x)]p

g (x)

p
g (x) dx

#2

·
Z

U

E
£
Z2 (x)

¤

g (x)
dx

Z

U
g (x) dx

·
Z

U

E
£
Z2 (x)

¤

g (x)
dx.

The equality is achieved if and only if g (x) = K
p

E [Z2 (x)] , where K is a

constant. Given that g is a density function, then K = 1
.R

U
p

E [Z2 (y)] dy .

This shows that the MSE (8) is minimized if and only if the sampling design G

6



has density of the form

g (x) =
p

E [Z2 (x)]R
U

p
E [Z2 (y)] dy

.

¤
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²MSE (11) : From the proof of the MSE (8) , it is possible to obtain that

E (Tπ,SRS ¡ T)2 = EE
h
(Tπ,SRS ¡ T )2

¯̄
¯n (U ) , X1, . . . , Xn(U)

i

= E

2
4 1

E2 [n (U)]

n(U )X

k=1

E
£
Z2 (Xk )

¤

g2 (Xk )
+

1
E2 [n (U )]

n(U )X

j=1

X

k 6=j

E [Z (Xj )Z (Xk )]
g (Xj) g (Xk)

¡ 2
1

E [n (U )]

n(U )X

k=1

Z

U

E [Z (Xk) Z (x)]
g (Xk)

dx

+
Z

U

Z

U
E [Z (x)Z (y)] dxdy

¸

= EE

2
4 1

E2 [n (U )]

n(U )X

k=1

E
£
Z2 (Xk)

¤

g2 (Xk)
+

1
E2 [n (U)]

n(U)X

j=1

X

k 6=j

E [Z (Xj) Z (Xk )]
g (Xj ) g (Xk )

¡ 2
1

E [n (U )]

n(U )X

k=1

Z

U

E [Z (Xk) Z (x)]
g (Xk)

dx

+
Z

U

Z

U
E [Z (x)Z (y)] dxdy

¯̄
¯̄ n (U )

¸

= E

"
n (U )

E2 [n (U)]

Z

U

E
£
Z2 (x)

¤

g (x)
dx +

n (U ) [n (U) ¡ 1]
E2 [n (U )]

Z

U

Z

U
E [Z (x) Z (y)] dxdy

¡2
n (U)

E [n (U )]

Z

U

Z

U
E [Z (x)Z (y)] dxdy +

Z

U

Z

U
E [Z (x) Z (y)] dxdy

¸

=
1

E [n (U )]

Z

U

E
£
Z2 (x)

¤

g (x)
dx +

E
£
n2 (U )

¤
¡ E [n (U )]

E2 [n (U )]

Z

U

Z

U
E [Z (x) Z (y)] dxdy

¡ 2
Z

U

Z

U
E [Z (x)Z (y)] dxdy +

Z

U

Z

U
E [Z (x) Z (y)] dxdy

=
1

E [n (U )]

(Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2¢

)

+
E

£
n2 (U )

¤

E2 [n (U )]
E

£
T2¤ ¡ E

£
T 2¤

=
1

E [n (U )]

(Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2¢

)
+

V ar [n (U)]
E2 [n (U )]

E
£
T 2¤ .

¤
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²MSE (13) : Following the proof of the MSE (8) , it is possible to obtain that

E
¡
Tπn(U),SRS ¡ T

¢2 = EE
h ¡

Tπn(U),SRS ¡ T
¢2

¯̄
¯ n (U )

i

= E

(
1

n (U)

"Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2

¢
#)

= E
·

1
n (U)

¸(Z

U

E
£
Z2 (x)

¤

g (x)
dx ¡ E

¡
T2¢

)
.

¤
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