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Abstract

In this article we use Bayesian methods to fit a Weibull mixture model with an un-
known number of components to possibly right censored survival data. This is done using
the recently developed, birth-death MCMC algorithm. We also show how to estimate the
survivor function and the expected hazard rate from the MCMC output..
Key words: Bayesian, Weibull, Survival Analysis, Mixtures, MCMC.
AMS Classification: 62N05, 62H12.

1 Introduction

Historically, survival analysis has usually been carried out using non-parametric methods
or via the classical statistical analysis of parametric survival models. However, during
recent years, mainly due to the appearance of new computational algorithms, Bayesian
methods have been increasingly applied in this field. See, for example, Ibrahim et al
(2001).

One of the most popular parametric models used in the survival and reliability context
is the Weibull distribution, see e.g. Dodson (1994).. However, where observations are
taken from a possibly heterogeneous population, for example when patients have been
treated using different methods, the simple Weibull model may not always be appropriate
and mixture models may be considered. For example, in a Bayesian context, Chen et
al (1985) used a two component mixture model for the analysis of cancer survival data
generalizing an earlier idea of Berkson and Gage (1952). Quiang (1994) considered a
similar model of a mixture of a Weibull component and a surviving fraction in the context
of a lung cancer trial. It may be however that we still cannot capture fully the form of
the survival distribution with mixtures of just two components. A more general idea is to
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use semi-parametric models based on mixtures of a possibly large number of components.
In this paper, we consider the modelling of lifetimes via Bayesian analysis of a mixture
of Weibulls survival model with a possibly unknown number of components. This model
could be appropriate for the analysis of clinical trial data, where several sub-populations
may show different behaviour and the observed data consist of both complete and right
censored lifetimes. Such a model can also be considered as an intermediate approach
between simple parametric modeling and non-parametric methods. For an example of
the latter in a Bayesian context, see Kottas (2002).

The paper is organized as follows. In Section 2, we define the mixture of Weibulls
model that will be considered. In Section 3, we consider how to undertake Bayesian
inference for this model assuming that the number of mixture components, k, is known,
using a Gibbs sampling algorithm as in Diebolt and Robert (1994). In Section 4, we
extend the situation to the case when k is unknown, by applying a birth-death algorithm
developed by Stephens (2000). In Section 5, we illustrate the model using both simulated
and real data sets and finally, in Section 6 we summarize our results and consider some
possible extensions.

2 The Weibull Mixture Model and Data Observation

In this section, we define a Bayesian mixture of Weibulls survival model for analyzing
survival data from clinical trials. Survival time is the time until an event occurs. For
example, survival time may be the lifetime of a patient or time until recurrence of some
disease of the patient.

We will suppose firstly that we shall observe the lifetimes S of a number of patients
from a possibly heterogeneous population. Thus, we shall consider modeling the popula-
tion distribution as a mixture of Weibull distributions. The basic Weibull density function
is given by:

W (s|θ, a) = θasa−1 exp {−θsa} ,
where θ is a scale parameter and a is the shape parameter. A mixture of k Weibull
densities is defined by:

f(s|k,w, θ, a) =

k∑
j=1

wjW (s|θj , aj),

where θ = (θ1, . . . , θk), a = (a1, . . . , ak), are the parameters of each Weibull distribution
and w = (w1, . . . , wk) is a vector of non-negative weights which sum to 1. Note that for
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large values of k, essentially any density on the positive real line can be approximated by
such a mixture form.

Given this model, the population survival function S(s|k,w, θ, a) and hazard function
h(s|k,w, θ, a) are straightforward to calculate. We have

S(s|k,w, θ, a) =

k∑
j=1

wj exp {−θsa} and

h(s|k,w, θ, a) =
f(s|k,w, θ, a)

S(s|k,w, θ, a)
.

Given a sample of lifetime data, we shall now assume that we wish to estimate the
parameters of the mixture density: i.e. the number of elements in the mixture, k, and
the remaining parameters, θ, a, and w. Furthermore, we should like to estimate other
quantities of interest such as the survivor function, mean lifetime etc.

We shall now assume that we observe possibly right censored lifetime data for n
patients; x = (x1, ..., xn) where xi = (si, δi), si is an observed time point and δi is an
indicator function:

δi =

{
1 if the lifetime is uncensored, i.e. Si = si.
0 if the lifetime is censored, i.e. Si > si.

}

Given this data, the likelihood function takes the form:

l(k,w, θ, a|data) ∝
n∏

i=1

k∑
j=1

wj(θjaj)
δis

(aj−1)δi

i exp {−θjs
aj}

and thus, direct inferential methods become impossible for relatively large values of n. It is
possible to consider classical statistical inference via the EM algorithm, see e.g. McLachlan
and Peel (2000) for a general review of classical mixture modelling. However there are
certain problems associated with estimation of the number of mixture components, k, and
we here prefer a Bayesian approach.

In the following section, we illustrate how to undertake Bayesian inference for this
model given a sample of data.

3 Bayesian inference for the Weibull mixture model

In this section, we shall first assume that the number of mixture components, k, is known.
In order to carry out Bayesian inference, we must first introduce prior distributions for
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the remaining model parameters w, θ, a. We shall assume the following, relatively diffuse
prior distribution structure:

w|k ∼ Dirichlet(φ, ..., φ),

aj|k ∼ Gamma (αa, βa) , for j = 1, ..., k.

θj |k ∼ Gamma (αθ, βθ) , for j = 1, ..., k.

where typically we might choose φ = 1 and small positive values for αa, βa, αθ, βθ.
In order to carry out posterior inference, we can now set up a Gibbs sampling scheme

following the general method introduced by Diebolt and Robert (1994). Firstly, we in-
troduce indicator variables Zi, for i = 1, ..., n, which define from which element of the
mixture the i’th observation has been generated. Thus,

P (Zi = j|k,w) = wj and

Si|k, Zi = j, a, θ ∼ W (·|θj , aj).

Conditional on the indicators, the likelihood function simplifies to

l(k,w, θ, a, z|k, data) ∝

∝
k∏

j=1

(θjaj)
ñj exp

{
aj

n∑
i:zi=j

log si − θj

n∑
i:zi=j

sazi

}

where ñj = # {i : zi = j and δi = 1} for j = 1, . . . , k, is the number of uncensored data
assigned to element j of the mixture. Combining this with the prior distributions, it is
straightforward to calculate the conditional posterior distributions as follows

(i)
w|k, z, θ, a, data ∼ Dirichlet(φ1 + n1, ..., φk + nk),

where nj = # {i : zi = j} is the number of data assigned to element j of the mixture
for j = 1, . . . , k.

(ii)

θj |k, z, a, data ∼ Gamma


ñj + αθ, βθ +

∑
{i:zi=j}

s
aj

i


 ,

for j = 1, . . . , k, and ñj = # {i : zi = j and δi = 1} .
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(iii)

f (aj |k, z, θ, data) ∝ g(aj) where

g(aj) = a
ñj+αθ−1
j exp


−aj


βθ −

∑
{i:zi=j}

δi log si


 − θj

∑
{i:zi=j}

s
aj

i




(iv)

Pr (zi = j|k, θ, a,w, data) ∝ wj

(
θjajs

aj−1
i

)δi

exp
{−θjs

aj

i

}
,

for i = 1, . . . , n.

Given these conditional distributions, we can now define the following Gibbs sampling
algorithm to simulate a sample from the joint posterior distribution.

1. t = 0. Set initial values w(0), θ(0), a(0)

2. z
(t+1)
i ∼ zi|k,w(t), θ(t), a(t),data, for i = 1, . . . , n

3. w(t+1) ∼ w|k, z(t+1), θ(t), a(t),data

4. θ
(t+1)
j ∼ θj |k, z(t+1),w(t+1), a(t),data, for j = 1, . . . , k.

5. a
(t+1)
j ∼ aj|k, z(t+1),w(t+1), θ(t+1),data, for j = 1, . . . , k.

6. t = t+ 1. Go to Step 2

The only complicated step in this procedure is Step 5: that of sampling the conditional
distribution of aj , for j = 1, . . . , k as in (iii).

Here, we use a slice sampling algorithm (see Neal, 2003). This algorithm proceeds by
using the following scheme of simulation:

5(a) First, simulate a uniform random variable; y ∼ U
(
0, g

(
a

(t)
j

))
where a

(t)
j is the

current value of aj and second,

5(b) simulate a
(t+1)
j from a uniform distribution with support S(y) = {aj : g(aj) ≥ y}.
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where g(aj) is as in (iii).
In practice, the only difficulty with this algorithm is in evaluating the support S(y)

although as indicated by Neal (2003), this is straightforward to do by simply sampling from
a uniform distribution over a slightly larger space and then checking that the constraint
in 5(b) is verified.

In the following section, we indicate how to incorporate uncertainty about the dimen-
sion of the mixture, k.

4 Inference when k is unknown

Suppose now, that the number of elements in the Weibull mixture, k, is unknown and
that we define a priori density P (k) is defined with support 1, 2, . . . , kmax where typically
we will choose kmax < n. For example, we might consider a truncated Poisson distribution.

P (k) ∝ γk

k!
for k = 1 to kmax (1)

For the examples of Section 5, we have used the values γ = 3 and kmax = 10 but,
in principle, any values could be considered. Other prior structures such as a discrete
uniform defined on [1, kmax] could also be used.

We can now extend the Gibbs sampling algorithm of Section 3 using a method which
allows us to sample over different dimensional spaces (if we change the value of k, the
number of model parameters is also altered) such as the reversible jump algorithm (Green
1995, Richardson and Green 1997) or the birth-death MCMC algorithm (Stephens 2000).
As shown in Cappé et al (2003), these methods are essentially equivalent. The birth death
sampler is usually somewhat easier to implement and has better mixing properties but
the reversible jump sampler usually requires a shorter execution time. Here, following
Stephens (2000), we consider the use of a birth-death sampler.

In order to implement this sampler, we modify the Gibbs sampling algorithm of Section
3 by replacing k by k(t) throughout and changing step 6 of the algorithm to:

6. Generate k(t+1) and modify the remaining parameters via the following birth-death
sampler.

7. t = t+ 1. Go to Step 2.

In order to carry out step 6, the model parameters are considered as observations from
a marked point process and the mixture size k changes so that births and deaths of the
mixture components occur in continuous time. The birth rate of the process, β(k,w, θ, a),
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conditional on the current population size and parameter values, k,w, θ, a, is preset to a
fixed value β(·) = β. Note that if the population has reached its maximum size, k = kmax

then it is assumed that further births are impossible and we set β(kmax, ·) = 0.
If a birth of a component occurs, then k is increased by 1 and we generate the missing

parameters for the extra component as follows

wk+1 ∼ Beta(1, k),

ak+1|k ∼ Gamma (αa, βa) ,

θk+1|k ∼ Gamma (αθ, βθ)

i.e. ak+1 and θk+1 are generated from their prior distributions. The weights of all remain-
ing components are then rescaled so that they sum to 1, that is wj → wj/(1 + wk+1) for
j = 1, . . . , k.

Given the current mixture size and parameters, k,w, θ, a, a death occurs by selecting
one of the components to kill with probability proportional to its death rate δj(k,w, θ, a)
where

δj(k,w, θ, a) = β
l(k,w, θ, a \ j|data)
l(k,w, θ, a|data)

P (k − 1)

kP (k)
for j = 1, ..., k

where l(k,w, θ, a|data) is the likelihood function for the mixture of all k components and
l(k,w, θ, a\j|data) is the likelihood function where the j’th component has been removed
and the weights of the other components rescaled to sum to 1, i.e.wl → wl/(1 − wj) for
l = 1, ..., k, l �= j. The component is then removed, and the remaining components are
then relabeled if necessary and their weights rescaled. The total death rate of the process
is then

δ(k,w, θ, a) =
k∑

j=1

δj(k,w, θ, a).

Note that if the current value of k is k = 1, it is assumed that deaths are impossible; i.e.
the death rate is δ(k = 1,w, θ, a) = 0.

In order to simulate realizations from this birth-death process, we thus follow the
following simple algorithm

a. Start from initial values k,w, θ, a.

b. Calculate death rates δj(k,w, θ, a) for j = 1, ..., k.

c. Generate the time to first birth or death from an exponential distribution with mean
1

β+δ(k,w,θ,a)
.
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d. Elect a birth with probability β
β+δ(k,w,θ,a)

or the death of component j with proba-

bility
δj(k,w,θ,a)

β+δ(k,w,θ,a)
for j = 1, ..., k.

e. Modify the model parameters k,w, θ, a accordingly.

f. Go to b.

Thus, in order to move from k(t) tok(t+1) in Step 6 of our Gibbs sampling algorithm, we
simply start the birth-death process from the current values k(t), a(t+1), θ(t+1),w(t+1) and
then run the process during a fixed time period t0, for example t0 = 1. We then reset
k(t+1), a(t+1), θ(t+1),w(t+1) to be the values of the mixture size and model parameters after
this time period has elapsed. For details of why this algorithm works and examples in the
context of mixtures of normal and t distributions, see Stephens (2000).

Given the Gibbs sample output, we can estimate various quantities of interest, such
as the probability that the true distribution is a single Weibull distribution,

P (k = 1|data) ≈ 1

N
#{k(t) = 1}

or th population survival function,

S(s|data) ≈ 1

N

N∑
t=1


 k(t)∑

j=1

w
(t)
j exp

{
−θ

(t)
j sa

(t)
j

}
 .

Other quantities such as the mean survival time of a patient or the expected value of the
hazard function can be estimated similarly.

5 Examples

5.1 Simulated Data

Firstly we simulated a sample of size 150 with 10% censoring from the three component
mixture:

f(s|·) = 0.6 W (s|0.1, 0.5) + 0.3 W (s|0.3, 1) + 0.1 W (s|0.5, 2).
12 of the sampled data were right censored and the remaining 138 were completely

observed. The prior distribution scheme outlined in the previous sections was used and
we ran the birth death MCMC algorithm (4) for 60000 observations (10000 to burn-in)
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Figure 1: Plot of mixture size k versus iteration of the MCMC algorithm
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with birth rate β = 3. In Figure 1, we show a plot of mixture size k(t) against the iteration
t of the MCMC algorithm.

The plot illustrates that the mixing of the algorithm seems to be quite good; the
mixture size moves between the values of 1 and 10 without remaining in the same place
for too long. Note that we also produced a graph of the estimated mean of k against the
number of MCMC iterations which also suggested that the algorithm was in equilibrium
after around 10000 iterations.

Note also that we also ran the birth death algorithm with different values of the birth
parameter β and in general we noted that large values gave better mixing but slower
convergence while with small values of β, the algorithm mixed more slowly. Thus, the
value used here seems to be a reasonable choice.

In Figure 2 we illustrate the estimated posterior distribution of the mixture size k. It
can be seen that the posterior mode is the true value k = 3 and a 95% highest posterior
density interval for k is given by [2, 6] illustrating that there is some posterior uncertainty
about the true mixture size.
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0
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(k

|d
at
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Figure 2: Posterior distribution of the mixture size k.

In Figure 3 we compare the Kaplan-Meier estimator and the posterior mean of the
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estimated survival function with the true survivor function The fitted curve is somewhat
closer to the true suvivor function than is the Kaplan Meier estimator.
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Figure 3: Expected Survivor Function (thin black line), True Survivor Function (thick
black line) and Kaplan Meier Estimate (polygonal line).

In the following section, we consider the analysis of some real data.

5.2 Real Data Problem

Here we analyse data from 87 persons with lupus nephritis (see Abrahamowicz et al.,
1996) These patients were studied over a 15 year time period, during which 35 deaths
were recorded. As in the simulated example, we used the same prior distributions and
a birth death MCMC algorithm with 60000 iterations (10000 to burn-in) to fit the data.
In this example, there was again some uncertainty concerning the number of mixture
components with a posterior credible interval for the mixture size being [3,8]. In Figure
4 we illustrate the predicted survivor function and the Kaplan Meier estimator. There
appears to be a good correspondence between the two.
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Finally, in Figure 5, we illustrate the expected hazard function for this data set. The
expected hazard falls quite rapidly towards 0.05.
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Figure 5: Expected hazard function for the Lupus data.

6 Conclusions and further developments

In this article, we have illustrated how Bayesian methods can be used to fit a mixture
of Weibulls model with an unknown number of components to heterogeneous, possibly
right censored survival data using a birth death MCMC algorithm. Some extensions and
modifications are possible.

Firstly, given the symmetrical prior distribution structure used here, even for fixed
mixture size k, the model is unidentifiable in the sense that the posterior distribution
for the remaining mixture parameters has k! modes. This is not a problem in terms of
prediction of the reliability or hazard functions, but would be a problem if we wished to
make inference about the individual elements of the mixture. In this case, an alternative
would be to place a restriction on the prior parameter space, e.g. w1 > w2 > ... > wk
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which would make the model identifiable. Given such a restriction, we would then need
to use a different algorithm to perform the MCMC sampling over different values of
the mixture size. This could easily be done by using the reversible jump algorithm of
Green (1995) and Richardson and Green (1997). Investigation is currently underway on
comparing the performance of the two algorithms.

Secondly, we have assumed here that although we have a possibly heterogeneous pop-
ulation, no covariate information is available. One extension would be to consider the
inclusion of covariate information to help predict the element of the mixture from which
each observation comes.

Finally, although we have here used Bayesian methods to fit the mixture model, it
would also be possible to consider classical mixture modelling via the EM algorithm; see
e.g. McLachlan and Peel (2000) for an introduction. This would be relatively straight-
forward to implement assuming that the mixture size is known but, for unknown k, some
type of information criterion needs to be used to select the mixture size.
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