
Working Paper 03-31

Statistics and Econometrics Series 07
July 2003

Departamento de Estadística y Econometría

Universidad Carlos III de Madrid
Calle Madrid, 126

28903 Getafe (Spain)

Fax (34-91) 624-9849

A BAYESIAN ANALYSIS OF BETA TESTING *

Michael Wiper1 & Simon Wilson1,2

Abstract
In this article, we define a model for fault detection during the beta testing phase of a
software design project. Given sampled data, we illustrate how to estimate the failure
rate and the number of faults in the software using Bayesian statistical methods with
various different prior distributions. Secondly, given a suitable cost function, we also
show how to optimise the duration of a further test period for each one of the prior
distribution structures considered.

Keywords: Software reliability, Beta testing, Test period optimisation, Bayesian
inference.

* Acknowledgements
Michael Wiper acknowledges assistance from the Spanish Ministry of Science and
Technology via the project BEC2000-0167.

1 Departamento de Estadística y Econometría, Universidad Carlos III de Madrid
2 Department of Statistics, Trinity College Dublin

A Bayesian Analysis of Beta Testing

Michael P. Wiper & Simon P. Wilson

Departamento de Estad��stica y Econometr��a. Universidad Carlos III de Madrid.

July 18, 2003

Abstract

In this article, we de�ne a model for fault detection during the beta

testing phase of a software design project. Given sampled data, we

illustrate how to estimate the failure rate and the number of faults in

the software using Bayesian statistical methods with various di�erent

prior distributions. Secondly, given a suitable cost function, we also

show how to optimize the duration of a further test period for each

one of the prior distribution structures considered.

Keywords: Software reliability, Beta testing, Test period optimiza-

tion, Bayesian inference.

1 Introduction

Software reliability models attempt to describe the process of fault occur-

rence and detection in software. Such models have been applied to di�erent

aspects of the fault process using a variety of di�erent probability struc-

tures. A summary of the di�erent modeling strategies is to be found in

Singpurwalla and Wilson (1999).

One particular, commonly used, fault detection process is \beta testing".

Beta testing is usually carried out by a software producer when the in-house

(alpha) testing phase has been completed. Then, the software is given to

a number of users, who use the software under real conditions and report

the occurrence of failures. These users do not have access to the software

code and therefore cannot try to look for or correct the cause of a failure.

Furthermore, various users will often observe multiple failures caused by the

same fault in the software. Beta testing is useful to software manufacturers

because it can be a rapid way to detect faults (there is the possibility to

have many testers) and is usually cheap (the testers may be ordinary users

1

of the software and not professional testers, for example). However, beta

testing is only a fault detection process and still leaves faults to be corrected.

A second disadvantage is that not all observed failures will necessarily be

reported by the testers.

In this paper we develop a model for the process of beta testing. The

goal is to use this model to propose an optimal beta testing strategy in terms

of knowledge about the software, and the costs and bene�ts of the testing.

We use the ideas of decision theory and Bayesian statistics to achieve this.

The paper is organized as follows. Firstly, in the following section, we in-

troduce a simple mathematical model to represent the beta testing process.

Then in section 3, we consider the possibilities of Bayesian inference, intro-

ducing three di�erent prior distribution structures for the unknown model

parameters and in section 4, we show how posterior distributions can be cal-

culated given the di�erent priors. In section 5, we introduce a cost function

to represent the costs of introducing a second test period and we show how

the choice of test period can be optimized. We illustrate our procedure with

simulated and real examples in section 6 and we �nish with some conclusions

and extensions in section 7.

2 A Model for the Beta Testing Process

We wish to test a software program that initially contains an unknown

number of faults N . The faults are labeled 1; : : : ; N and it is presumed

that, when the program is run by a single tester, the time to observe fault

k is denoted Sk and is exponentially distributed independently of the other

faults, as Skj�k � exp(�k). Thus, the time, T , to observe the �rst fault is

given by T = minfS1; : : : ; SNg and therefore,

T j� � exp(�0); (1)

where � = (�1; : : : �N) and �0 = �1 + : : : + �N . Furthermore, if Z is an

indicator of which fault caused the �rst failure, then we have

P (Z = ij�) =
�i

�0
for i = 1; : : : ; N

and it can be shown that Z and T are statistically independent.

Now assume that there areM0 testers who each test the software during

a �xed time period of length T0, where the time to observe the �rst failure

for each tester follows the distribution given in (1). Usually, whenever a

failure is observed by a tester then the fault causing that failure can be

2

identi�ed and re-labeled if necessary. Occasionally however, it may also

occur that when a failure is observed, its cause is not identi�ed. This leads

to the existence of missing data. An extreme case of this is in a system in

general use such as Netscape. Here, when a user encounters a failure, they

have the option of sending an email detailing what they were doing when

the failure occurred which, presumably, allows the fault causing the failure

to be identi�ed by the Netscape designers. However, the proportion of users

who actually send such emails is very low and thus, there are many observed

failures where the cause of the failure cannot be ascertained.

Here, we will assume that the chance that the cause of a given failure

is identi�ed is equal to some value p for each tester and each failure, inde-

pendently of the failure times. For more general approaches to the missing

data problem, see e.g. Little and Rubin (1987).

Since beta testing is just a fault discovery process, faults are not cor-

rected until the end of the test period and therefore multiple failures caused

by the same faults can be observed by various testers. Because of the as-

sumption of exponentiality, the distribution of the number of faults discov-

ered in the test period will be that of a single tester running the program

during a time M0T0.

Suppose now that tester i observes ni failures in the test period with

inter-failure times ti1; : : : ; tini and the labels of the faults causing these fail-

ures are zi1; : : : ; zini , for i = 1; : : : ;M0 where, formally we de�ne zij = 0 if

the fault causing failure j for tester i is not identi�ed.

The likelihood function in this case is given by

l(p;N;�jdata) =

M0Y
i=1

0
@ niY
j=0

pI(zij)(1� p)1�I(zij)
�zij

�0
�0e

��0tij

1
A e��0(T0�

Pni
j=1 tij)

= pr�r0(1� p)r0
KY
k=0

�
rk
k exp (�M0T0�0) for N � K; (2)

where the indicator I(zij) = 1 if zij > 0 and I(zij) = 0 if zij = 0. Also,

rk =
PM0

i=1

Pni
j=1 Ik(zij) is the total number of observed failures ideniti�ed

as caused by fault k, r0 is the total number of unidenti�ed failures, r =

r0+: : :+rK andK is the number of distinct bugs that have been discovered.

It is assumed here that the discovered faults have been labeled as 1 through

K.

Although the rates �k of the identi�ed faults can be estimated classically,

by maximum likelihood for example, those of any faults not yet identi�ed

cannot be estimated. Furthermore, the MLE for N is equal to the number

3

of identi�ed faults and thus the estimated rate of the unidenti�ed faults is

zero. Therefore, MLE does not provide a reasonable solution in this case.

An alternative, discussed in the following section is to use Bayesian methods.

3 Bayesian inference

Bayesian methods are appealing because they allow us to use prior knowl-

edge in order to produce more reasonable inferences about the model param-

eters. Firstly, we may well be able to estimate the proportion of identi�ed

failures p on the basis of our past experience with earlier projects. Secondly,

by assuming that fault rates �k are exchangeable, a reasonable assumption

since it merely implies that the prior distribution of the rates is invariant

under a permutation of their labels, we can estimate the sum of rates of

unobserved faults. Furthermore, we should typically have fairly good prior

information about N ; experts will have typically have worked on previous

projects, have seen prior versions of the program etc. and informative co-

variates such as software metrics may be available. Several methods have

been proposed in the literature for specifying prior distributions for the num-

ber of faults in a program given expert judgements, e.g. Campod�onico and

Singpurwalla (1994), or given software metrics, e.g. Rodr��guez Bernal and

Wiper (2001).

Thinking about the rates of the individual faults will be diÆcult, es-

pecially as they are not identi�ed a priori. However it will be possible to

estimate the overall rate �0 which can be interpreted as the mean number of

failures in unit time. This suggests reparameterizing the problem in terms

of p, N , �0 and the normalised rates �k = �k=�0, for k = 1; : : : ; N . Under

this formulation, the likelihood function becomes:

l(p;N; �0;�jdata) = pr�r0(1� p)r0�r0 exp (�M0T0�0)

NY
k=1

�
rk
k

!
;

where � = (�1; : : : ; �N) and 0 < p < 1, N � K; �0 � 0; 0 � �k � 1 andPN
k=1 �k = 1.

There are several prior structures for (p;N; �0;�) that can be considered.

First, we will assume that p, N and �0 are independent a priori, and that �

depends only on N , thus

P (p;N; �0;�) = P (p)P (N)P (�0)P (� jN):

As, a priori we are assuming that the individual faults are unidenti�ed, the

distribution P (� jN) is required to be symmetric.

4

For convenience, we now choose the following straightforward prior dis-

tribution models for p, N and �0 where we assume that the prior parameters

can be derived from the relevant prior information:

p � Beta(v; w)

N � Poisson(�)

�0 � Gamma(a; b)

This leaves us with the problem of formulating a symmetric, exchange-

able prior distribution for � given N . We consider 3 possible structures for

� which re
ect di�erent levels of prior knowledge:

F A �xed, deterministic structure: �1 = : : : = �N = 1
N
. Under this

model, we are assuming that all faults are of the same size, in the

same spirit as the model of Jelinski and Moranda (1973).

D A Dirichlet prior �jD; N � Dirichlet(�; : : : ; �) for some �xed value

� > 0. For example, � = 1 gives a uniform distribution. Under this

prior, we have E(�k jN) = 1
N
, but there is some uncertainty allowed,

with larger values of � implying less variance in the �k.

H A hierarchical prior distribution, with the parameters of the Dirichlet

distribution in model 3 allowed to di�er. We suggest

�jH; N;� � Dirichlet(�1; : : : ; �N) where � = (�1; : : : ; �N)

�ij � Exponential() for i = 1; : : : ; N

 � Gamma(�; �)

We still have that the unconditional mean E(�k jN) = 1=N . In this

case it would even be possible to use an improper prior distribution

for such as a uniform distribution or f() / 1

.

Given the observed test data and the prior distributions de�ned here we

are able to calculate the posterior distributions as illustrated in Section 4.

4 Posterior distributions

Under all 3 models for �, p and �0 are independent of the other model

parameters a posteriori and have beta and gamma distributions respectively

pjdata � Beta(v + r � r0; w + r0)

�0jdata � Gamma(a+ r; b+M0T0) (3)

5

with mean E[�0jdata] =
a+r

b+M0T0
.

The posterior distributions of N and �, and � and in the case of model

3, are described below.

4.1 Fixed Structure

Under this prior the �k are �xed and the only unknown parameters areN and

�0. We have P (p;N; �0 j F ; data) = P (pjdata)P (N j F ; data)P (�0 jdata),
where P (pjdata) and P (�0 jdata) are given in (3) and

P (N j F ; data) /

�
1

N

�r�r0 �N
N !

for N � K. The constant of proportionality is the sum of the terms on the

right hand side over all valid values of N and may be easily approximated

numerically.

4.2 Dirichlet Structure

The parameters are now (p;N; �0;�) and the posterior has the form

P (p;N; �0;� j D; data) = P (pjdata)P (�0 jdata)P (N j D; data)P (� j D; N;data);

where

P (N j D; data) /
�(N�)

�(N�+ r � r0)

�N

N !
; N � K;

� j D; N; data � Dirichlet(�+ r1; : : : ; �+ rN);

with the constant of proportionality in P (N j D; data) approximated easily

by summation.

4.3 Hierarchical Prior

In this case, we cannot calculate the marginal posterior distribution of N

(or the other model parameters) by straightforward methods. Instead, we

can consider the use of a simulation scheme to sample from the posterior

parameter distribution. One possibility is to use a reversible jump, Markov

chain Monte Carlo (RJMCMC) sampler. See Green (1995) for details.

For a reversible jump sampler, conditional on N , a Gibbs sampler (see

e.g. Smith and Gelfand 1990) is used to sample from the joint posterior

distribution of the remaining model parameters �; �; . The Gibbs sampler

6

proceeds by sequentially sampling from the conditional posterior distribu-

tions:

�jH; N;�; ;data � Dirichlet(�1 + r1; : : : ; �N + rN)

 jH; N;�;�;data � Gamma

�+N;� +

NX
i=1

�i

!

f(�jH; N;�; ;data) / exp

�

NX
i=1

�i

!
�

NX
i=1

�i

!
NY
i=1

�
�i
i

�(�i)
:

Note that the distributions of and � are straightforward to sample

directly. The distribution of � can be sampled using, for example, the

Metropolis algorithm (Metropolis et al 1953).

In order to sample the posterior distribution of N , a reversible jump

proposal is used. Thus, after each cycle of the sampler, we make a random

selection between either a birth move generating an extra unobserved fault

(N ! N + 1) or a death move eliminating one of the unobserved faults

(N ! N � 1). In the case of a birth move, we generate the parameters

�N+1 and �N+1 from some pre-speci�ed distributions and in the case of a

death move, the parameters �N and �N are \killed". In each case, � is

rescaled so that its components sum to 1. The proposed move is accepted

or rejected with a probability that can be calculated using the methods of

Green (1995).

Thus, the algorithm proceeds as follows:

1. j = 0, N = N (0), � = �(0), = (0).

2. Sample �(j+1) � Dirichlet(�
(j)
1 + r1; : : : ; �

(j)

N + r
(j)

N).

3. Sample (j+1) � Gamma

�
�+N;� +

PN(j)

i=1 �
(j)
i

�
.

4. Sample �(j+1) � f
�
�jH; N (j);�(j+1); (j+1)

�
.

5. Sample N (j+1) using the reversible jump sampler. Redefine the

values of �(j+1) and �(j+1).

6. j = j + 1.

7. Go to 2.

7

Under suitable conditions, it can be shown that the sampled data con-

verge to a random sample from the joint posterior distribution. Thus, for

example the posterior mean of N can simply be estimated by the sample

mean;

E[N jH; data] �
1

J

JX
j=1

N (j)

where we have assumed that the sampler has been run for some time (to

forget the dependence on the initial values) and then a sample of size J has

been taken, for some suÆciently large value J .

For further details of MCMC and Gibbs sampling see e.g. Robert and

Casella (2000).

4.4 Comparing the 3 models

So far we have not considered how to compare the adequacy of the three

structures considered in the light of the observed data. In reliability prob-

lems with sequential failure times the usual technique is to use the prequen-

tial likelihood ratio, see e.g. Dawid (1984). Here, as the time order of the

failures isirrelevant, this is equivalent to computing the Bayes factor, see e.g.

Je�reys (1961) or Kass and Raftery (1995).

The Bayes factor in favour of modelM1 against model M2 is given by

B(M1;M2) =
P (datajM1)

P (datajM2)

i.e. the ratio of integrated likelihoods under the two models. Both Je�reys

(1961) and Kass and Raftery (1995) give tables of values for the Bayes

factor which may be interpreted as providing evidence in favour of one of

the models.

In this case, it is possible to evaluate P (datajF) and P (datajD) directly
and we can show that

B(F ;D) =

P
1

N=k
�N

N !
1

Nr�r0P
1

N=k
�N

N !

�(N�)
Qk
j=1 �(�+rj)

�(N�+r�r0)�(�)N�k

:

We can also estimate P (datajH) from the data sampled from the reversible

jump sampler by applying methods developed in Chib (1995) and Chib and

Jeliazkov (2001). Thus, it is possible to estimate Bayes factors to compare

all 3 models.

8

5 A cost function for further testing

In this section we apply the models to establish the optimal testing strategy

given past data. The problem is to determine for how long software should

be tested, and by how many testers, given data and information on the costs

and bene�ts of such testing. The possibility that no more testing should be

done is also a solution. The general goal is to achieve a balance between

undertesting, when buggy software will be released and user con�dence will

be lost, and overtesting which will be expensive and overly time consuming.

A reference to the strategies that might be used and the costs involved in

testing is Singpurwalla and Wilson (1999, Chapter 6).

One informal approach would be to look at the predictive distribution of

the time to next failure of the program after the faults detected in the �rst

phase of testing have been removed. In our case, conditional on the model

parameters, we have

P (T � tjN;�0;�;data) = exp

��0

NX
i=K+1

�i

!

where T is the time to next failure. Given the di�erent models, the predic-

tive reliability function of T can be derived. For example, given the �xed,

deterministic structure, we have

P (T � tjF ;data) =

1X
N=K

P (N jF ;data)

�
b+M0T0

b+M0T0 + (1�K=N)t

�a+r
(4)

The predictive reliability functions can similarly be estimated for both the

Dirichlet and hierarchical models. Note also that there exists a �nite proba-

bility that the program is fault free after the �rst phase of beta testing and

thus the reliability function does not converge to zero as t!1.

A more formal Bayesian approach is to specify a cost function that repre-

sents the costs and bene�ts of the testing process as a function of the decision

variables and unknown quantities such as the number of bugs discovered and

undiscovered. The optimal decision is those values of the decision variables

that minimize the expected cost, expectation being taken with respect to

the unknown quantities; see e.g. French (1988).

In our case, we consider the simple case of single stage testing; the soft-

ware is to be tested for a further time T1 byM1 testers after which any faults

found are to be corrected and the software is to be released immediately.

We shall also assume that the probability that a failure is identi�ed in this

second test period is given by p as earlier.

9

The idea now is to optimize the values of T1 and M1 with respect to the

costs involved. We shall assume the following costs.

1. a cost c1 per tester per unit time. This re
ects the cost of paying and

supporting a tester. Typically, in the beta testing situation, this cost

is likely to be small as testers are not usually paid directly, although

the costs of supplying them with the software and responding to their

comments and queries must be considered.

2. a cost c2 for each new fault discovered during testing. This re
ects the

cost of correcting the discovered bugs at the end of the test period.

3. a cost c3 per unit time. This re
ects the lost opportunity cost of

delaying release of the software.

4. a cost c4 per failure per unit time after the software is released. We

would generally set this cost to be much higher than the previous

values as the damage caused by leaving high frequency faults in the

program will be important.

This implies that the overall cost function is

C(M1; T1) = c1M1T1 + c2B + c3T1 + c4�0

NX

i=K+1

�i(1� I(i))

!
(5)

where B is the number of distinct faults found in the testing phase and I(i)

is an indicator of whether bug i is found or not in the testing phase.

In the following subsection we note how to evaluate the expected cost

function given the three di�erent distributions for �.

5.1 Evaluating the expected cost function

First we should note that the number of bugs found in the second test phase

can be expressed as B =
PN

i=k+1 I(i), i.e. the sum of the indicators of

whether or not bug i is found. Thus, the cost function in equation 5 can be

written as

C(M1; T1) = c1M1T1 + c3T1 + c4�0

NX
i=K+1

�i +

NX
i=K+1

(c2 � c4�0�i)I(i):

Now suppose initially that we know the values of p, N > K, �0 and �.

Then taking expectations we have:

10

E[C(M1; T1)jp;N; �0;�;data] = c1M1T1 + c3T1 + c4�0

NX
i=K+1

�i +

NX
i=K+1

(c2 � c4�0�i)E[I(i)jp;N; �0 ;�;data]: (6)

Now, let F be the number of failures that we observe in the second test

period. Then,

F jp;N; �0;�;data � Poisson

0
@M1T1�0

NX
j=K+1

�j

1
A

and, we can condition on F to �nd E[I(i)jp;N; �0;�;data].

E[I(i)jp;N; �0;�;data] = E[E[I(i)jF; p;N; �0 ;�;data]]

=

1X
f=0

P (F = f jp;N; �0;�;data)E[I(i)jF = f; p;N; �0;�;data]

and now we have that

E[I(i)jF = f; p;N; �0;�;data] = 1�

1� p+ p

PN
j=K+1;j 6=i �jPN
j=K+1 �j

!f
for N � K + 1.

Therefore we �nd that

E[I(i)jp;N; �0;�;data] =

1X
f=1

(M1T1�0
PN

j=K+1 �j)
fe�(M1T1�0

PN
j=K+1 �j)

f !

�

2
41�

1� p+ p

PN
j=K+1;j 6=i �jPN
j=K+1 �j

!f35 :
Inserting this formula in equation (4) we have the expected cost given

the model parameters. In order to calculate the unconditional expected

cost E[C(M1; T1)jdata] we now need to integrate out (4) with respect to the

model parameters p, N , �0, and �. As �0 is independent of the remain-

ing model parameters and has the same posterior distribution in all three

structures considered, we can integrate it out immediately to give:

11

E[C(M1; T1)jp;N;�;data] =

Z
1

0

E[C(M1; T1)jp;N; �0;�;data]f(�0jdata) d�0

= c1M1T1 + c3T1 + c4
a+ r

b+M0T0

NX
i=K+1

�i +

NX
i=K+1

1X
f=1

2
41�

1� p+ p

PN
j=K+1;j 6=i �jPN
j=K+1 �j

!f35 �(a+ r + f)

f !�(a+ r)

�
(b+M0T0)

a+r(M1T1
PN

j=K+1 �j)
f

(b+M0T0 +M1T1
PN

j=K+1 �j)
a+r+f

�

(
c2 � c4�i

a+ r + f

b+M0T0 +M1T1
PN

j=K+1 �j

)

We can also integrate out p. Thus

E[C(M1; T1)jN;�;data] =

Z
1

0

E[C(M1; T1)jp;N;�;data] dp

= c1M1T1 + c3T1 + c4
a+ r

b+M0T0

NX
i=K+1

�i +

NX
i=K+1

1X
f=1

"
1�

fX
s=0

�
f

s

�
B(v + r � r0 + s; w + r0 + f � s)

B(v + r � r0; w + r0) PN
j=K+1;j 6=i �jPN
j=K+1 �j

!s#
�(a+ r + f)

f !�(a+ r)

�
(b+M0T0)

a+r(M1T1
PN

j=K+1 �j)
f

(b+M0T0 +M1T1
PN

j=K+1 �j)
a+r+f

�

(
c2 � c4�i

a+ r + f

b+M0T0 +M1T1
PN

j=K+1 �j

)
(7)

where B(x; y) is the beta function. This formula can now be resolved for

each of the three prior structures on N and � that have been considered.

12

5.1.1 Fixed, deterministic model

In this case we have �i = 1=N and thus, from formula 7 we have:

E[C(M1; T1)jF ; data] =
1X

N=K

P (N jF ; data)E[C(M1; T1)jF ; N;data]

where P (N jF ; data) is the posterior density for N derived in Subsection

4.1. Thus, we have:

E[C(M1; T1)jF ; data] = c1M1T1 + c3T1 + c4
a+ r

b+M0T0

1X
N=K+1

N �K

N
P (N jF ; data)

+

1X
N=K+1

(N �K)P (N jF ; data)
1X
f=1

�
1�

fX
s=0

�
f

s

�
B(v + r � r0 + s; w + r0 + f � s)

B(v + r � r0; w + r0)

�
N �K � 1

N �K

�s#

�(a+ r + f)

f !�(a+ r)
p
f
N (1� pN)

a+r

c2 � c4

a+ r + f

N(b+M0T0 +M1T1
N�K
N

)

!

where pN =
M1T1

N�K
N

b+M0T0+M1T1
N�K
N

.

This function is now straightforward to approximate numerically by

truncating the summations at suÆciently large values of N and f . Fur-

thermore, conditional on M1 it can be shown that the function is either

strictly increasing or has a unique minimum in T1 and this minimum can

thus be found by well known methods such as �nding using Newton-Raphson

to �nd the zero of the derivative
dE[C(M1;T1)jF ;data]

dT1
.

5.1.2 Dirichlet distribution

The expected cost can be calculated in a similar manner to the previous

case. In this case it can be shown that we have:

13

E[C(M1; T1)jD; data] = c1M1T1 + c3T1 + c4
a+ r

b+M0T0

1X
N=K+1

(N �K)�

N�+ r � r0
P (N jD; data) +

1X
N=K+1

(N �K)P (N jD; data)

1X
f=1

�(a+ r + f)

f !�(a+ r)
(M1T1)

f (b+M0T0)
a+r �

�
c2g1(f)� c4

(a+ r + f)�

N�+ r � r0
g2(f)

�

where P (N jD; data) is the posterior distribution for N given in Subsection

4.2 and

g1(f) =
B((N �K)�+ f;K�+ r � r0)

B((N �K)�; k�+ r � r0)

"
1�

fX
s=0

�
f

s

�
B(v + r � r0 + s; w + r0 + f � s)

B(v + r � r0; w + r0)

B((N �K)�; s)

B((N �K � 1)�; s)
I
N�K+2
s=0

�Z 1

0

h(xj(N �K)�+ f;K�+ r � r0)

(b+M0T0 +M1T1x)(a+r+f)
dx

g2(f) =
B((N �K)�+ f + 1;K�+ r � r0)

B((N �K)�+ 1;K�+ r � r0)

"
1�

fX
s=0

�
f

s

�
B(v + r � r0 + s; w + r0 + f � s)

B(v + r � r0; w + r0)

B((N �K)�+ 1; s)

B(N �K � 1)�; s)
I
N�K+2
s=0

�Z 1

0

h(xj(N �K)�+ f + 1;K�+ r � r0)

(b+M0T0 +M1T1x)(a+r+f+1)
dx

Here, IN�K+2
s=0 is an indicator function taking the value 1 if N � K + 2

or s = 0 and zero otherwise. Also,

h(xj 1; 2) =
1

B(1; 2)
x 1�1(1� x) 2�1 is a beta density function.

Although this expression appears somewhat daunting, its numerical eval-

uation is straightforward as only one dimensional integrals are needed and,

as earlier, the function has a unique minimum.

5.1.3 Hierarchical distribution

In this case we can estimate the expected cost function for given values of

M1 and T1 by averaging the formula (7) over the data sampled from the

posterior parameter distribution of p, N , � and �.

As earlier, this function has a unique minimum for given M1 and the

optimum values of M1 and T1 can be encountered by, for example, a brute

search method over a range of possible values.

14

6 Examples

In this section, we illustrate our procedure with two examples: one simulated

and one real.

6.1 Simulated Example

Here we �rst generated assumed that a program contained a total of N = 20

faults with overall failure rate �0 = 10. Then, the vector of relative sizes

of each fault � was generated from a Dirichlet distribution with parameter

vector (1; : : : ; 1)T . Thus, the true model here is the Dirichlet structure with

� = 1.

The software was then assumed to be tested (by a single tester) for 20

time units. For every observed failure, it was assumed that the tester had a

90% probability of identifying the cause.

During the test period, failures identi�ed as caused by 14 distinct faults

were observed. The true fault sizes �i and number of times fault i was

detected in testing ri are given in Table 1. Note that, corresponding to

i = 0, there were 15 unidenti�ed failures observed during testing out of a

total of r = 199 failures.

Table 1: True fault sizes and numbers of detections in testing.

i �i ri i �i ri
0 10:000 15 11 :416 10

1 1:600 26 12 :241 1

2 1:149 20 13 :208 5

3 1:030 23 14 :204 3

4 :985 23 15 :208 0

5 :901 16 16 :053 0

6 :664 12 17 :052 0

7 :604 12 18 :051 0

8 :551 14 19 :043 0

9 :541 10 20 :035 0

10 :464 9

Under all three model structures, the prior expected number of faults

was set to � = 20, i.e. the correct value, and Je�reys priors were used for p

15

Table 2: Posterior distributions of the numbers of faults in the software

under the three models.

Model

N F D H
14 1:0000 :2836 :8794

15 0 :2241 :1096

16 0 :1676 :0101

17 0 :1189 :0008

18 0 :0804 :0001

19 0 :0518 :0000

20 0 :0320 :0000

> 20 0 :0416 0

E[N jdata] 14:0000 16:0256 14:1784

E
hP

i�15 �ijdata
i

0:0000 0:110 0:064

(i.e. Beta(0.5,0.5)) and �0 (i.e. f(�0) / 1=�0). This last corresponds to the

limit of the Gamma prior distribution with a; b! 0.

Under the Dirichlet model, we set � = 0:1 which is slightly di�erent from

the true value and under the hierarchical model, we set used a Gamma(� =

1; � = 0:1) prior for . In this case, the sampler was run for 10000 iterations

to burn in and 100000 in equilibrium.

Under all three models, the posterior distribution for �0 is Gamma(199,20)

with mean E[�0jdata] = 9:95 and similarly, the posterior mean estimate of

p is E[pjdata] = 0:9225. In both cases, as we should expect, these values are

close to the true values.

In Table 2 we illustrate the posterior probabilities of di�erent numbers

of faults N and the posterior mean estimates of N for the three mod-

els. Also, we indicate the total expected rate of the unobserved faults

E
hP

i�15 �ijdata
i
.

We can see here that the �xed model puts a probability of almost 1 on all

faults having been detected in testing. Under the remaining models there is

more uncertainty although in all cases the true number of faults remaining

has been underestimated. (This is to be expected as we can see that fault

number 15 with a relatively large rate (:208) was not observed in the testing

period. Note that a 95% highest posterior density interval for N under the

16

Dirichlet structure is [14; 20] which does include the true value.

Bayes factors were also calculated in order to compare the models as

outlined in subsection 4.4. Perhaps surprisingly these showed found slight

evidence in favour of the �xed model (logB(F ; D) � 3) with the hierarchical

model being much less probable (logB(F ;D) > 10). We note however that

the integrated likelihood for the Dirichlet model is sensitive to the election of

the parameter � and although altering this parameter slightly does not much

change the predictions of the model, it does strongly alter the integrated

likelihood. Thus, setting � = 0:2 we �nd logB(F ;D) � �2 giving slight

evidence in favour of the Dirichlet model and setting � = 1, i.e. the true

value, we have logB(F ;D) � �9 which is overwhelming evidence.

We also carried out some further sensitivity analysis on the prior distri-

bution of N by varying the prior mean between 15 and 30. The results for

the �xed model were essentially unchanged but there was some sensitivity

for the other models. For example, in the case of the Dirichlet model, the

posterior mean value of N varied between 15:2 and 19:5 and the 95% highest

posterior density interval varied between [14; 18] given a prior mean of 15

and [14; 27] given a prior mean of 30.

We now assume that the observed 14 faults were corrected and we con-

sider the problem of whether or not to undertake further testing. Firstly, in

Figure 1 we plot the reliability functions for the three models as in equation

4.

We note some di�erences in the three reliability functions. Firstly, the

predicted reliability for the �xed model is virtually equal to 1, because it is

predicted that there are no faults remaining in the software with probability

almost 1. Under the hierarchical model, the reliability function converges to

approximately 0.9 by time 100 and under the Dirichlet model, the reliability

function is somewhat lower as time increases.

Now consider the cost function for further testing. The maximum dura-

tion of the further testing period is 40 time units and we are able to use up

to three testers. The loss function parameters are c1 = 1, c2 = 0:1, c3 = 0:1

and c4 = 100000. In Figure 1, we illustrate the expected cost functions for

each of the three models and the di�erent possible numbers of testers.

Firstly, under the �xed model, as the probability that there are no faults

left in the software is approximately equal to 1, the expected cost function

becomes an approximately linear function of test time for any number of

testers. Thus, given this model it is optimal not to test. For both Dirich-

let and hierarchical models, the structure of the expected cost function is

somewhat di�erent. The predicted expected cost at a given time and for

a given number of testers is always higher under the Dirichlet model than

17

0 20 40 60 80 100
t

0.75

0.80

0.85

0.90

0.95

1.00

P
(T

>
t|d

at
a)

Dirichlet
Fixed
Hierarchical

Figure 1: Predicted reliability functions.

under the �xed model. This is to be expected as under the �rst model it is

predicted that more bugs are left in the software. In both cases it is optimal

to use 3 testers with an optimal test time of around 19.5 units assuming the

hierarchical model and 39.6 units assuming the Dirichlet model.

6.2 Web Log Data Example

In this case, we consider the analysis of web-log errors from a web server.

In accessing a web server, various types of \failures" are possible, the most

typical being the 404 error when a user tries to access a �le that does not

exist; usually via a broken link. Clearly it is in a servers interest to try to

get any faults within the web site and external broken links corrected.

The usage of a web site is recorded on a web log �le and failures are

included in an error log �le. These results can be summarized using a web

analysis tool such as Analog (http://www.analog.cx/) or AwStats

(http://awstats.sourceforge.net/).

We considered a period of one week during which, on average, there were

18

0 10 20 30 40
Test time

0

200

400

600

800

1000
E

xp
ec

te
d

C
os

t

1

2

3

1

2

3

3
2
1

Dirichlet
Hierarchical
Fixed

Figure 2: Expected cost functions for further testing.

324 users accessing the site. Failure data was recorded using a web analysis

tool. During the period, 40 faults were identi�ed, with the most prevalent

being accessed just over 5000 times and the least prevalent being accessed

51 times. In other words, there were over 5000 attempted accesses to a

non existent web �le, from a number of broken links. The total number of

failures was over twenty thousand and there were around 5700 unidenti�ed

failures. A graph showing number of failures associated with each fault is

given in Figure 3. We can see that there were a few very large faults and

many more smaller faults.

Here the prior distribution forN was set to be Poisson with mean 60, and

the remaining prior distributions were set to be as in the previous example.

In this case, both the �xed and hierarchical models predict that there are

no faults remaining in the software with probabilities greater than 0:999.

Furthermore, calculation of Bayes factors gives very strong evidence that

the Dirichlet model best �ts the data (log Bayes factors greater than 10).

Therefore, we now consider only this model.

19

0 10 20 30 40
fault

0

1000

2000

3000

4000

5000

nu
m

be
r

of
 fa

ilu
re

s

Figure 3: Numbers of observed failures associated with each fault.

Firstly, in Figure 4, we illustrate the posterior distribution of the num-

bers of faults in the program under the Dirichlet prior structure.

We can see that there is some uncertainty about the initial number of

faults in the program. In fact, a 95% maximum posterior density interval

is given by [40; 45). Thus, it seems reasonable to consider the possibility of

further testing.

Firstly, we should note although the time for further testing, T1 can

be controlled, the number of testers M1 should here be considered as an

exogeneous variable, as the number of users accessing the web page cannot

be controlled a priori. Furthermore, we will typically not have to pay the

testers so we should assume c1 = 0 in the cost function.

One possibility would be, before the �rst testing phase, to place a prior

distribution on the number of testers accessing the site per hour and then

update this distribution given the information of the number of users ac-

cessing the site during the �rst week, assuming that the usage pattern will

be the same during later periods. However, in doing this, the evaluation of

20

40 42 44 46 48
n

0.0

0.1

0.2

0.3

0.4

0.5

P
(N

=
n|

da
ta

)

Figure 4: Posterior probabilities of di�erent numbers of faults.

the expected cost function would be somewhat more complicated. A simpler

approach is to use the observed mean value of 324 users in the �rst week to

give us an empirical estimate for M1 and then to look at how the expected

cost function varies when we alter this value slightly.

Here we consider a possible further test period of up to 168 hours (1 week)

with cost function parameters c1 = 0, c2 = 0:1, c3 = 0:01 and c4 = 1000000.

In Figure 5 we examine the expected cost function for values of M1

between 300 and 350.

Given this cost function, the results appear to be fairly insensitive to

small changes in the number of testers. Thus, the optimal test time varies

between 57 hours (expected cost 2:94 units) assuming M1 = 300 and 65.5

hours (cost 2:84) ifM1 = 350. The optimal testing time assumingM1 = 324

is 62 hours with expected cost 2:89 units.

21

5 30 55 80 105 130 155 180
t

2.8

2.9

3.0

3.1

3.2

3.3

E
xp

ec
te

d
co

st

350

300

324

Figure 5: Expected cost function for M1 = 300, 324 and 350.

7 Discussion

In this article, we have illustrated Bayesian inference for a simple model

for the beta testing procedure given three di�erent prior distribution struc-

tures and have illustrated how to decide whether or not testing should be

continued using by estimating the optimal test time given a certain cost

function.

There are various possible modi�cations and extensions that could be

considered. Firstly, as we have noted, it is quite important obtain reasonable

prior information about the true number of faults in the program N . Firstly,

the Poisson form we have used here has been chosen for convenience and

other parametric prior distributions could be considered, e.g. a negative

binomial model. More importantly, in real problems expert or covariate

information is often available and it would be interesting to develop methods

to incorporate this information via methods developed in e.g. Campod�onico

and Singpurwalla (1994) and Rodr��guez Bernal and Wiper (2001).

22

Secondly, as we have three possible model structures, rather than using

Bayes factors to choose a model, we could also consider the use of model

averaging. It would be possible to implement such an approach via reversible

jump MCMC methods (Green 1995).

A restriction of our approach is that we have assumed that the di�er-

ent testers behave in the same way, so that the failure rate of a fault is

independent of the tester using the software. It is possible in practice that

di�erent testers will show di�erent patterns of usage or operational pro�les.

Thus, the failure rate of a fault may vary from tester to tester. It would

be possible to extend our approach to this case, adding further hierarchi-

cal structure to our models although we would then need to use MCMC

methods to implement the modeling.

Acknowledgements

Michael Wiper acknowledges assistance from the Spanish Ministry of Science

and Technology via the project BEC2000-0167.

References

[1] Campod�onico, S. and Singpurwalla, N.D. A Bayesian Analysis of

the Logarithmic{Poisson Execution Time Model Based on Expert Opin-

ion and Failure Data. IEEE Transactions on Software Engineering 20 ,

(1994), 677{683.

[2] Chib, S. Marginal likelihood from the Gibbs output. Journal of the

American Statistical Association 90 , (1995), 1313{1321.

[3] Chib, S. and Jeliazkov I. Marginal likelihood from the Metropolis-

Hastings output. Journal of the American Statistical Association 96 ,

(2001), 270{281.

[4] Dawid, A.P. The Prequential Approach. Journal of the Royal Statistical

Society, A147 , (1984), 278{292.

[5] French, S. Decision Theory: An Introduction to the Mathematics of

Rationality. Wiley, Chichester, 1988.

[6] Gelfand, A.E. and Smith, A.F.M. Sampling based approaches to

calculating marginal densities. Journal of the American Statistical Asso-

ciation 85 , (1990), 398{409.

23

[7] Green, P. Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination. Biometrika 82 , (1995), 711{732.

[8] Jeffreys, H. Theory of Probability, (3rd edition). Clarendon Press,

Oxford, 1961.

[9] Jelinski, Z. and Moranda, P. Software Reliability Research. In Sta-

tistical Computer Performance Evaluation, W. Freiburger, Ed. Academic

Press, New York, 1972, pp. 465{484.

[10] Kass, R. and Raftery, A.E. Bayes factors. Journal of the American

Statistical Association 90 , (1995), 773{795.

[11] Little, R. and Rubin, D. Statistical Analysis with Missing Data.

John Wiley, New York, 1987.

[12] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.,

Teller, A.H. and Teller, E. Equations of state calculations by fast

computing machines. Journal of Chemical Physics 21 , (1953), 1087{

1091.

[13] Robert, C. and Casella, G. Monte Carlo Statistical Methods.

Springer Verlag, Berlin, 2000.

[14] Rodr��guez Bernal, M.T. and Wiper, M.P. Bayesian Inference for

a Software Reliability Model Using Metrics Information. In Safety and

Reliability: Towards a Safer World (2001), E. Zio, M. Demichela and N.

Piccinini, Eds., Politecnico de Torino, pp. 1999{2006.

[15] Singpurwalla, N.D. and Wilson, S. Statistical Methods in Software

Engineering: Reliability and Risk. Springer, New York, 1999.

24

