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Abstract
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tioned the standard approaches to analyse time series with strong serial dependence,
the focus being placed in the detection of eventual unit roots in an autorregressive
model fitted to the series. In this paper we propose a completely different method to
test for the type of “long-wave” patterns observed not only in unit root time series but
also in series following more complex data generating mechanisms. To this end, our
testing device analyses the trend exhibited by the data, without imposing any con-
straint on the generating mechanism. We call our device the Range Unit Root (RUR)
Test since it is constructed from the running ranges of the series. These statistics al-
low a more general characterization of strong serial dependence in the mean behavior,
thus endowing our test with a number of desirable properties. Among these proper-
ties are the invariance to nonlinear monotonic transformations of the series and the
robustness to the presence of level shifts and additive outliers. In addition, the RUR
test outperforms the power of standard unit root tests on near-unit-root stationary
time series.
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1 Introduction

Many overwhelming low-frequency non-periodic components in time series are
associated with the presence of unit roots in their data generating process
(DGP). Such time series are said to be integrated. The pioneering work of
Nelson and Plosser (1982) [36] led to the belief that many economic time series
were best described in this way. This promted a large amount of research on
unit root time series, covering both theoretical and empirical aspects. The unit
root paradigm has important practical implications since it entails that shocks
have a permanent effect on a variable, or equivalently that the fluctuations they
cause are not transitory. As an example, one such implication is the Purchas-
ing Power Parity (PPP) hypothesis, which asserts that fluctuations in the real
exchange rates of any countries are stationary (Dornbush, 1988 [13]).
The existence of unit roots in time series is investigated by means of unit

root tests. The application of standard unit root tests, such as the Dickey-Fuller
(DF hereafter) test (Dickey and Fuller, 1979 [12]), has been an important step
in the construction of a useful parametric model for many economic time series.
In a one-sided DF test, the null hypothesis of a unit root in a series xt, say H0 :
(1−B)(xt−µt) = ξt, is tested against the alternativeH1 : (1−ρB)(xt−µt) = ξt
with |ρ| < 1, where µt denotes the mean of xt. If the alternative is rejected then
xt is supposed to follow a unit root time series model.
Unit root time series models impose, however, severe restrictions on the

DGP’s of the data. For example, when the errors are negatively correlated,
the DF test exhibits important size distortions (Schwert, 1989 [57]). Many
real world time series exhibit also nonlinearities, outliers and structural breaks.
All these features, which cannot be properly captured with random-walk-like
models, fool standard unit root tests (see for instance, Granger and Hallman
1991 [18], and Ermini and Granger, 1993 [14]).
Alternative procedures for testing unit roots were proposed by Lo (1991 [28]),

Kwiatowski et al. (1992 [25]), Stock (1994 [55]) and the recent contributions
of Bai and Perron (1998 [7]). Yet, all these tests rely on assumptions which
are too restrictive in practice. In fact, they were reported to have poor power
performances when confronted to deviations from the standard linear context
(see for example, Sims, 1988 [52]; Perron, 1989 [38]; Perron, 1990 [39]; Schotman
and Van Dijk, 1991 [50]; Aparicio, 1995 [2]).
The appropriate handling of such departures as level shifts, trend breaks

and nonlinearities calls for the development of robust unit root tests. Certainly,
the rejection of the unit root hypothesis by standard tests together with the
acceptance of a wider null by a robust testing procedure will lead us to seek
alternative models for the time series structure.
In this paper, we propose a nonparametric device called the Range Unit

Root (RUR hereafter) test, since its test statistic is constructed from the run-
ning ranges of the series. The RUR test is a natural follow-up of the method-
ology proposed in Aparicio (1995 [2]) and in Aparicio and Granger (1995 [4])
for robustizing cointegration tests. The key idea behind it the fact that the
average number of level crossings for a unit root time series is smaller than for
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a stationary one (Burridge and Guerre, 1996 [9]).
The RUR test outperforms standard unit root tests in several aspects. First,

because of its invariance to monotonic transformations of the series and its
robustness to the presence of additive outliers, the size is not distorted under
the latter deviations. This amounts at widening the null hypothesis. Second,
because of its robustness to structural breaks or level shifts in the DGP of the
series, the new test approaches the power of standard unit root tests when such
features are not present. And third, because it does not depend on the variance
of any stationary alternative, it improves considerably the power of standard
tests on near-unit-root stationary time series.
The structure of the paper is as follows. In Section 2 we explain the heuristics

which motivate the proposed methodology. This will lead us to define the RUR
test in section 3, and study both its small sample and asymptotic properties
under the null hypothesis of unit root. In section 4 we establish the invari-
ance properties of the test, and analyse its small-sample power performances
and robustness against a number of departures from the standard assumptions.
Section 5 introduces a modification of the former RUR test that improves both
its small-sample power in the presence of level shifts, and its size when additive
outliers corrupts early the series. In section 6 we apply our testing methodology
to a set of four real time series and compare the results with those obtained
by means of standard unit root tests.Finally, after the concluding remarks in
Section 7, an appendix is devoted to the proofs of the theoretical results.

2 A Characterization of Integrated Time Series
based on Ranges

Many time series not generated by unit-root models exhibit similar mean behav-
ior as those which are. The objective of this section is to present a nonparametric
procedure for testing unit-root like features not necessarily caused by unit roots
in time series. What we want is a procedure that is invariant, or at least robust,
to certain departures from the standard unit root model. To achieve this, we
first propose a characterization of this “long wave” in terms of what we call Low-
Frequency Features (LFF hereafter). Following Granger and Terasvirta (1993
[19]) and Anderson and Vahid (1998 [1]), a feature is essentially any dominating
statistical property exhibited by a time series. Features may refer to either the
mean behavior or to higher-order moments of the series, such as heteroskedas-
ticity. Here we are interested in the former; in particular in.those features that
are potentially useful in revealing the presence of stochastic trends. These in-
clude the autocorrelation structure of the series or of nonlinear transformations
of the latter, any existing growth rate, and whatever measure of mean reversion.
Features are endowed with some algebraic properties. For instance, if xt has a
feature while yt has not, then both λxt and yt+xt as well as any delayed replica
of xt, say xt−p (where p is a positive integer), will have that feature. Roughly
speaking, we could say that a time series has strong dependence in the mean if
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it exhibits a LFF.
Here we will consider a particular class of LFF’s that are obtained by taking

the difference of the extremes in an evergrowing sample of the series. This
results in a sequence of running ranges. Formally, for a given time series xt, the
terms x1,i = min {x1, · · · , xi} and xi,i = max {x1, · · · , xi} are called the i-th
extremes (see for instance Galambos, 1984 [17]). The sequence of ranges for xt

is then defined as R(x)
i = xi,i − x1,i, for i = 1, 2, 3, · · · , n, with n denoting the

sample size. Basically, a process defined by a sequence of ranges is an integrated
jump process, where the jumps ∆R

(x)
i = R

(x)
i −R

(x)
i−1 are nonnegative quantities

that will be different from zero each time i that a new maximum or a minimum
is reached.
The behavior of the running ranges can be used to assess serial dependence in

a single time series as well as the relationship between two time series (Aparicio
and Escribano, 1998 [3]). One important finding is that the range sequence R(x)

i

for stationary time series is stochastically bounded 1, whereas it is not for null-
recurrent time series such as integrated time series or those having monotonic
trends.
Figures 1, 2, 3 and 4 show respectively the sequences of running ranges

corresponding to a realization of a random walk process yt = yt−1 + et, where
et ∼ Nid(0, 1) (Figure 1), a stationary Gaussian AR(1) process yt = 0.5yt−1+et
(Figure 2), the AR(1) process yt = 0.5yt−1+ξt, where the model errors ξt follow
a student t distribution with 5 degrees of freedom (Figure 3), and finally the
same model with ξt following a Cauchy distribution (Figure 4).
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Figure 1. Sequence of running ranges for a Gaussian random walk process
yt = yt−1 + et, where et ∼ Nid(0, 1).

1A nonnegative sequence st is said to be stochastically bounded if for every positive real
number ε,there exists a finite positive constant δε such that suptP (st ≤ δε) ≥ 1− ε.
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Figure 2. Sequence of running ranges for the Gaussian stationary AR(1)
process yt = 0.5yt−1 + et, with et ∼ Nid(0, 1).
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Figure 3. Sequence of running ranges for the AR(1) process yt = 0.5yt−1 + ξt,

where ξt is an i.i.d. sequence of random variables with a Student-t distribution
with 5 degrees of freedom.
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Figure 4. Sequence of running ranges for the AR(1) process yt = 0.5yt−1 + ξt,

where ξt is an i.i.d. sequence of random variables with a Cauchy distribution.

Figures 5 and 6 illustrate the same fact by showing an estimate of the proba-
bility of jumps larger than a small real number δ. The probability was estimated
from 1000 replications and for a sample size of n = 1000. We took δ = 0.01,
although the rates of convergence to zero of the plotted frequencies were not sig-
nificantly different for other small values of δ. It can be seen from these figures
that when xt is a stationary AR(1) series the frequency of new jump arrivals
goes to zero for increasing t, while it seems to reach a floor when xt is a random
walk. Apparently, the existence of a “long-wave” is related to the persistence of
new jumps. Put in other words, the asymptotic behavior of the jump sequence
∆R

(x)
t conveys useful information on the presence of an ongoing LFF or trending

pattern. The graphs suggest therefore that the long-run frequency of the eventn
∆R

(x)
t > 0

o
could be used as a measure of the persistence in a time series.
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Figure 5. Estimate of P
³
∆R

(x)
t > 0.01

´
versus t when xt = 0.6xt−1 + εt and

εt ∼ Nid(0, 1).
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Figure 6. Estimate of P
³
∆R

(x)
t > 0.01

´
versus t when xt = xt−1 + εt and

εt ∼ Nid(0, 1).

Another equivalent aspect of the previously illustrated property is cap-
tured by the mean interarrival times between consecutive maxima (or, equiva-
lently, minima). These are also the “jump interarrival times” for the sequences
of running range. Figures 7 and 8 show respectively the mean interarrival
times between the first 50 consecutive maxima for a Normal random walk
yt = 0.5yt−1 + et, and for a stationary AR(1) Normal time series from the
model yt = 0.5yt−1 + et, where et ∼ Nid(0, 1). These mean interarrival times
were estimated from 1000 replications of the models, each with a sample size of
n = 1000.
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Figure 7. Mean interarrival times between the first 50 consecutive maxima of
the Gaussian random walk process yt = yt−1 + et, where et ∼ Nid(0, 1).
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Figure 8. Mean interarrival times between the first 50 consecutive maxima of
the Gaussian AR(1) process yt = 0.5yt−1 + et, where et ∼ Nid(0, 1).

The figures show clearly that the sequence of interarrival times is stable for
a random walk, but exploding for the stationary AR(1) process.

3 The Range Unit Root (RUR) test

In this section we first present the test statistic upon which the proposed unit
root testing methodology is based. Then we analyse its small-sample behav-
ior under the null hypothesis of a single unit root, provide some asymptotic
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results concerning this behavior, and finally, study its small-sample power per-
formances.

3.1 The test statistic

In the sequel we will consider the statistic J(n)
0 defined below for testing the null

hypothesis of a single unit root in a time series. We will refer to this testing
device as the Range Unit Root (RUR hearafter) test. Farther in the paper we
will show that this test is either robust or invariant to a number of departures
from this null hypothesis.

J
(n)
0 =

1√
n

nX
t=1

1(∆R
(x)
t > 0). (1)

The following set of assumptions from Phillips (1987 [43]) on the model errors
εt will be needed in the subsequent results. These assumptions allows trading
an increasing degree of temporal dependence against a decreasing degree of
heteroskedasticity (and viceversa) in the process.

A1. E(εt) = 0.

A2. supt E(|εt|p) < C <∞ for some p > 2.

A3. 0 < limn→∞E
£
n−1

Pn
t=1 ε

2
t

¤
<∞.

A4. {εt}∞t=1 is strong mixing with mixing coefficients {αm}∞m=1 satisfyingP∞
m=1 α

1−2/p
m <∞.

Our first result refers to the rate of divergence of the series of partial sumsPn
t=1 1(∆R

(x)
t > 0).

Theorem 1 Under the null hypothesis H0 : xt = xt−1 + εt, where εt satisfies
assumptions A1-A4, J(n)

0 converges to a non-degenerate random variable as n
grows to infinity.

Proof: see Appendix 1.

The statistic J(n)
0 can be interpreted as a measure of the errors in predicting

the range of xt at t, R
(x)
t , by means of its value at time t−1, R(x)

t−1. More exactly,

n−1/2J
(n)
0 represents the proportion of these prediction errors in a sample of

size n. Given the non-ergodic nature of xt when xt = xt−1+ εt, the “re-scaled”
sample proportion J

(n)
0 does not converge to a constant value but to a random

variable, as it will be shown later. On the contrary, when xt ∼ I(0) the range
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sequence R(x)
t is stochastically bounded. Therefore J (n)

0 should be expected to
converge in probability to zero. This means that when xt ∼ I(0), (x)

t = R
(x)
t−1

is a consistant predictor of R(x)
t , while it is not when xt ∼ I(1). As the sample

size approaches infinity, J(n)
0 measures the persistence of the one-step-ahead

range prediction errors, or equivalently, the divergence rate of the range of xt.
Essentially, the test statistic J(n)

0 will be expected to take comparatively large
values for I(1) time series while small for I(0) time series.

3.2 Small-sample behavior under the null

Summary statistics for J(n)
0 under the null hypothesis are given in Table 1 for

a sample size of n =1000, and for Nid(0, 1) errors.

summary statistics minimum maximum mean median std. dev.
estimates 0.80 4.65 2.11 2.02 0.63

Table 1: Summary statistics for J(n)
0 estimated from samples of random

walks with Nid(0, 1) errors, for a sample size of n = 1000.

The critical values of J(n)
0 were estimated under the model xt = xt−1 + εt,

where εt ∼ Nid(0, 1). The critical values, estimated from 10000 replications, for
eigth different sample sizes and six significance levels (α = 0.01, 0.025, 0.05, 0.10, 0.90, 0.95),.are
shown in Table 2. Figure 9 shows the convergence towards their asymptotic val-
ues as the sample size n is increased.

α | n 100 250 500 1000 2000 3000 4000 5000

0.01 0.9 0.9391 1.0119 1.0435 1.1180 1.1502 1.0594 1.0465

0.025 1.0 1.0752 1.1180 1.2333 1.1404 1.1502 1.2491 1.1031

0.05 1.1 1.2017 1.2075 1.2649 1.2746 1.3145 1.3123 1.3152

0.10 1.3 1.3282 1.3416 1.3598 1.2969 1.3510 1.3756 1.4425

0.90 2.8 2.9725 2.9963 3.0990 3.2870 2.9212 3.0042 2.7577

0.95 3.1 3.2888 3.3541 3.3520 3.6001 3.2498 3.3046 3.1396

Table 2: Empirical critical values of the RUR test for different sample
sizes and for different significance levels.
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Figure 9. Convergence of the 5%-level empirical critical values of
J

(n)
0 (vertical axis) towards the asymptotic values with increasing

sample size (horizontal axis).

Figure 10 shows the empirical density of J(n)
0 estimated by kernel smoothing,

again under the null hypothesis of a random walk with Nid(0, 1) errors. The
estimates were obtained from 1000 replications and for different sample sizes
using the Epanechnikov kernel (see for example Silverman, 1986 [51] and Hardle,
1990 [21]), which is optimal in the the mean-square error (MSE) sense2.

2The density of J(n)
0 was estimated as

f̂h(x) = 1
nh

P
n

i=1 K
³

x−xi

h

´
, with K(.) given by K(u) = 3

4
(1− u2)1(|u| ≤ 1).
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Figure 10. Plot of the empirical density of J(n)
0 under the null hypothesis

H0 : xt = xt−1 + εt, where εt ∼ Nid(0, 1). The density was estimated using
the Epanechnikov kernel on different sample sizes.

3.3 Asymptotics

In order to obtain asymptotic results for our test statistic J(n)
0 , it is useful to

split it into two terms:

J
(n)
0 =

1√
N

NX
n=1

1(∆R(x)
n > 0)

=
1√
N

NX
n=1

1(xn,n = xn) +
1√
N

NX
n=1

1(x1,n = xn).

Now let

J
(n)
1 =

1√
N

NX
n=1

1(xn,n = xn),

J
(n)
2 =

1√
N

NX
n=1

1(x1,n = xn).

The theorem below establishes the asymptotic null distribution of J(n)
1 and J(n)

2

in terms of the local time of a Brownian motion process Wt.on the interval [0, 1]
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The local time Lt(x) of a Brownian motion measures the amount of time spent
by this process in the neighborhood of the point x up to time t (see Revuz and
Yor, 1991 [47]).

Lt(x) = lim
ε→0

1

2ε

Z t

0

1(x− ε < Ws < x+ ε)ds.

More details can be found in the Appendix.

Theorem 2 Let Lt(x) denote the local time defined as above. Under the null
hypothesis H0 : xt = xt−1 + εt with εt satisfying assumptions A1-A4, we have:
(i) J(n)

1 → 2L1(0), (ii) J
(n)
2 → 2L1(0).

Proof: see Appendix 2.

Our next theorem establishes the asymptotic independence of J(n)
1 and J(n)

2 ,
which allows us to obtain the density of J(n)

0 as the convolution of the densities
of J(n)

1 and J(n)
2 .

Theorem 3 Under the null hypothesis H0, J
(n)
1 and J(n)

2 are asymptotically
independent .

Proof: see Appendix 3.

Corollary 1. Let fJ1+J2 represent the asymptotic probability density function
of J(n)

1 + J
(n)
2 . Then

fJ1+J2(z) = (2π)−1/2 exp

½
−z

2 + 2

4

¾
(1−Ψ(z)) 0 < z < ∞, where Ψ de-

notes the distribution function of a standard Normal random variable.

Proof: see Appendix 4.

3.4 Small-sample power performances

Here we compute the small-sample power performances of the RUR test using
the estimated critical values at the 5% significance level, and against the al-
ternative of a stationary AR(1) time series with standard Normal errors that
is against the model xt = b xt−1 + εt.where εt ∼ Nid(0, 1). This was done for
different values of the autoregressive parameter (b = 0.5, 0.8, 0.9) and for three
different sample sizes (n = 100, 250, 500). The power estimates, obtained from
10000 replications of the previous model, are shown in Table 3 together with
the DF results (given in brackets).
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n | b 0.5 0.8 0.9 0.95 0.99
100 0.8 (1) 0.6 (0.99) 0.5 (0.5) 0.4 (0.18) 0.12 (0.0375)
250 1 (1) 1 (1) 1 (1) 0.8 (0.7) 0.47 (0.0760)
500 1 (1) 1 (1) 1 (1) 1 (0.99) 0.72 (0.39)

Table 3: Power of the RUR test at the 5% significance level against the
model xt = b xt−1 + εt for different sample sizes n (100, 250, 500), and
for different values of the parameter b (0.5, 0.8, 0.9).

These results show the DF test outperforms the RUR test in only two cases:
(i) when the sample size is comparatively small (n = 100), and (ii) when the
autoregression parameter b is not close to 1. Otherwise, it is noteworthy the im-
proved power performances of the RUR test over the DF test against stationary
alternatives close the nonstationary border.
The power curves are plotted in Figure 11 below for three different sample

sizes (n = 100, 250, 500). The continuous and dotted lines correspond respec-
tively to the DF and the RUR tests.
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Figure 11. Plots of the power estimates of DF and RUR tests against
stationary Gaussian AR(1) series.

Thus as compared to the DF test, the RUR test establishes a sharper frontier
between the null hypothesis of unit root and the stationary AR(1) alternatives.
This is partly a consequence of the invariance of the RUR test statistic J(n)

0

with respect to the finite variance of the stationary alternative, which we state
in the next proposition.
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Proposition 1. Let xt be a stationary time series with finite variance σ2
x, and

let a be any nonzero real number. Let J(n)
0 (x) be the RUR test statistic applied

to xt. Then we have:
J

(n)
0 (ax) = J

(n)
0 (x) (2)

Proof: see Appendix 5.

4 The RUR Test Statistic under Departures from
the Standard Assumptions

Another important property of the RUR test is its robustness to departures from
the standard assumptions. In this paper, we consider three types of departures:
a) when a stationary time series undergoes structural breaks; b) when I(1)
time series are corrupted by additive outliers; and c) when I(1) time series are
nonlinearly transformed. In the sequel we study the small sample behavior of
the RUR test in the presence of each of the above-mentioned departures from
the standard unit-root tests assumptions.

4.1 Stationary time series with level shifts

Many economic and financial time series such as inflation, nominal and real in-
terest rates can be trend-stationary with a structural break in the unconditional
mean which affects the standard inferential procedures and often makes constant
coefficient models to perform poorly in practice (see for instance Perron, 1990
[39], and Malliaropulos, 2000 [33] ). The literature on testing for unit roots in
the presence of both known and unknown break points is large (see Maddala
and Kim, 1998 [32] for a review). Perron (1989 [38]) and Perron and Vogelsang
(1992 [41]) reported evidence that structural breaks can make an I(0) time se-
ries behave locally as I(1) and, as a result, these breaks are able to fool standard
unit root tests (this is shown by the simulations below). More precisely, Perron
(1989 [38]) and Rappoport and Reichlin (1989 [46]) showed via Monte Carlo
experiments that time series such as GNP (previously modelled as I(1)) appear
as I(0) if we allow for a segmented trend in the model during the oil crisis. In
brief, if the permanent break is not explicitly taken into account standard unit
root tests tend to find too many unit roots. However, as shown by Leybourne,
Mills and Newbold (1998 [27]), it is also possible to reach the opposite conclu-
sion when the break’s location appears at the beginning of the sample, that
is that an I(0) time series be interpreted as I(1). Moreover, the critical values
of standard unit root tests depend on the new unknown nuisance parameters
such as the number of breaks and their timing, which has led several authors
(see Zivot and Andrews, 1992 [59]; Perron and Vogelsang, 1992 [41]; Banerjee,
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Lumsdaine and Stock , 1992 [8]; and Stock, 1994 [55]) to propose recursive and
sequential testing procedures in order to estimate these parameters. In the light
of the previous difficulties, it may be interesting to analyse the power of our
RUR test when confronted to the alternative of a stationary AR(1) time series
corrupted by such breaks, that is xt = 0.5 xt−1+ s Dt+ εt, where Dt represents
a dummy variable defined by Dt = 0 for t ≤ n/2 and Dt = 1 for t > n/2. Table
4 provides power estimates from 10000 replications for different values of the
local break size s. The power figures corresponding to the Dickey-Fuller test
applied to the same replication of the model are given in brackets.

n | s 4 8 12
100 0.2 (0.00) 0.08 (0.00) 0.07 (0.00)
250 0.7 (0.00) 0.6 (0.00) 0.6 (0.00)
500 1 (0.86) 1 (0.00) 1 (0.00)

Table 4: Power of the RUR test at the 5% significance level against
model xt = 0.5 xt−1+s Dt+ εt, where Dt = 0 for t ≤ n/2 and Dt = 1
for t > n/2. The power estimates are given for different values of the
sample size n(100, 250, 500), and of the break size s (s = 4, 8, 12). The
performance of the DF test accompany these figures in brakets.

We remark that except for the more favorable case of s = 4 and n = 500, the
Dickey-Fuller (DF) test has a much stronger bias towards nonstationarity, thus
suggesting that the RUR test is less prone to misinterpret structural breaks as
permanent stochastic disturbances.
In a scenario allowing for multiple breaks, we should expect an even larger

decrease in power for both the RUR and the DF tests. In order to assess these
power losses, we performed another experiment which included two breaks at
different locations in time. Our model was therefore xt = 0.5 xt−1 + s1 Dt,1 +
s2Dt,2+εt, whereDt,i (i = 1, 2) represents a dummy variable defined byDt,i = 0
for t ≤ in/4 and Dt,i = 1 for in/4 < t ≤ in/2. Table 5 shows the power results

obtained from 10000 replications of this model, for both the RUR and the DF
tests (the DF figures given in brackets). Once again, the RUR test outperfoms
the DF results in all cases, and is still remarkably powerful for sample sizes as
small as n = 500, as far as the break size is not too large.
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n |s1,2 (2,4) (4,8) (8,12)
100 0.07 (0.000) 0.005 (0.000) 0.000 (0.000)
250 0.5 (0.000) 0.200 (0.000) 0.05 (0.000)
500 1 (0.453) 0.7 (0.000) 0.6 (0.000)

Table 5: Power of the RUR test at the 5% significance level against the
model xt = 0.5 xt−1 + s1 Dt,1 + s2Dt,2 + εt, where Dt,i (i = 1, 2)
represents a dummy variable defined by Dt,i = 0 for t ≤ in/4 and
Dt,i = 1 for in/4 < t ≤ in/2. Here s1,2 = (s1, s2)

0. The power
estimates are given for different sample sizes (n=100,250,500), and for
different values of s1 and s2 ( s1 = 2, 4, 8, and s2 = 4, 8, 12,respectively).
The performance of the DF test is given by the figures in brakets

4.2 Nonlinearly transformed I(1) time series

In practice, it is difficult (or even impossible) to know whether a time series ex-
hibiting “unit-root-like” mean behavior is really I(1), or rather a monotonically
nonlinear transformation of an I(1) series. With standard unit-root tests such
as the DF test, misspecification of the true time series model may affect the rate
of divergence of the test statistic, causing it to be inconsistent. It is therefore
desirable that a unit-root test could avoid such ambiguities.
Granger and Hallman (1991 [18]) looked at the autocorrelation function

of several nonlinear transformations of the original series and proposed a test
invariant to monotonic transformations based on ranks. Ermini and Granger
(1993 [14]) worked with the Hermite polynomial expansion of different nonlinear
transformations of random walks, possibly with drift, and showed that the au-
tocorrelation function is not always a reliable indicator of the degree of memory
of nonlinear time series.
In this section we analyse the small sample behavior of the RUR test in

the face of several nonlinear transformations of random walks. Table 6 shows
the results estimated at the 5% significance level from 10000 replications of the
different models and for three different sample sizes (n = 100, 250, 500).
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Transformation 100 250 500

1) x2
t 0.079 (0.397) 0.170 (0.406) 0.178 (0.420)

2) x2
t , with xt > 0, ∀t 0.03 (0.397) 0.059 (0.406) 0.048 (0.420)

3) x3
t 0.038 (0.456) 0.057 (0.532) 0.049 (0.533)

4) exp(xt) 0.03 (0.92) 0.05 (1) 0.0469 (1)

5) exp(xt

75) 0.054 (0.271) 0.0526 (0.271) 0.05 (0.301)

6) log(xt + 100) 0.043 (0.275) 0.064 (0.331) 0.051 (0.354)

7) log(xt+2
√
T

4
√
T
), xt+2

√
T

4
√
T

∈ (0, 1) 0.072 (0.347) 0.054 (0.349) 0.051 (0.354)

8) sin(xt) 0.8828 (1) 0.9986 (1) 1 (1)

Table 6: Size of the RUR test against differents forms of nonlinearity
applied to a random walk xt = xt−1 + εt, where εt ∼ Nid(0, 1). The
proportion of model replications for which the null hypothesis was re-
jected at the 5% significance level are given for different sample sizes
(n = 100, 250, 500). The total number of replications was 10000. As
usual, DF performances are shown in brackets.

It is worth observing that the size tends towards its correct value in all cases
except when the transformation is non-monotonic (case 1) or when it station-
arizes the series (case 8). To study more precisely the effect of the logarithmic
nonlinearity, in case 7), we forced the variable to take most of its values in the
interval (0, 1). This was done by transforming linearly the series prior to ap-
plying the logarithmic transformation. Since in this interval the function is not
so well approximated by a straight line, one would expect a more noticeable
size distortion for the smaller sample size of n = 100. Overall, however, all
the empirical sizes for the purley monotonic transformations seem to converge
to the nominal size of 0.05 as the sample size grows. In fact, it can be shown
that the RUR is invariant to monotonic nonlinear transformations of I(1) time
series. We state this property in the following proposition.

Proposition 2. Let f be a monotonic transformation applied to an I(1) time
series xt, and let J

(n)
0 (x) be the RUR test statistic applied to xt. Then we have:

J
(n)
0 (f(x)) = J

(n)
0 (x) (3)

Proof: see Appendix 6.

This result is a natural consequence of the invariance of the number of level
crossings to monotonic transformations of a time series.
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4.3 Integrated time series corrupted by additive outliers

Outlying observations form another class of non-repetitive events which may
occur for different reasons, including eventual measurement errors, and record-
ings of unusual events such as wars, disasters and dramatic policy changes.
Some commonplace outlier-inducing events in economic time series are union
strikes, hoarding consumer behavior in response to a policy announcement, and
computer breakdown effects on unemployment or sales data collection and pro-
cessing, to name a few. Outliers can also appear as a result of misspecified
estimated relationships or omitted variables (see Peña, 2001 [42]).
Outliers are often classified into two groups: additive outliers (AO) and in-

novation outliers (IO), of which the former ones have the most insidious effects
on classical inference. In both cases, standard unit root tests are biased towards
the rejection of the unit root hypothesis. An AO corresponds to an external
error or exogenous change in the observed value of the time series at a particular
instant, but with no effect on the subsequent observations in the series. For-
mally, instead of observing the original series xt, we observe a corrupted series
yt, which in the case of a single AO is given by:

yt =

½
xt t 6= T
xt + s t = T

where s represents the outlier magnitude.
There is a sort of duality between the effects of AO’s and those of struc-

tural breaks on time series. Indeed while I(0) time series subject to level shifts
could be misinterpreted as I(1), I(1) time series corrupted by AO’s might look
like I(0) provided that the outliers are sufficiently important in magnitude or
in frequence. In particular, it is known that the presence of AO’s leads to a
downward bias of the OLS parameter estimates in a stationary AR(1) process
(Bustos and Yohai, 1986 [10]; Martin and Yohai, 1986 [34]), and that unit-root
inferences are sensitive to the presence of extreme observations. For example,
the DF test will have an actual size in excess of the nominal size and thus will
reject the unit-root hypothesis too often. The size distortion of the DF test
in the presence of this type of outliers was quantified by Haldrup and Hanses
(1994 [20]), who also demonstrated that the distribution of the parameter esti-
mates changed dramatically when both the magnitude of the outliers and their
frequency become large.
Traditionally, the presence of AO’s is dealt with either by attaching less

weight to the extreme observations in the sample, by removing them with the
inclusion of a dummy variable in the model, or by treating them as missing
observations. This two-stage approach was followed in Arranz and Escribano
(1998 [5]), who proposed filtering the contaminated series prior to standard
unit-root testing. Single-stage robust unit-root tests were first proposed by Lu-
cas (1995 a,b [29,30]) and by Franses and Lucas (1997 [15]) using M -estimators
with high breakdown point and efficiency, instead of OLS estimators. However,
these tests were really conceived for dealing with fat-tailed distributions of the
model errors and, as a result, were less powerful than standard unit root tests
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on Normally distributed errors. Alternatively, some authors have followed a
likelihood-based approach where inference is made about a particular fat-tailed
distribution rather than on the Gaussian distribution (Hoek et al., 1995 [23];
Rothenberg and Stock, 1997 [49]). The use of nonparametric statistics is an-
other avenue of research in robust unit root testing. Hasan and Kroenker (1997
[22]) applied rank-based methods.to this problem and reported improved power
performances on time series corrupted by a few large observations. The RUR
procedure that we propose also belongs to the nonparametric category.

The results in Table 7 and Table 8 show that the size distortions caused by
the presence of an AO in the middle of the series and beyond are much smaller
for the RUR test than for the DF test (shown in brackets). When the AO
appears near the end of the series (Table 8) the RUR test have even lower than
nominal sizes. In any of these scenarios, our alternative hypothesis is embodied
in the model yt = xt + sδt,τ where xt = xt−1 + εt, τ denotes an integer no
larger than the sample size, and δt,τ = 1 if t = τ and zero elsewhere. The
sizes were estimated at the 5% significance level, for different values of both τ
(τ = n/25, n/10, n/5) and the sample size n (100, 250, 500).

n | τ n/2 n/2 + 1 n/2 + 2

100 0.0826 (0.2978) 0.0830 (0.2964) 0.0812 (0.2958)
250 0.0800 (0.1682) 0.0800 (0.1688) 0.0798 (0.1670)
500 0.0644 (0.1130) 0.0640 (0.1102) 0.0642 (0.1096)

Table 7. Size of the RUR test against model yt = xt + s δt,τ where xt = xt−1 +
εtand τ is an integer no larger than the sample size n, with δt,τ = 1 if t = τ and zero
elsewhere. The sizes at the 5% significance level, estimated from 10000 replications
of the model, are given for different values of the sample size (100, 250, 500) and for
s = 10. The performance of the DF test is shown in brackets.

n| τ n− n/20 n− n/10 n− n/5
100 0.0212 (0.2964) 0.0244 (0.2990) 0.0352 (0.2980)

250 0.0392 (0.1704) 0.0422 (0.1660) 0.0484 (0.1656)

500 0.0446 (0.1106) 0.0472 (0.1104) 0.0510 (0.1118)

Table 8. Size of the RUR test against model yt = xt+s δt,τ where xt = xt−1+εt,
and τ is an integer no larger than the sample size n, with δt,τ = 1 if t = τ and zero
elsewhere. The sizes at the 5% significance level, estimated from 10000 replications
of the model, are given for different sample sizes (100, 250, 500) and for s = 10. The
performance of the DF test is given by the figures in brackets.

Unfortunately, an early AO will produce a jump in the sequence of ranges
which may prevent other jumps from appearing, thereby biasing the RUR test
towards the rejection of the null hypothesis of unit root. The bias will be larger
the sooner the outlier appears in the series. In order to grasp more closely this
problem, we performed another Monte Carlo experiments in which the single
AO is introduced near the origin (Table 9).
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The results show that when the AO appears within the first quarter of the
sample, the RUR test seems to offer no real improvement over the DF test.

n |τ n/25 n/10 n/5

100 0.3778 (0.2956) 0.3192 (0.2964) 0.2432 (0.3002)
250 0.2746 (0.1672) 0.2230 (0.1668) 0.1700 (0.1676)
500 0.1930 (0.1114) 0.1588 (0.1112) 0.1188 (0.1110)

Table 9. Size of the RUR test against model yt = xt+s δt,τ where xt = xt−1+εt,
and τ is an integer no larger than the sample size n, with δt,τ = 1 if t = τ and zero
elsewhere. The sizes at the 5% significance level, estimated from 10000 replications
of the model, are given for different values of the sample size (100, 250, 500) and for
s = 10. The performance of the DF test is given

5 The Forward-Backward Range Unit Root (FB-
RUR) Test

Unless we know the outlier locations, the amount of size distortion or bias of the
RUR test, based on the statistic J(n)

0 , when confonted to time series with AO’s
will be uncertain. By means of a simple resampling technique, we obtain, in
this section, an extension of the RUR test, called the Forward-Backward RUR
(FB-RUR) Test, based on the statistic here noted as J(n)

0,∗ , which remarkably
reduces the size distortion when the AO occurs at the beginning of the sample,
and which turns out to be smaller than with the DF test. The FB-RUR test
also improves the power performances of the former RUR test.
The key idea of this extension consists in running the RUR test first forwards

(from the beginning to the end of the sample) and then backwards (from the
end to the beginning). The total jump counts corresponds therefore to a sample
size twice the original one, thus leading to improved power performances, in
general. The FB-RUR test statistic J(n)

0,∗ can be formulated as follows:

J
(n)
0,∗ =

1√
2n

nX
t=1

n
1(∆R

(x)
t > 0) + 1(∆R

(x0)
t > 0)

o
, (4)

where x0t = xn−t+1 denotes the time-reversed series.
Table 10 shows that the critical values at the 5% significance level for the

test based on J(n)
0,∗ are almost undistinguishable from those of J(n)

0 , under the
null hypothesis of a random walk with Nid(0, 1) errors.
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α/n 100 250 500 1000 2000 3000 4000 5000

0.01 1.2728 1.4311 1.4863 1.5428 1.5337 1.5233 1.3416 1.6400

0.025 1.3435 1.7889 1.7076 1.7441 1.6601 1.6395 1.8000 1.7300

0.05 1.6971 1.7889 1.7709 1.8112 1.7866 1.7686 1.9230 1.7700

0.10 1.9092 1.9677 1.9606 1.9230 1.9922 1.8590 2.0571 2.0800

0.90 3.9598 4.1591 4.0477 4.2933 4.5853 4.1699 4.1144 3.9400

0.95 4.6669 4.6957 4.6802 4.5839 5.0280 4.5572 4.9193 4.3500

Table 10: Empirical critical values of the FB-RUR test based on J
(n)
0,∗ for different

sample sizes

Figure 12 shows the empirical density of J(n)
0,∗ estimated by kernel smoothing

under the null hypothesis of a random walk with i.i.d. Normally distributed
errors having zero mean and unit variance. The estimates were obtained again
from 1000 replications of the null model and for three different sample sizes,
using the Epanechnikov kernel.
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Figure 12. Plot of the empirical density of J(n)
0,∗ for H0 : xt = xt−1 + εt with

εt ∼ Nid(0, 1). The density was estimated using the kernel and for different
sample sizes.

The power of the FB-RUR test against the alternative of a stationary AR(1)
time series is shown in Table 11, using the same experimental set of parameters
as was used in Table 3. We remark some improvements in power performances,
especially for the smaller sample sizes, where now DF (whose results are again
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shown in brackets) is outperformed, or at least equated, in all the cases except
when the value of the autoregression parameter b is 0.8. The corresponding
power curves are plotted in Figure 13. The continuous and dotted lines corre-
spond respectively to the DF and FB-RUR tests.

n |b 0.5 0.8 0.9 0.95 0.99

100 1.00 (1.00) 0.80 (0.99) 0.60 (0.5) 0.5 (0.18) 0.2 (0.0375)
250 1.00 (1.00) 1.00 (1.00) 1.00 (1) 0.9 (0.7) 0.52 (0.0760)
500 1.00 (1.00) 1.00 (1.00) 1.00 (1) 1 (0.99) 0.8 (0.39)

Table 11: Power of the FB-RUR test at the 5% significance level against the model
xt = b xt−1 + εt for different sample sizes (n = 100, 250, 500), and for different
values of the autoregression parameter b in the previous model (b = 0.5, 0.8, 0.9)
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Figure 13. Power of FB-RUR and DF tests against the stationary series of
Table 11.

In order to quantify the size distortion of the FB-RUR test in the presence of
additive outliers, we used the same experimental framework as for the original
RUR test. Tables 12 through 14 show the Monte Carlo results, depending on
whether the single outlier’s location is at the beginning, in the middle, or at
the end of the sample. For comparison, we let the DF test results appear in
brackets.
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n |τ n/25 n/10 n/5

100 0.1206 (0.2956) 0.0880 (0.2964) 0.0550 (0.3002)
250 0.1156 (0.1672) 0.0950 (0.1668) 0.0678 (0.1676)
500 0.0918 (0.1114) 0.0726 (0.1112) 0.0638 (0.1110)

Table 12: Size of the FB-RUR test against model yt = xt + s δt,τ
, where xt = xt−1 + εt, τ is a positive integer no larger than the
sample size, and δt,τ = 1 if t = τ and zero elsewhere. The sizes
at the 5% significance level, estimated from 10000 replications of the
model, are given for different values of the sample sizes n(100, 250, 500),
and for s = 10. The performance of the DF test is given in brackets.

n |τ n/2 n/2 + 1 n/2 + 2

100 0.0826 (0.2978) 0.0830 (0.2964) 0.0812 (0.2958)
250 0.0800 (0.1682) 0.0800 (0.1688) 0.0798 (0.1670)
500 0.0644 (0.1130) 0.0640 (0.1102) 0.0642 (0.1096)

Table 13: Size of the FB-RUR test against model yt = xt + s δt,τ
where xt = xt−1 + εt, τ is a positive integer no larger than the sample
size, and δt,τ = 1 if t = τ and zero elsewhere. The sizes at the 5%
significance level, estimated from 10000 replications of the model, are
given for different values of the sample size n (100, 250, 500), and for
s = 10. The performance of the DF test is given in brackets.

n|τ n− n/20 n− n/10 n− n/5
100 0.0468 (0.2964) 0.0650 (0.2990) 0.0726 (0.2980)
250 0.0704 (0.1704) 0.0750 (0.1660) 0.0768 (0.1656)
500 0.0626 (0.1106) 0.0638 (0.1104) 0.0656 (0.1118)

Table 14: Size of the FB-RUR test against model yt = xt + s δt,τ ,
where xt = xt−1 + εt, τ is a positive integer no larger than the sample
size, and δt,τ = 1 if t = τ and zero elsewhere. The sizes at the 5%
significance level, estimated from 10000 replications of the model, are
given for different values of the sample size n (100, 250, 500), and for
s = 10. The performance of the DF test is given by in brackets.

On the one hand, notice that even in cases where the outlying observations
appear at the beginning of the data sample, the FB-RUR test robustises the
DF test. Indeed, since in this case the last jump occurs at the largest outlier’s
location, J(n)

0 tends to be very small (and, asymptotically, zero), whereas J(n)
0,∗

will only be approximately reduced by a factor of 1/2 with respect to the case
of no outliers. Notice also that we should not expect any improvement in per-
formances of the FB-RUR test over the RUR test when the AO’s occur at the
middle of the sample. Finally, this competitive edge of the FB-RUR test dis-
appears when outliers occur at both the beginning and the end of the sample.
However, this situation is more unlikely.
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On the other hand, when considering the alternative of a stationary AR(1)
time series corrupted by a single structural break, we obtain an outstanding
improvement in power performance over the former RUR test, for a sample size
of n = 500, as shown in Table 15. As we already pointed, this result is not
surprising since it is as though we were working on twice the original number
of observations.

n |s 4 8 12

100 0.200 0.050 0.050
250 1.00 0.900 0.800
500 1.000 1.000 1.000

Table 15: Power of the FB-RUR test at the 5% significance level against
model xt = 0.5 xt−1+s Dt+ εt, where Dt = 0 for t ≤ n/2 and Dt = 1
for t > n/2. The power estimates are given for different values of the
sample size n(100, 250, 500), and for different values of s (s = 4, 8, 12).

Obviously, the results deteriorate when two breaks are present in the DGP
of the time series, and thereby a larger sample size (n = 500) is required in
order to notice these improvements. This is shown in Table 16. As can be seen,
when n = 500 the simple RUR test is outperformed by the FB-RUR test for the
larger level shifts.

n | s1,2 (2, 4) (4, 8) (8, 12)

100 0.080 0.000 0.000
250 0.500 0.090 0.059
500 1.000 0.900 0.800

Table 16: Power of the FB-RUR test at the 5% significance level against
the model xt = 0.5 xt−1 + s1 Dt,1 + s2Dt,2 + εt, where Dt,i (i = 1, 2)
represents a dummy variable defined by Dt,i = 0 for t ≤ in/4 and
Dt,i = 1 for in/4 < t ≤ in/2. The power estimates are given for
different values of the sample size n (100, 250, 500), and for different
values of s1 and s2 (2, 4, 8 and 4, 8, 12, respectively).

Finally, as regards the robustness of the FB-RUR test to monotonic nonlin-
earities, no significant differences are obtained with respect to the former RUR
test. It is also straightforward to show that the FB-RUR test, based on J(n)

0,∗ ,

has the same invariance properties and asymptotics as the one based on J(n)
0 .
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6 Empirical applications

In this section we illustrate the performances of our robust unit root testing
methodology on four real time series. Our first example focusses on a series
affected by structural changes, that is the monthly Brazilian inflation rate se-
ries from January 1994 to June 1996. The second study case is the annual
US/Finland real exchange rates series from 1900 to 1987, which is contami-
nated with both additive and innovation outliers. The third and four examples
deal with a couple of near-unit root stationary time series. The first of these
represents the quarterly Montevideo unemployment rate, which covers the pe-
riod ranging from the third quarter of 1981 to the second quarter of 2001. The
second one corresponds to the annual US unemployment rate from 1955 to 1999.

6.1 Analysis of the monthly Brazilian inflation rate series:
January, 1974 — June,1993

Here we analyse the monthly Brazilian inflation rate for the period covering
from January 1974 to June 1993, and which yields a sample size of n = 234
observations. The choice of June 1993 as the end of the sample was to avoid
incorporating the so-called “Real Plan”, which is currently in effect.
Figure 14 shows a plot of the series exhibiting several sudden drops in the

1980’s. These abrupt changes are the outcome of the various shock plans insti-
tuted by the government in an attempt to stop the process of soaring inflation.

0

20

40

60

80

74 76 78 80 82 84 86 88 90 92

Figure 14. Monthly Brazilian inflation rate from January 1974 to June 1993.

Cati, Garcia and Perron (1999 [11]) have reported empirical results obtained
with the application of standard unit root tests, such as the Augmented Dickey-
Fuller (ADF) test (1979 [12]), and the Phillips-Perron test (1988 [44]). They
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also have reported results obtained with a modification of the Phillips-Perron
test (hereafter MPP), suggested by Stock (1990 [56]). Such a modified test
is less prone to size distorsions in the presence of serial correlation in the first
differences of the series. These three unit roots tests concur for an overwhelming
rejection of the null hypothesis of a unit root in favour of a stationary alternative.
All the statistics are significant at the 1% level (the critical values, from Fuller
(1976 [16]) are -29.5, for both PP and MPP test statistics, and -3.96 for the t-
ratio ADF test statistic), while the values obtained for test statistics were -41.55,
-37.57 and -6.61, respectively). In all cases, the truncation lag was selected using
the BIC criterion (Maddala,1998 [32]). The results suggest that “shock plans”
induce a strong bias in unit root tests towards stationarity, whether the true
model has a unit root or not.

When applying the RUR test we obtained, for the analysed sample (January,
1974 - June, 1993), the value J0 = 2.2226. Using the approximate critical values
for n = 250 from Table 2, the null hipothesis of unit root is maintained at the
1%, 2.5%, 5% and 10% significance levels. When the FB-RUR test statistic was
used instead, we obtained the value J0,∗ = 3.7905, which, using the estimated
critical values in Table 10 for n = 250, also leads to the non-rejection of the null
hypothesis of a unit root at the same significance levels.

6.2 Analysis of the annual US/Finland real exchange rates:
1900-1987

In this section, the RUR and FB-RUR tests were applied to the annual series
of US/Finland real exchange rates, whose logarithm is plotted in Figure 15.
This series, which contains a total of n = 88 observations (from 1900 to 1987),
was constructed using the Gross Domestic Product (GDP) deflator. Previous
analyses on this series done by Vogelsang (1999 [58]), Franses and Haldrup (1994
[20]), Perron and Vogelsang (1992 [41]), and Perron and Rodriguez (2000 [40]),
point to the presence of an AO at date 1918 together with IO’s that produce
temporary changes at dates 1917, 1932, 1949 and 1957.
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Figure 15. Logarithm of the US/Finland real exchange rates deflated annual series
from 1900 to 1987.

Using the Mackinnon’s critical values for the ADF test (Mackinnon, 1994
[31]), the null hypothesis of a unit root is rejected at the 5% significance level
(the ADF test statistic took the value -3.732041 while the 5% critical values was
-3.4614).
Alternatively, with a value of J0 = 1.4924 obtained for the RUR test statistic,

and the corresponding estimated critical value of 1.1726 at the 5% significance
level and for n = 88, the null is not rejected. Similarly, for the FB-RUR test
we obtained a value for its test statistic of J0,∗ = 2.11, which is also larger than
the corresponding estimated critical value, that is 1.7337.

6.3 Analysis of the quarterly Montevideo unemployment
rate series: 1981-2001

Back as far as 1982 Nelson and Plosser [36] argued that most macroeconomic
time series have unit roots, a finding which is very important in the design of
macroeconomic policies and which has been corroborated ever since by many
authors. For example, a great bulk of econometric research has supported the
evidence of the existence of unit roots in the unemployment rate series of most
countries (see for instance Mitchell, 1993 [35]; Arrufat et al.,1999 [6]; Papell
et al., 2000 [37]). Yet the low power of standard unit root tests on stationary
alternatives close to the nonstationary border contradicts such reports. One
among many controversial study cases is the quarterly Montevideo unemploy-
ment rate series spanning the period that goes from the third quarter of 1981
to the second quarter of 2001. The 88 observations of this series are plotted in
Figure 16 below.
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Figure 16. Quarterly Montevideo unemployment rate series, from 1981 to 2001.

Spremolla (1998 [54]) found a fractional root in this series, which suggested
a stationary ARFIMA model, thus opposing a previous finding by Rodriguez
(1998 [48]) of a single unit root, using the DF test. It is then natural to ask
whether our RUR test is powerful enough to reject the null hypothesis of unit
root in this case. We found J0 = 1.0660, a value smaller than the corresponding
estimated critical value at the 5% significance level (1.1726), and which leads
to the rejection of the unit root hypothesis at this level.
We have to bear in mind, however, that when dealing with such small sample

sizes, the RUR is not very reliable (even though it always outperforms DF, as
shown in Table 3). Yet any significant discrepancy between the p-values of these
tests may alert us on the inconsistency of the DF test outcome.

6.4 Analysis of the annual US unemployment rate series:
1955-1999

This series contains just n = 55 observations. Its plot is shown in Figure 17
below.
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Figure 17. Annual US unemployment rate series from 1955 to 1999.

The application of an ADF unit root test to this series obtains a score of
-0.510664, which when compared to MacKinnon’s critical values for n = 55
(-4.2605, -3.5514 and -3.2081 at the 1%, 5% and 10% significance levels, respec-
tively) leads to the non-rejection of the null hypothesis of a unit root. On the
contrary, the score for the RUR test was found to be J0 = 0.7538, which is
smaller than the 5% estimated critical value for the given sample size (0.9899),
thus rejecting the null at this level.

7 Concluding Remarks

It is important to be very careful interpreting standard unit root test results
since, apart from having low power on stationary near-unit root time series and
having size distortions in the presence of negatively correlated moving averages
(Schwert, 1989 [57]), they are also seriously affected by other aspects of real data
such as level shifts, outliers and nonlinearities. In this paper we have proposed a
nonparametric methodology for testing unit roots in time series which is either
robust or invariant to such departures. The new method, called the Range Unit
Root (RUR) Test also outperforms the Dickey-Fuller test in terms of power
on stationary near-unit root alternatives. A major drawback of our test is its
sensitivity to early additive outliers in the series, which leads to considerable
size distortions in such cases. However, by simply running the test forwards and
backwards (FB-RUR) on the series it is possible to circumvent this problem and
even improve its small-sample power performances. A few real time series were
selected to illustrate the performances of our test and compare it to DF. In all
the cases, we found discrepancies which question the validity of the standard
test outcome.
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Appendix

Proof of Theorem 1

The proof of Theorem 1 will be established by using the methodology of subsam-
pling (see Politis, Romano and Wolf, 1999 [45], for further details). Let

Ψ
(n)
0 =

1

n

nX
t=1

1(R
(x)
t > 0) (5)

denotes the frequency of jumps, corresponding to “arrivals” of new maxima or min-
ima, in a sample {x1,...,xn}, where 1(.) represents the indicator function, and xt is a
random walk with Nid(0, 1) errors.

First we show that Ψ
(n)
0 converges to zero in probability as n grows to infinity.

Indeed, noting that

1(∆R
(x)
t > 0) = 1(xt > xt−1,t−1) + 1(xt < x1,t−1) (6)

= 1− 1(x1,t−1 ≤ xt ≤ xt−1,t−1) (7)

we can rewrite Ψ(n)
0 as

Ψ
(n)
0 = 1−

nX
t=1

1(
n−1/2x1,t−1

σ
≤ n−1/2xt

σ
≤ n−1/2xt−1,t−1

σ
)

·
t

n
− t− 1

n

¸
(8)

where σ2 = limn→∞E(n−1x2
n) represents the long-run variance of xt. Now letting

t = [rn], with r ∈ [0, 1] and [.] denoting the integer part, we obtain in the limit of
n→∞:

Ψ
(n)
0 ⇒ 1−

Z 1

0

1(min{W (s)}rs=0 ≤W (r) ≤ max{W (s)}rs=0dr = 1− 1 = 0. (9)

On the other hand it is clear that, under the null hypothesis of a unit root,

nΨ
(n)
0 diverges as n grows to infinity. Therefore we can let

Ψ
(n)
0 = O

¡
n−α

¢
,with α ∈ (0, 1).

To estimate α, we analysed the variation of Ψ
(n)
0 with the sample size. Here we

took
n ∈ {5000, 10000, 15000, 20000} .

For each value of n, Q = 100 independant random walks with Nid(0, 1) errors

were generated. Let eΨ(n,q)
0 be the empirical frequency of jumps corresponding to the

q-th sample of size n. Then for each n, α could be estimated as the slope parameter

in the regression of log (eΨ(n,q)
0 ) against log(n−α), or as:

bαn =
1

Q

QX
q=1

log(eΨ(n,q)
0 )

logn
, for each n. (10)
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.
The subsampling estimates in the table below show the convergence of bαn towards

0.5 as n grows to infinity.

n 5000 10000 15000 20000bαn 0.47 0.48 0.499 0.5

Proof of Theorem 2

The proof of Theorem 2 uses the concept of local time associated with a Brownian
motion Wt. The local time is a measure of the time spent by a Brownian motion
process in the vicinity of the point x, (x− ε, x+ ε).

For every fixed Borel set B ∈ B(R), let

IB(ζ) =

½
1 if ζ ∈ B
0 if ζ /∈ B

and let λ denote the Lebesgue measure. We define the occupation time of the set B
by the Brownian path up to time t as

Γt(B) =

tZ
0

IB(W s)ds = λ {0 ≤ s ≤ t; Ws ∈ B} ; 0 ≤ t <∞ (11)

Note that because the Brownian process is continuous, this random variable is well
defined as an ordinary integral along each process realization.

Now consider the open interval B = B(x, ε) = (x− ε, x+ ε). From the previous
definition, we have:

Γt[B(x, ε)] = λ {0 ≤ s ≤ t; |Ws − x|≤ ε} ; 0 ≤ t <∞, x ∈ R.
Define the limit random variable

L(t, x) = Lt(x) = limε→0

1

2ε
Γt[B(x, ε)] (12)

For each real value x, {L(t, x)}t>0 represents a nondecreasing (in t) and almost
surely jointly continuous family of random variables, called the local time process of
the Brownian motion. The random function L(t, x) can be construed as the “spatial”
density of the occupation time Γt(B), since

Γt(B) =

Z
B

L(t, x)dx. (13)

In particular, the “local time at the origin”, x = 0, that is,
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L(t, 0) = Lt(0) = limε→0

1

2ε
Γt[B(0, ε)]. (14)

plays an important role in our results. If for example, Lt(0) is large then this
means that the Brownian path spends a lot of time close to 0, thus changing the sign
relatively often.

For the final proof, we require the following lemmas:
Let Mw

t ,max0≤s≤tWt; and Yt =Mw
t − Wt.

Lemma 1 (Lévy , 1948 [26]).
The processes {|Wt| ; 0 ≤ t <∞} and {Yt; 0 ≤ t <∞} have the same law.
Proof: See Karatzas and Shreve (1988 p.210 [24]).

Lemma 2 (Skorohod, 1961; Lévy, 1948[26]).
The processes {(Mw

t , 0 ≤ t <∞} and {2Lt(0); 0 ≤ t <∞} have the same law,
given by:

P {Mw
t < x}=

r
2

πt

xZ
0

e
−
ζ2

2t dζ, x > 0. (15)

That is,
Mw

t ∼ |N(0, t)|
Proof: See Karatzas and Shreve (1988, p.210 [24]).

Lemma 3.
Let X1, X2,... , Xi, ... be a sequence of random variables with E(Xi) = µi and

V ar(Xi) = σ2
i . If µi

p→ a and σ2
i → 0, then Xi

p→ a.
Proof. See Arnold (1990, p. 239).

Proof of Theorem 2.
Let

J
(n)
0 = J

(n)
1 + J

(n)
2 , . (16)

with

J
(n)
1 = n−1/2

nX
i=1

1(xi,i= xi), (17)

J
(n)
2 = n−1/2

nX
i=1

1(x1,i= xi).

Notice that, by symmetry, J
(n)
2 is the same as J

(n)
1 when the sign of the time series

is reversed. So we may restrict our analysis to proving the asymptotic distribution
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of J
(n)
1 . Define the variable ζi = Mi − xi, where Mi = max {x1, ..., xi} . Thus we

have:

J
(n)
1 = n−1/2

nX
i=1

1(ζi= 0) (18)

Letting ωi = 1(ζi= 0)− 1(ζi≤ 1) we can write:

J
(n)
1 = n−1/2

(
nX

i=1

1(ζi≤ 1)+
nX

i=1

ωi

)
(19)

We have for the first term on the right-hand side:

n−1/2
nX

i=1

1(ζi≤ 1) = n1/2
nX

i=1

1

µ
ζi√
n
≤ 1√

n

¶
1

n
(20)

With h = 1√
n
, t = i

n ∈ (0, 1) and “⇒ ” denoting weak convergence as N →∞,
we have:

n1/2
nX

i=1

1

µ
ζi√
n
≤ 1√

n

¶
1

n
= n1/2

nX
i=1

1

µ
ζ[tn]√
n
≤ 1√

n

¶ µ
i

n
− i− 1

n

¶
⇒ lim

h→0

1

h

Z 1

0

1(Y t≤ h)dt

= lim
h→0

1

h

Z 1

0

1(|W t| ≤ h)dt, from lemma 1, (21)

= 2L1(0), by definition of local time

∼ |N(0, 1)| , from lemma 2.

Therefore the term

n1/2
nX

i=1

1

µ
ζi√
n
≤ 1√

n

¶
1

n

converges, as n→∞, to a random variable with pdf :

f(y) =
2

π
exp(−y

2

2
), y ≥ 0.

Now for the second component of J
(n)
1 , namely Vn = n−1/2

nP
i=1

ωi, we will show

by means of Monte Carlo simulations that

Vn
p→0.

Figure 18 below shows the shrinking support of the pdf traces of Vn under the null
hypothesis as the sample size n is increased from n = 1000 to n = 15000. The traces
were both estimated from 10000 Monte Carlo replications.
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Figure 18. Density traces of the residual term for different sample sizes.

Figures 19 and 20 represent the outcome of another Monte Carlo experiment using
10000 replications of the null model, which shows that as the number of observations
in the sample is increased, both the mean and variance (respectively) of Vn converge
exponentially fast to zero. Formally,

lim
n→∞E(Vn) = 0, limn→∞V ar(Vn) = 0
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Figure 19. Convergence of E(Vn) to zero as n increases to infinity.

35



0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

va
ria

nc
e 

of
 th

e 
pr

oc
es

s

Figure 20. Convergence of V ar(Vn) to zero as n increases to infinity.

Using this experimental evidence, we may conclude from lemma 3 that Vn
p→

0, and consequently that J
(n)
1 ⇒|N(0, 1)|. By symmetry, the proof for J(n)

2 follows

similarly, since this statistic is equivalent to J
(n)
1 when the sign of the time series is

reversed.

Figure 21 shows the empirical density of J
(n)
i (i = 1, 2)estimated by kernel smooth-

ing , for 1000 Monte Carlo replications and a sample size of n = 500.
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Figure 21. Kernel density estimate of J (n)
i , for i = 1, 2.

Proof of Theorem 3

The proof of Theorem 3 proceeds by showing the asymptotic independence of

J
(n)
1 and J

(n)
2 . More precisely, we show by means of Monte Carlo experiments that

the distribution of J
(n)
0 converges to the distribution of the sum of two independant

random variables, each with pdf |N(0, 1)|.
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Figure 22 shows the kernel estimate of the pdf of J
(n)
0 for n = 1000, obtained

from 1000 Monte Carlo replications of the model., This kernel estimate appears su-
perimposed on the pdf estimate of the probabilistic model, that is the sum of two
independent and identically distributed random variables, with distribution |N(0, 1)|.

Figure 23 shows the estimated quantiles for both the test statistic J
(n)
0 and its

probabilistic model, again for n = 1000. The close alignment of the quantiles is tan-
tamount to the similarity of the distributions On the other hand, Figure 24 shows the

quantiles of J
(n)
0 and its probabilistic model versus each other. The idea is that if the

two samples come from the same distribution, the points should be close to the diago-
nal line, as it seems to be the case here. The hypothesis of an identical distribution for

J
(n)
0 and its probabilistuc model is further supported by a Kolmogorov-Smirnov test.
The p-values of such a test for different sample sizes are given in the table below. The
results suggests clearly that, as the number of observations in the sample is increased,
the p-value converges to 1.

n 1000 2000 3000 4000 5000
p-value 0.4 0.6 0.8 0.96 0.99
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Figure 22. Comparison of the kernel density estimate of J(n)
0 for n = 1000

(continuous line) with the theoretical asymptotic density (dotted line).
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Figure 23. Estimated quantiles for both the test statistic J (n)
0 and its probabilistic

model, for a sample size of n = 1000.
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Figure 24. Estimated quantiles of the test statistic J (n)
0 versus the quantiles of its

probabilistic model, for a sample size of n = 1000.

Proof of Corollary 3

We have shown previously that the asymptotic density of both J
(n)
1 and J

(n)
2 is

given f(x) =
¡

2
π

¢1/2
exp (−x2

/2)
Under the hypothesis of asymptotic independence of these statistics, the asymp-

totic density of their sum, that is of J
(n)
0 , is given by the following convolution product:

38



fJ1+J2(z) =

∞Z
0

fJ1(t)fJ2(z − t)dt

=
2

π
exp(−z2

/2)

Z ∞

0

exp (−[t− z/2]2)dt

= π−1exp(−z
2+2

4
)

∞Z
−z

exp(−u
2

2
)du, where we let 1ptu2 = t− 1ptz2

=

r
2

π
exp(−z

2+2

4
)[1−Ψ(z)]

Proof of Proposition 1

The invariance of J (n)
0 with respect to the variance σ2

x of a stationary alternative
xt follows trivially from the fact that

1
³
∆R

(x)
t > 0

´
= 1(σ−1

x ∆R
(x)
t > 0) (22)

Proof of Proposition 2

The invariance of J(n)
0 to monotonic nonlinear transformations f (.) applied to xt

follows inmediately from:

1 (f (xt) > f (xt−1,t−1)) = 1(xt > xt−1,t−1) (23)

1 (f(xt) < f(x1,t−1)) = 1(xt < x1,t−1). (24)
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