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We wish to predict the number of faults N and the time to next failure of a piece

of software. Software metrics data are used to estimate the prior mean of N via a

Bayesian, Poisson regression model. Given failure time data and a some well known

fault based models for interfailure times, we show how to sample the relevant Bayesian

posterior distributions via Gibbs sampling using the package Winbugs. Our approach is

illustrated with an example.
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1. Introduction

Various classes of software reliability models have been studied in the literature.

Firstly, a large number of models have been developed for the prediction of the

times between successive failures of a program, T1; T2; : : : where it is usually as-

sumed that the program is modi�ed after each failure is observed. Good reviews of

this area are given by e.g. Littlewood1 and Singpurwalla and Wilson2;3. One ap-

proach to interfailure time modelling assumes that failures are directly related to the

number of faults in a piece of software. Speci�c models based on this idea have been

introduced by Jelinski and Moranda4, Schick and Wolverton5 and Littlewood6. For
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2 Bayesian Inference for Software Reliability Models given Metrics

alternative approaches not based on fault numbers, see Singpurwalla and Wilson2.

A second approach to software reliability, which is often used in the software

development process, involves the measurement of various characteristics of the

software called softwaremetrics. Perhaps the best known such metrics are the simple

lines of code measure and McCabes cyclomatic complexity7. It is supposed that the

software metric values are related to aspects of software quality and, in particular,

there have been various articles which have attempted to relate software metrics to

the number of faults in a program via, for example, regression type models. For

examples, see Akiyama8, Compton and Withrow9, Wiper et al10 and Evanco11. A

good review of the software metrics �eld is given in Fenton and P
eeger12.

The motivation behind this paper is to try to use statistical methods to esti-

mate the number of faults in a piece of code and the time to next failure given both

interfailure time and software metrics data. Up to now, there has been little work

in combining software metrics and interfailure time models. One paper of interest,

however, is Jeske et al13 where a similar problem is analyzed using an empirically

Bayesian approach combining both maximum likelihood and Bayesian techniques.

One problem with such an approach is that it may underestimate the overall un-

certainty present in the inference. Here, we will use a fully Bayesian method to

combine some fault based, interfailure time models with a regression model relating

faults to software metrics.

In Section 2, we introduce three related, fault based interfailure time models and

in Section 3, given prior distributions and interfailure time data, we show how to

carry out Bayesian inference for the model parameters. We note that one problem

with Bayesian inference is that this can be sensitive to the prior parameter estimates.

Thus, in Section 4, we show how software metrics data can be incorporated via a

Poisson regression model to improve the prior mean estimate of the number of

faults used for our interfailure time models. Our approach is illustrated with an

example in Section 5 and in Section 6 we draw conclusions and consider some

possible extensions.

2. Fault Based Software Reliability Models

Here, we consider models for a sequence of interfailure times T1, T2; : : : where it is

assumed that between each failure there is an attempt to correct the bug that has

caused the problem.

One of the �rst software reliability models to be developed is that of Jelinski

and Moranda4. They assume that the interfailure times T
i
are independent random

variables with exponential densities

f
JM

(t
i
jN;�) = (N � i+ 1)� exp (�(N � i+ 1)�t

i
) : (1)

The Jelinski and Moranda (JM ) model may be interpreted as assuming that the

program initially contains N faults each of size � and that a fault is removed when-

ever a failure occurs.
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There have been a number of criticisms of the assumptions underlying the JM

model, see e.g. Littlewood1, Singpurwalla and Wilson2 and a number of other

software reliability models have been developed to counter these problems.

Firstly, note that under the JM model, the failure rate function of the i'th

interfailure time is constant; r
JM

(t
i
jN;�) = (N � i+ 1)�. Schick and Wolverton5

supposed that this failure rate should be time dependent, so that under their model

(SW ) the failure rate is r
SW

(t
i
jN; �) = (N� i+1)�t

i
where N represents the initial

number of faults as earlier and � is a parameter which shows how quickly the failure

rate increases with time. This implies that the i'th interfailure time has a Rayleigh

distribution of form

f
SW

(t
i
jN; �) = (N � i+ 1)�t

i
exp

�
�
1

2
(N � i+ 1)�t2

i

�
: (2)

A second criticism of the JM model is that it assumes that all faults are the

same size. Littlewood6 modi�ed this assumption using Bayesian ideas and his model

leads to a Pareto interfailure time density of form

f
L
(t
i
jN;A;B; �

i
) = (N � i+ 1)A

(B + �
i
)(N�i+1)A

(B + �
i
+ t

i
)(N�i+1)A+1

(3)

where N is as earlier, A=B is a prior estimate of the initial average fault size and

�
i
=
P

i�1
j=1 tj is the sum of the i � 1 previously observed interfailure times. The

failure rate function under the Littlewood (L) model can be shown to be

r
L
(t
i
jN;A;B; �

i
) =

(N � i+ 1)A

B + �
i
+ t

i

: (4)

All three models contain the common parameter N which can be interpreted as

the initial number of faults in the program. The other parameters have di�erent

interpretations for each model.

Assuming that we observe some interfailure time data for a given program, we

will typically wish to carry out inference concerning the number of faults and future

failure times. Classical, maximum likelihood techniques could be used but problems

with maximum likelihood estimation for the JM model have been pointed out by

e.g. Forman and Singpurwalla14 and Meinhold and Singpurwalla15. Thus, in the

following section, we will consider a Bayesian approach.

3. Bayesian Inference

Bayesian inference for the JM and other models has been considered in a number

of papers; see for example Meinhold and Singpurwalla15, Littlewood1 and Wiper

et al16. To use such methods, we �rst need to specify prior distributions for the

unknown model parameters.

As noted in the previous section, the JM, SW and L models all contain the

common parameter and a possible prior distribution for N (under all three models)
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is Poisson, say N � P (�) so that

P (N = i) =
�ie��

i!
: (5)

Here, � is the prior mean estimate of the number of faults in the program.

The other unknown parameters are model speci�c. Possible choices of prior

distribution for the parameters �, � and A are gamma distributions say � �

G(a
JM

; b
JM

), � � G(a
SW

; b
SW

) and A � G(a
L
; b
L
) where X � G(a; b) if

f(x) =
ba

�(a)
xa�1e�bx (6)

and, �nally we might specify an exponential distribution for the parameter B of the

L model: f
L
(B) = 
e�
B.

Note that the same prior distribution structure for JM was used by e.g. Mein-

hold and Singpurwalla15 and Wiper et al16 where a similar prior distribution for

the parameters of the L model was used. See also Kuo and Yang17.

Assume now that we observe the �rst n interfailure times, say T1 = t1; : : : ; Tn =

t
n
. Then, for any of the three models sayM = JM , SW or L, we can theoretically

evaluate the posterior parameter distributions using Bayes theorem:

f(N;#jM; t) / f(N;#jM)f(tjM; N; #) (7)

where # represents the model dependent parameters other than N , t = (t1; : : : ; tn)

and f(N;#jM) is the joint prior parameter distribution, f(tjM; N; #) is the likeli-

hood function and f(N;#jM; t) is the posterior distribution.

Thus, for example, we could estimate the number of faults remaining in the

software by the posterior mean E[N jM; t]� n.

Unfortunately, for each of the three models, simple closed form expressions for

the integration constants of the posterior parameter distributions are not available.

Thus, we need to use numerical integration techniques or simulation methods to

generate samples from these posterior distributions.

Here we will consider the use of Gibbs sampling (see e.g. Casella and George18)

as a method to approximate samples from the posterior distributions. This is an

example of a Markov chain Monte Carlo method. The idea is to construct a Markov

chain with equilibrium distribution equal to the posterior parameter distribution.

Then, starting from arbitrary initial values, if the chain is sampled over a large

number of iterations, the generated sample will simulate a sample from the true

posterior distribution. See, for example, Gilks et al19 for an introduction. For an

application of Gibbs sampling in software reliability modelling see e.g. Kuo and

Yang17.

Thankfully, there are now programmes that can be used to carry out Gibbs

sampling in a large number of problems. One such package isWinbugs (Spiegelhalter

et al20). Figure 1, a Doodle in Winbugs, illustrates the structure of the JM model.

Figure 1 about here
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Note that square boxes represent constants that need to be �xed a priori and oval

boxes represent variables. Arrows connecting boxes indicate a direct dependence

(the double arrow indicates a logical relationship). For example, the parameter of

the exponential distribution of T
i
, called scale[i] in the Doodle, directly depends

on the values of N , � and i. This graph can be used to generate the following

executable code in Winbugs.

model; {

for( i in 1 : n ) {

scale[i] <- (N - i + 1) * phi

}

phi ~dgamma(a_JM,b_JM)

N ~dpois(lambda)

for( i in 1 : n ) {

T[i] ~dexp(scale[i])

}

}

By inputting the �xed prior parameters, (a
JM

, b
JM

and �), the sample data and

initial values for the Gibbs sampling algorithm, it is possible to generate samples

from the posterior distribution using Winbugs. Note that similar programs can

also be set up in Winbugs in order to sample the posterior parameter distributions

supposing the SW and L models.

Given a sample from the posterior distribution, it is also easy to construct

posterior parameter estimates or estimates of the predictive distribution of the

time to next failure. Thus, supposing that N (1); �(1); : : : ; N (R); �(R) is a sample of

size R from the posterior parameter distribution given the JM model, then we can

estimate, for example, the number of faults remaining in the software using

E[N � njM; t] �
1

R

RX
j=1

N (j) � n (8)

or the expected reliability at time t using

P (T
n+1 > tjt) �

1

R

RX
j=1

P (T
n+1 > tjN (j); �(j))

�
1

R

RX
j=1

exp
�
�(N (j) � n)�(j)t

�
: (9)

One �nal problem of interest is that of model comparison. Assume that we wish

to compare the �t of the JM and L models to the failure time data. Then the usual

Bayesian method is to calculate a Bayes factor

BJM

L
=
f(tjJM)

f(tjL)
: (10)
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The statistic 2 logBJM

L
can be interpreted as a Bayesian version of the usual log-

likelihood ratio statistic, see Kass and Raftery21. Note that positive (negative)

values of 2 logBJM

L
would suggest that the JM (L) model is preferable. Kass

and Raftery21 provide a table of values indicating when one model may be thought

signi�cantly better than another. Given Gibbs sampled output from the poste-

rior parameter distributions under the two models, Chib22 provides a method of

calculating the Bayes factor.

One problem with the Bayesian inference considered in this section is sensitivity

to the choice of prior distribution, see e.g. Wiper et al16, Wilson and Wiper23. In

particular, it is unclear how to elect the prior mean � for the distribution of N in the

case where we have little prior knowledge available. In this case, it would be natural

to use an uninformative, improper prior distribution for N (and the other model

parameters) but then it can be shown that there are problems with the propriety

of the posterior distribution, see e.g. Wilson and Wiper23. In the following section,

we illustrate how software metrics information might be used to estimate the value

of �.

4. Incorporation of Software Metrics Information

We now suppose that we have also recorded the values of k software metrics X =

(X1; : : : ; Xk
). Then, we can consider a Poisson regression model to relate faults to

metrics:

N � P (�) as earlier

log� = �0 +X1�1 + : : :+X
k
�
k

(11)

It is clear that such a model will not be useful unless either substantial prior

information concerning the regression parameters � is available or unless we have

metrics and fault data from various other programs which can be used to estimate

the regression parameters. Here, we will assume that this is the case so that we have

also recorded fault numbers say M1; : : : ;MJ
and metrics data Z1; : : : ;Zk for a set

of J further programs, where Z
i
= (Z

i1; : : : ; Zik) represents the vector of metrics

for the i'th program.

Given metrics and fault data, various authors have used classical Poisson re-

gression models to estimate the unknown regression coeÆcients �, see e.g. Wiper

et al.10, Compton and Withrow9 or Evanco11. Here we consider a fully Bayesian

approach which allows us to combine directly the metrics and fault data with failure

time data.

We will assume little prior knowledge about the regression parameters � and thus

consider a relatively di�use prior distribution, for example a normal distribution

with large variance. Given this prior and data structure, including one of the

models for interfailure times discussed earlier, we are able to set up a Gibbs sampling

algorithm in Winbugs as previously.
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Figure 2 shows the representation of the complete system, assuming the JM

interfailure time model in Winbugs (where we have assumed that k = 2 for simplic-

ity). As earlier, executable code can be generated from the doodle which, given the

data and initial values for the unknown model parameters �; N; � can be used to

generate a Gibbs sample from the posterior distribution f(N;�;�jdata):

Figure 2 about here

As earlier, similar structures can be set up for the SW and L models.

5. Example

Ten metrics (lines of code, McCabe, Basili Hutchens etc.) and numbers of amend-

ments were collected for 36 unstructured programs. A simple correlations analysis

showed that the metrics were very highly correlated and thus, in order to reduce

problems of colinearity, a principal components analysis was undertaken and it was

observed that the �rst �ve principal components, or domain metrics, explained over

99% of the model variation. Thus, these domain metrics were substituted for the

original data. Note that the �rst domain metric could be regarded as a measure

of the program size, giving high weights to those metrics which would be expected

to increase when the program is larger (e.g. lines of code) and the second domain

metrics seemed to be a measure of complexity giving high weights to metrics such

as McCabe. The remaining domain metrics were not so easily interpretable. These

results mirror those of Wiper et al10, where a similar interpretation of the domain

metrics was found, although the data analysed were somewhat di�erent. Note �-

nally that the use of domain metrics has been considered in a number of other

articles, e.g. Khoshgoftaar et al24 or Lanubile and Visaggio25.

Here, we use amendments to represent faults and assume the Poisson regression

model of Section 4 for the mean number of amendments where the explanatory

variable contains the �rst �ve principal components and � = (�0; : : : ; �5). Indepen-

dent, relatively uninformative, normal distributions each with mean 0 and precision

10�6 were chosen as prior distributions for each �
i
, i = 0; 5.

The remaining model dependent parameters �, �, A and B were all given rela-

tively uninformative prior distributions with large variances.

5 interfailure times were also generated (assuming the JM model with � = 0:1)

from a program containing N = 9 amendments / faults.

Given these data, the posterior mean for � was estimated to be virtually equal

under all three models, and very close to the classical regression estimates. This is

as to be expected as the prior distribution used for � in each case was relatively

uninformative, and the interfailure time data are only indirectly related to the fault

and metrics data. Note also that the posterior mean values of the coeÆcients �1
and �2 were both positive, indicating that, for the observed data, fault numbers are

generally higher in larger, more complex programs.

There were slight di�erences in the posterior estimates from each model of the

number of faults remaining, N�5. The posterior mean was 4:4 (standard deviation

3:7) supposing the JM model, 4:9 (4:3) supposing the SW model and 6:2 (4:2)
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given the L model. The posterior distributions of the number of faults remaining,

N�5 estimated given all three models are given in Figure 3. It can be seen that the

distributions are quite similar in each case. Thus, we can conclude that all three

models have done reasonably well in predicting the true number of faults remaining,

N � 5 = 4.

Figure 3 about here

Note also that supposing the JM model, the posterior mean estimate of the

parameter � was approximately equal to the true value of 0.1. Thus we can see that

even with very few failure data, both model parameters have been well estimated

for this model.

Figure 4 ilustrates the predictive reliability functions under all three models.

Here we can see some di�erences between them. It may seem surprising at �rst

that assuming the L model, the software is predicted to be more reliable than under

the other two models, given that the mean estimate for the number of faults left in

the software is the highest for this model. However, we should recall that under

the L model, it is supposed that the largest faults are removed �rst and that the

remaining faults have much smaller rates, whereas under the SW and JM models,

all faults have essentially the same importance.

Figure 4 about here

Finally, in order to compare the three models, Bayes factors were calculated.

These suggested that the model most supported by the data was JM and the least

supported was L although the di�erence between the three models was not great

enough to be important. This is as we might expect given that only a very few

interfailure times were observed.

6. Conclusions and Extensions

In this paper, we have shown how to combine software metrics data with interfailure

time data to improve the predictions of fault numbers and reliability of a program

using a Bayesian approach. It has been illustrated that the inference can be carried

out using the statistical package Winbugs so that it is not necessary to carry out

all of the complex integrations required for Bayesian inference by hand.

A number of extensions are possible. Firstly, in this paper we have considered

the case were we have metrics and fault data available for a number of programs

and metrics and failure time data available for just one other program. It is

straightforward to extend the basic model to the case were interfailure time data

are available for more than one program.

Secondly, note that we could easily apply our approach to the interfailure time

of Goel and Okumoto26. The only problem in this case comes when we wish to

estimate Bayes factors comparing the �t of this model with others. This is hard

to do directly using the output produced from the package Winbugs but could be

carried out using specially written Gibbs sampling software.

Also, in this article we have assumed that the prior distribution for the number
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of faults in a program takes the form of a Poisson distribution. Under the Poisson

model, the prior mean is equal to the variance and an alternative which allows the

variance to be greater than the mean would be to use a negative binomial prior

distribution. The metrics information could then be incorporated using a negative

binomial regression model. It would also be straightforward to set up this system

using Winbugs. Work on this extension is underway.

Within the regression model of faults on metrics, we chose here to use the so

called domain metrics or principal components rather than the original metrics.

It is not clear that this is always a good idea and we should also consider other

methods of reducing the dimensionality of the problem, for example by selecting

a subset of the metrics which best explain the data. Also, we selected a linear

regression model for log� given the metric values. There have been a number of

articles that have proposed various polynomial and other non - linear relationships

between fault numbers and, in particular, the lines of code metric (e.g. Ga�ney27)

and it would be interesting to use regression models incorporating some of these.

Finally it would be interesting to consider the use of other information sources

with interfailure time models. One group of strategies for software testing, called

random and partition testing, uses random and strati�ed sampling techniques in

order to estimate, for example, the probability that a piece of software is failure

free or the failure rate of the software. See for example Hierons and Wiper28.

Given the results from a random or partition test, it would be possible to use these

to attempt to improve the estimation of fault numbers in a software program in

a similar way to that considered in this paper. Research on how to do this is

currently underway.
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Fig. 1. Doodle representing the JM model structure
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Fig. 2. Doodle showing the full model
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