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Abstract

While the traditional R2 value is useful to evaluate the quality of a �t, it does not work when

it comes to evaluating the predictive power of estimated �nancial models in �nite samples. In

this paper we introduce a validated R2
V value that is Taylor made for prediction. Based on data

from the Danish stock market, using this measure we �nd that the dividend-price ratio has good

predictive power for time horizons between one year and �ve years. We explain how the R2s

for di�erent time horizons could be compared, respectively, how they must not be interpreted.

For our data we can conclude that the quality of prediction is almost the same for the �ve

di�erent time horizons. This is in contradiction to earlier studies based on the traditional R2

value, where it has been argued that the predictive power increases with the time horizon up

to a horizon of about �ve or six years. Furthermore, we �nd that while in
ation and interest

rate do not add to the predictive power of the dividend-price ratio then last years excess stock

return does.
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1 Introduction

Long term investors have the contradicting aims of minimizing their risk and maximizing return

over the long run. Much �nancial literature investigates trading patterns and strategy among

long term investors, for example, Barber and Terrance (2000) argue for a buy-and-hold type

of strategy that does not eat up returns by trading costs and many professional advisers argue

that stocks are better over the long run, see Siegel (1998) and Jagannathan and Kocherlakota

(1996) for particular easily read accounts on this. Other professional �nancial advisers say

that expected returns in �nancial markets vary over time and contain a signi�cant predictable

component. Consequently time periods exist where the long term investor might choose to sell

stocks and buy bonds, because the return on stocks in these time periods do not match the

risk involved. The dividend-price ratio and the earning-price ratio, in particular, has proven to

have some predictive power for future stock returns, see Campbell, Lo, and MacKinlay (1997,

Chapter 7) for an up-to-date account regarding the predictability of the dividend-price ratio,

and see Shiller (2000, p.8) for a recent warning of an overvalued American stock exchange

based on the earning-price ratio.

Campbell, Lo, and MacKinlay (1997) argued that the predictable component of stock yields is

increasing with the time horizon, since the measure of �t, the R2; increases rapidly with the

time horizon. We modify this point of view in the present paper, �rstly by showing that for

increasing time horizon a signi�cant increase of the R2 value is indeed necessary to maintain

the same quality of �t and secondly by introducing a validated R2 (we will note it by R2
V value)

that is Taylor made for prediction purposes while the traditional R2 values only measure the

quality of in-sample �t. We investigate our new point of view of prediction by analyzing yearly

Danish data from the period 1922 � 1996. Our conclusions are surprising. First: based on

our recalculated scale for the R2 values we can conclude that if the traditional R2 values are

used for prediction, then prediction on a one year basis gives the best power of prediction.

This is somehow in contrast to Campbell, Lo, and MacKinlay (1997) and many others (see

e.g. Richardson and Stock, 1989) which give the impression that longer time horizons are

preferable for prediction due to their higher R2 values. However, traditional R2 can not be

used for prediction. Our adjusted measure of predictive power, the R2
V value, tells us that

time horizons between one and four years seem optimal for predictions and that the quality

of predictions is big enough to point out when expected excess return on stocks, compared to

bonds, is below zero.

Traditional parametric or nonparametric one-dimensional regression, with dividend-price as

the dependent variable, does have good prediction power whereas knowledge of in
ation and

interest rates do not add to this predictive power. However, our study shows that the one

year lagged returns do. The best predictive �lter on a one year basis turns out to be a two-

dimensional fully nonparametric estimator based on the dividend-price ratio and last years

lagged excess return. Last years excess return enters with a tendency towards reversal, such

that good years tend to follow bad years and vice versa. The dividend-price ratio is, however,

still the most indicative parameter while estimating the excess returns of the coming years.

Moreover, based on the current level on the dividend-price ratio in Denmark (around 1%)

we can conclude that expected excess returns on stocks are indeed below zero, for all the

considered time horizons with good prediction power, namely one, two, three, four and �ve

years time horizons. If this �nding is credible, then it can conclude that the current market

and political situation in Denmark is out of balance, since all institutional investors heavily
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increase their percentages of stocks in their portfolios right now. On average, an increase from

around 20% invested in stocks to around 40% invested in stocks have been seen for long term

institutional investors in Denmark over the last �ve years. The model of this paper argue

that this strategy increase the risk without increasing the average return. Unfortunately the

currently used stochastic models of the pension industry, see Wilkie (1986) and Wilkie (1990)

for the by far most popular actuarial prediction models, do not have any ability to warn the

pension industry and its customers towards periods with high risks and low returns on stocks.

We believe that the considerations of this paper can be helpful while developing a modern

information system for the long term investor.

2 The basic relationship between stock returns and economic

factors

One traditional equation for the value of a stock is

Pt =
1X
j=1

(1 + 
)�j(1 + g)j�1Dt:

where most of the entering quantities on the right hand side are unknown, 
, discount rate, g,

constant growth of dividend yields, i in
ation and Dt real dividend yield paid out during the

period t. This model was introduced to the �nancial theory by Williams (1938) and Gordon

and Shapiro (1956). Campbell and Shiller (1988) referred to the model as the \dividend-ratio"

in absence of uncertainty, see also Goetzman and Jorion (1993), Hodrick (1992), and Fama and

French (1988). For simplicity the discount rate and the growth rate does not depend on time

in this model although this is well known to be incorrect. The point of the above identity is

however, that it gives a strong indication that the price of stocks depend on quantities such that

dividend yield, interest rate and in
ation. The two latter being highly correlated with almost

any relevant discount rate. It is also clear from the above identity that a decrease in discount

rate, which is highly correlated with an increase in bond yield, are related to an increase in the

stock return and vice versa. The correlation of 0:5 of stock returns and long term bond yields

is therefore not surprising.

Now let us look at another fundamental equation characterizing the stock market, namely the

following formula for the log dividend-price ratio, which can be derived from a �rst-order Taylor

approximation of the identity relating the one-period log stock return to log stock prices and

log dividends, see Campbell and Shiller (1988):

�t = Et

1X
j=1

�j�1(rt+j + St+j ��dt+j) + k (1)

where �t � log(D=P )t � dt � pt. Dt and Pt are real dividends paid during period t and real

stock prices at the end of period t, respectively. rt+j is the one-period log real interest rate from

period t+ j � 1 to t+ j, and St+j is the log excess stock return from period t+ j � 1 to t+ j,

i.e. the log stock return in excess of a short-term interest rate. � is equal to (1 + exp(�))�1,

where � is the mean log dividend-price ratio over the sample. Et and � are the conditional

expectations operator and the �rst-di�erence operator, respectively, and k is a constant arising

from the linearization. Another way of writing the above formula was given in Campbell
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(1991) and derives the following basic expression for the unexpected log excess stock return

from period t to t+ 1

St+1 �EtSt+1 = (Et+1 �Et)

8<
:

1X
j=0

�j�dt+1+j �

1X
j=0

�jrt+1+j �

1X
j=1

�jSt+1+j

9=
; (2)

(2) is a dynamic accounting identity stating that positive unexpected excess stock returns

are associated either with higher expected future long-term dividend growth, and/or lower

expected future long-term real stock returns, where the latter can be decomposed into real

interest rates and excess stock returns. Thus, unexpected excess stock returns are the result of

either news about future dividends, news about future real interest rates, or news about future

excess stock returns (or a combination of the three). This type of analyzes was replicated in

Engsted and Tangg�ard (2000) for the Danish data. Based on the above we �nd it reasonable

to consider a regression of the future excess stock returns on the actual ones, dividend by price

yields, short-term interest rate and in
ation. The data and particular model will be speci�ed

in detail in the proceeding sections.

3 The data and our de�nition of prediction

In this paper we use the annual Danish stock market data from Lund and Engsted (1996),

respectively the extended sample period 1922�1996 from Engsted and Tangg�ard (2000). Con-

sidered are the time series (St;Dt; It; rt), where St is stock return, Dt is dividend yield, It is

in
ation and rt is the short-term interest rate. The stock index is based on a value weighted

portfolio of individual stocks chosen to obtain maximum coverage of the marked index of the

Copenhagen Stock Exchange. In constructing the data corrections were made for stock splits

and new equity issues below market prices. Pt is the (nominal) stock price at the end of year

t, while Dt denotes (nominal) dividends paid during year t divided by the stock price at the

end of year t (the appendix in Lund and Engsted (1996) contains a detailed description of the

data). As a measure of the short-term interest rate we use the Danish Central Bank's discount

rate up to 1975, spliced together with a short-term zero-coupon yield for the period thereafter.

In computing real values, we de
ate nominal values by the consumption de
ator. The real

excess stock return is de�ned as

St = log f(Pt +Dt)=Pt�1g � rt�1:

The resulting average of these excess stock returns are 2:1% for the period 1922�1996 and 3:2%

for the after war period 1947�1996. The problem of prediction is considered as follows: Let St

be the excess stock return at time t and let Wt be some one-dimensional or multidimensional

stochastic process that we wish to use for prediction. We establish prediction through the

following model

St = g(Wt�1) + �t; g 2 G (3)

where the error variables �t are independent mean zero stochastic variables and G is some set of

the possible functional relationships between the independent and the dependent variable. We

will see below that G can be chosen as a parametric family of functions or as a nonparametric

set of functions where smoothness is the only restriction or as a nonparametric set of functions

with restriction. In this last case we consider the restriction that g is additive when Wt�1 is

multidimensional. Let us for convenience assume that a bg and an average b� is estimated from
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a data set that is independent of our data set, then the optimal estimator within the set G

could be based on the quality of the prediction evaluated as

R2
A = 1�E fSt � bg(Wt�1)g

2 =E (St � b�)2 : (4)

R2
A is therefore one minus the standardized average prediction error of the chosen prediction

strategy. If we knew R2
A for a number of di�erent model and estimation strategies then we

would simply choose that combination of modeling and estimation that gives the smallest

average prediction error. We do not, however, know these R20
As and moreover the bg and the

average b� has to be estimated from our data set, i.e. are not independent of them. Therefore

we have to consider approximations to the average prediction error based on the data. In our

case we the biggest set of predicting variables we consider is

Wt = (St�1; Dt; It; Rt) : (5)

We also consider all possible three-dimensional, two-dimensional and one-dimensional subsets

of the stochastic process Wt: For example, we consider

W t = (St; Dt) (6)

and

W t = Dt: (7)

In the results below it turns out that W t and W t are better to use for prediction than the big

four-dimensional vector Wt that seems to introduce too much noise due to the many variables.

4 What is a good prediction?

It can be di�cult to say what a good prediction is. Campbell, Lo and Mackinlay (1997,

p.269) suggest the traditional R2 measure as a way of understanding the predictive power of

an estimated model and they show that R2 is increasing with the horizon considered. This last

fact has been observed by a number of authors including Goetzmann and Jorion (1993) who

also noted that the increased R2 for the longer horizons is followed by an increased variance of

the estimated slope leaving results of tests almost indi�erent of the time horizon. It therefore

seems that R2 values are not directly comparable for di�erent time horizons. Based on a

direct comparison of R2 values then one could get the impression that long horizon excess

stock returns are more predictable than short horizon returns. Campbell, Lo and Mackinlay

(1997, p.271) point this out theoretically and notice that when the forecasting variable is highly

persistent, then the R2 statistic can continue to rise out to very long time horizons.

In Table 2 below we calculate for the time horizons T = 1 to T = 6 those R2
A values, see Section

3, that represent an improved prediction of the conditional mean �; ��; of respectively 0:01

to 0:05, where the excess return over T years is de�ned as

St+1 + : : : + St+T

with St being the 1-year log excess stock return from t� 1. In Table 1 is given the estimated

variance of the observed returns for the time horizons T = 1 to T = 6: Below we recalculate how

much an improvement in variation compared to a given total variation means when calculated

as an improvement on the estimated mean. For example, the value of the needed improvement
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of R2 to correspond to an improvement of the estimation accuracy of the mean of yearly 2% is

calculated for T = 4 as �
1:024 � 1

�2
0:082914

= 8:2%:

T Mean V ariance (s2T )

1 0:020949 0:029557

2 0:035825 0:050473

3 0:050328 0:064505

4 0:070561 0:082914

5 0:089415 0:087686

6 0:11041 0:091136

Table 1: Mean and estimated variance of overlapping excess stock returns for di�erent time

horizons T .

This is o� course just a rule of thumb based on a most simple mode and it is therefore not

the �nal recalculation of the e�ect on the mean of an improvement of a calculated R2 value

when considering a complicated dynamic time series structures. We consider, however, this

approximation to be good enough for our purposes and use it both, for the classical R2 value

and the validated R2
V value that we de�ne in Section 5. Note also that 2% on the mean is

measured in basis points. When we say that an average one year prediction of returns is 2%

better on the mean than another prediction, then it is comparable to the simple case, where a

true mean of 5% is estimated by 4% by the good predictor and 2% by the bad predictor.

Based on the empirical variation estimated in Table 1, we are able to construct Table 2 be-

low that give the sought for correspondence between an improvement measured on the total

variation and an improvement measure on the estimated predicted mean. We consider returns

over the time horizons T = 1 to T = 6: Table 2 is crucial for the interpretation of the results

in the rest of the paper, since it is a lot more interesting to relate to an improvement on the

estimated mean than to improvements on the (total) variation.

Since the mean of the excess stock returns are 2:1% for the period 1922 � 1996 and 3:2% for

the period 1947� 1996, then R2 values for T = 1 in the neighborhood of 3% gives an improved

prediction of the mean that is higher than the total mean itself - in other words a quite

powerful level of prediction. It is also seen from the table that the R2 values needed, for a �xed

improvement of the mean, almost can be approximated by a linear relationship for T = 1 to

T = 5 from 1923� 1996. This is interesting, since it can be observed in the table of Campbell,

Lo and Mackinlay (1997, p.269) based on American data, that the improvement of the R2

value over time is indeed almost linear over time like our observations based on the Danish

data contains the same type of observation, see Section 5 below. Hence the improvement of R2

values for longer time horizons are indeed of an order of magnitude corresponding to more or

less the same level of prediction.

Above we gave an empirical explanation that a linear improvement of R2 values over time

indeed corresponds to the same quality of prediction. For a better understanding we now give

additionally a theoretical explanation that such a linear improvement of R2 values over time
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1922-1996 �� = 0:01 �� = 0:02 �� = 0:03 �� = 0:04 �� = 0:05

horizon, T sT R2 R2 R2 R2 R2

1 17,2% 0,3% 1,4% 3,0% 5,4% 8,5%

2 22,5% 0,8% 3,2% 7,3% 13,2% 20,8%

3 25,4% 1,4% 5,8% 13,3% 24,2% 38,5%

4 28,8% 2,0% 8,2% 19,0% 34,8% 56,0%

5 29,6% 3,0% 12,4% 28,9% 53,5% 87,1%

6 30,2% 4,2% 17,5% 41,3% 77,2% -

1947-1996 �� = 0:01 �� = 0:02 �� = 0:03 �� = 0:04 �� = 0:05

horizon, T sT R2 R2 R2 R2 R2

1 19,4% 0,3% 1,1% 2,4% 4,2% 6,6%

2 24,8% 0,7% 2,7% 6,0% 10,8% 17,1%

3 27,4% 1,2% 5,0% 11,5% 20,7% 33,1%

4 30,8% 1,7% 7,2% 16,6% 30,4% 48,0%

5 31,2% 2,7% 11,1% 26,0% 48,1% 79,3%

6 31,8% 3,7% 15,7% 37,2% 69,5% -

Table 2: Corresponding R2s for improvement, ��, of the conditional mean prediction T -year

excess stock returns for di�erent time horizons T .

are to be expected, at least for a horizon below some Tmax value. For example Campbell, Lo

and Mackinlay (1997, p.269) has an empirical Tmax value equal to six years.

Consider the following de�nition for the (classic) R2 value:

R2 = 1�
not explained V ariation

total V ariation
; (8)

where total variation is de�ned above and

total V ariation =
nX
i=1

(yi � �y)2; where �y =
1

n

nX
i=1

yi;

not explained V ariation =
nX
i=1

(yi � byi)2;

and byi is the estimator of yi based on the estimated model.

Let us consider a simple linear model with centered variables, i.e.

St = �Xt + "t; t = 1; : : : ; n

where the " are iid error terms, independent of X. Imagine now that most of the total Variation

of S; V (S); is caused by the variation of " such that the averaged explained Variation V (�X) =

�2V (X) is rather small compared to V (S). This means that X compared to Y does not

move much and we therefore might expect the explanatory power of Xt on St to hold almost

unchanged for the following observations St+1,: : :,St+T�1; at least up to some Tmax. Then the

following equations would hold (approximately):

S�t;T =
T�1X
j=0

St+j = �TXt + "�t;T ;
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with

"�t;T �
T�1X
j=0

"t;j

and �T � T� as long as T is smaller than Tmax. Thus the explained Variation follows the

approximation

V (�TX1) � �2T 2V (X1):

Since

V ("�t;T ) � V (
T�1X
j=0

"t;j) = TV ("1)

for T � Tmax and assuming that the correlation among the S0ts is small as they are dominated

by the iid "t, then

V (S�t;T ) � T � V (Yt) = T � V (Y1):

We �nally get that the improvement in the classical R2 value

R2
�

�2T 2V (X1)

T � V (S1)
=

�2TV (X1)

V (Y1)

approximately linear for \small time horizons T � Tmax. And note that this linear increase

in R2 value has nothing to do with an improved level of predictive power. It is so to speak a

simple consequence of the law of large numbers on the error term. We therefore have explained

empirically and theoretically that something not too far from a linear increase in the R2 value

as a function of the time horizon indeed is to be expected when the same level of accuracy is

present in the estimation of the considered time horizons. This is important, since it gives a

clear interpretation of results like the ones found in Campbell, Lo and Mackinlay (1997, p.269)

or the ones we �nd on our Danish data in the next section. When analyzing the Danish data in

the next section, we will see that with Xt = log(D=P )t�1 and St being our excess stock return,

then we arrive at phenomena very close to the ones anticipated in this section. We will also see

that the traditional R2 value has to be replaced by another measure of prediction power that

is based on the principle of validation and not, as the R2 value, on the principle of goodness of

�t.

5 Estimating and evaluating the power of prediction

In this section we enter the methodological question of �nding a good estimator of prediction

power, �rst we follow Campbell, Lo and Mackinlay (1997, p.269) and calculate R2 for di�erent

prediction horizons. So, we consider the regression

St+1 + :::+ St+T = �+ ��t + �t+T ; (9)

where St is the 1-year log excess stock return from t � 1 to t, and �t the log dividend-price

ratio. The results are given in Table 3 together with the corresponding R2 values.

If these reported R2 values are good estimates of the R2
A described in Section 5 above, then

we can conclude that for the period 1922 � 1996, predicting the time horizon T equal to 1

year gives the best power of prediction, namely corresponding to an improved prediction of the

mean just above 3%. Measure in this way the improvement in prediction falls with increasing

T . For T between 2 years and 4 years the power of prediction corresponds to between 2% and
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1922-1996 1947-1996

horizon, T � s(�) R2 � s(�) R2

1 0.080 6.3% 3.2% 0.116 7.9% 5.9%

2 0.157 8.2% 6.6% 0.217 10.9% 11.5%

3 0.233 9.6% 10.5% 0.308 12.0% 17.1%

4 0.331 11.3% 14.2% 0.423 12.6% 21.0%

5 0.364 12.7% 15.7% 0.438 13.6% 20.6%

6 0.382 14.8% 15.5% 0.502 17.8% 23.5%

7 0.343 14.2% 12.6% 0.465 17.2% 20.7%

8 0.273 14.1% 7.9% 0.406 15.4% 15.3%

Table 3: Predictability of T -year excess stock returns with model (9) on � = log D/P .

3% of the conditional mean. For longer time horizons the prediction power on the mean falls

below 2%: For the period 1947�1996 we have a similar picture, though prediction seems to me

more accurate here. The predicting power corresponding to the time horizon T equal to 1 year

gives the best power of prediction namely around 5% and the prediction power is decreasing

with T from around 4% on the mean for T equal to 2 years down to between 2% and 3% for T

equal to 5 years. Apparently we therefore should be able to make the convenient conclusion,

that the optimal time horizon for prediction is 1 year. However, it is a well known fact from

recent theory of mathematical statistics that these reported R2 values are not good estimates

for the corresponding R20
As: They have some astonishing bad characteristics if they are used

to select appropriate models for prediction. For example: the R2 values are always increasing

with complexity of the model. As a matter of fact it takes a quite clever model with a selective

choice of the most important explanatory variables to beat even the simple mean in practical

prediction, and complexity is one of the worst enemies of a good prediction.

To get some information on this last point consider a comparison of the regression �ts for the

parametric model and the more complicated nonparametric regression based on excess stock

returns on in
ation, interest rate, D/P and excess stock return, all one year lacked. For the

nonparametric regression we used the local linear smoother with bandwidth equal to 2:0�X ,

where �X is the vector of standard deviation of the regressors. For exact technical de�nitions,

see Appendix 1. The quality of �t of these two models are given in Figure 1. Looking on these

graphs, then a methodology considering R2 values and the accuracy of �t would clearly select

the more complex nonparametric method.

It is a known fact that adding new parameters to a parametric model gives almost always

a bigger R2. This lead to the introduction of adjusted R2 and some other modi�cations,

correcting for the number of estimated parameters. So some try to e.g. minimize the Akaike

criteria or the prediction criteria of Amemiya (1985) to mention only some of them. But all

these o�ered only reasonable corrections for parametric (linear) models and do further not solve

the problem of \in{sample validation. Therefore we consider the more general out of sample

criteria based on Cross Validation. This criteria will show that the prediction based on the four-

dimensional nonparametric �t above is rather misleading and that it actually predicts outside

the sample worse than a simple constant, while the linear predictor based on the dividend yield

does have quite good predictive power. The problem using the complicated four-dimensional

nonparametric model is over�tting and corresponds to the problem of overparameterization in

parametric regression.
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Figure 1: Parametric (upper) and nonparametric (lower) regression �t (solid lines) of stock

returns on in
ation, interest rate, D/P and excess stock return, all one year lacked. Dotted

line is the real, observed data process.

The conclusion is that the R2 values can be considered rather useless as evidence of prediction

power. We de�ne an appropriate replacement for the traditional R2 value. The well known

statistical method of Cross Validation is able to give us such a measure, see among many

others Campbell, Lo and MacKinlay (1997, p.233). Below we introduce the validated measure

of prediction, R2
V ; that is a reasonable estimator of the prediction error R2

A de�ned in Section

4 above.

For convenience of interpretation, the validated R2
V value is de�ned similarly to the traditional

R2. Recall �rst the expressions in (8). We do, however, replace the key components of the R2

formula by its Cross Validation analogs, i.e.

CV � total V ariation =
nX
i=1

(yi � �y�i)
2; �y =

1

n

nX
i=1

yi (10)

CV � not explained V ariation =
nX
i=1

(by�i;i � yi)
2; (11)

see Appendix 3. by�i;i is the prediction that we would construct for yi based on our estimation

methodology using all data except the i'th dependent and independent variables. This gives
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the validated measure of prediction:

R2
V = 1�

CV � not explained V ariation

CV � total V ariation
(12)

that is a data based estimator of the average prediction error R2
A described in Section 4. This

estimator is a reliable measure for prediction power and it does not have the inherent weaknesses

of the R2 measure described above. We will for example often have that

nX
i=1

(yi � by�i(xi))2 >
nX
i=1

(yi � �y�i)
2

and consequently R2
V < 0. This just means that our model does even worse than taking the

so far observed average when predicting Y . So the R2
V gives the percentage of how much

better or worse the model does compared to taking the (so far observed) average, and we have

R2
V 2 (�1; 1].

In Table 4 below we see the power of prediction of the the linear model based on the logarithm

to the dividend-price ratio.

log(D=P ) 1922-1996 1947-1996

horizon, T R2
V R2

V

1 -1.1% -0.3%

2 2.2% 3.0%

3 4.6% 7.7%

4 7.4% 9.4%

5 6.5% 0.5%

6 5.2% -19.5%

Table 4: Predictability of T -year excess stock returns on log D/P, model (9), evaluated with

the R2
V .

We see that the power of prediction is a lot less than the traditional R2 values might suggest.

For the time period 1922 � 1996: While the linear model does worse than just estimating a

constant mean for the time horizon T = 1; then Table 2 suggests that the power of prediction

is between 1% and 2% measured on the mean for the time horizons T between 2 years and 6

years. The optimal time horizon for prediction seems to be 3 years or 4 years, where the power

of prediction is closest to 2%; see Table 2. For the time period 1947 � 1996: Also here the

linear model does worse than just estimating a constant mean for the time horizon T = 1; and

Table 2 suggests that the power of prediction is between 2% and 3% measured on the mean

for the time horizons T between 2 years and 4 years. The model does not seem to predict well

for the time horizons above 5 years.

In Table 4 we consider the same numbers based on the raw dividend price ratio without taking

the logarithm. The R2 and R2
V values based on this raw data are very similar but slightly

better than the results presented in Table 3 above. For example, Table 3 suggests that the

linear model does as a matter of fact predict more than 2% on the mean for the time horizon

T = 1 for the period 1947 � 1996.

Finally we consider the power of prediction by choosing the functional relationship between the

dividend-price ratio and the return by a nonparametric kernel estimator. Since this functional
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D=P 1922-1996 1947-1996

horizon, T � R2 R2
V � R2 R2

V

1 2.384 3.8% -0.2% 0.116 7.3% 1.3%

2 4.824 8.8% 4.7% 0.217 14.9% 8.2%

3 6.750 13.0% 7.8% 0.308 21.1% 14.2%

4 9.176 17.5% 10.3% 0.423 25.8% 16.0%

5 9.871 18.7% 10.3% 0.438 24.2% 9.5%

6 9.612 16.4% 6.9% 0.502 25.4% -4.6%

Table 5: Predictability of T -year excess stock returns with model (9) on � = D/P comparing

classic R2 with validated R2
V .

relationship can be arbitrary, the above discussion on using the raw dividend price ratio or

taking the logarithm is irrelevant. We get the following results:

D=P 1922-1996 1947-1996

horizon, T R2
V R2

V

1 -0.1% 3.3%

2 4.8% 10.8%

3 8.0% 16.7%

4 12.2% 20.5%

5 13.5% 22.6%

6 6.9% 17.8%

Table 6: Predictability of T -year excess stock returns using nonparametric models and evalu-

ated with R2
V . Explanatory variable was D/P.

When considering the period 1947 � 1996, then data from the entire period, 1922 � 1996, is

used to �t the nonparametric functional relationship. The evaluation of the quality of the �t

is, however, exclusively based on the data in the period 1947� 1996. While the nonparametric

power of prediction for the period 1922� 1996 is already slightly better than the strictly linear

power of prediction, we see a clear improvement of prediction power for the nonparametric

method when considering the period 1947�1996: Since the linear model over the entire period

is enclosed as a special case of our nonparametric method, namely the special case corresponding

to in�nite bandwidth, the nonparametric selection method can point out the linear model as

giving a better prediction than any other functional relationship. This does in fact happen

for the time horizons 1 year, 2 years, 3 years and 6 years. We can therefore conclude that

the greatest part of the improvement is due to the fact that we now have used data for the

entire period for predicting the years 1947 � 1996 instead of using only the data of that very

period. For 1947 � 1996 we get the astonishing prediction power corresponding to 4% on the

mean for the horizon T equal to 2 years, see Table 2. For horizons T = 1; T = 3; T = 4 the

prediction power on the mean is above 3%: We therefore conclude that prediction of excess

stock returns indeed seem possible and that the dividend-price ratio does have a signi�cant role

to play. We can also conclude that it does not seem to be impossible for the long term investor

to decide whether the excess yield on stocks is positive or not. We also conclude that this

prediction power can be obtained using dividend-price ratio information alone. The basis of

this conclusions is that the prediction power described above is bigger than 2:1% on the mean
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for the period 1922� 1996 and it is bigger than 3:2% on the mean for the period 1947� 1996.

This is indeed the case for all predictions with time horizon less than 4 years. In the next

section we show that we can actually improve this prediction even more by including further

information in our prediction.

stock excess on D/P, 1922-1996, T=1
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Figure 2: Parametric (dashed) and nonparametric (solid) regression �t of stock returns on D/P

and real data points. Bandwidth= 2:4�X

stock excess on D/P, 1922-1996, T=5
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Figure 3: Parametric (dashed) and nonparametric (solid) regression �t of stock returns on D/P

and real data points. Bandwidth= 3:4�X

For a graphical visualization of the impact of the dividend-price ratio at excess stock returns,

see Figure 2 and Figure 3 for respectively the one-year horizon and the �ve year horizon versions

of the prediction of excess stock returns based on the dividend-price ratio. Both the parametric

and nonparametric versions are shown. The graphs clearly indicate the impact of the dividend

yield on future returns and we also see, that our current Danish level of the dividend-price

ratio on around 1% is so low, that we indeed must conclude that according our predictive �lter

it is a dangerous time to invest in stocks and we should not expect the average excess return
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on stocks to match this danger. As of matter of fact our model predicts excess returns in the

near future to have an average value below zero. So, it seems that the extra risk inherent in

investments in stocks are not followed by a corresponding extra return on stocks in a situation

with a general low level of dividend yields. As a consequence our advice to Danish long term

investors is not to increase their percentage of stocks in their portfolio right now.

6 Looking for the right model

In this section we investigate the potential advantages that we can obtain by including other

variables than just dividend divided by price in our prediction. Due to the complexity of the

study of the section, we have chosen to restrict our investigation to a time horizon of one

year. Based on the considerations given in Section 2, we have chosen to consider a time series

regression problem of the following form:

St = g(St�1; Dt�1; It�1; rt�1) + �t (13)

using the data described in Section 3. The full four-dimensional model corresponds to estimate

the function g without any parametric assumptions nor assumptions of structure such as ad-

ditivity or multiplicativity. This model is most often too complex for both to visualize and/or

to predict well. The lack of prediction is due to the error of estimation rather than that the

model is insu�cient. Therefore we suggest some structure on g to predict well. We have chosen

to consider additive models such that

g(s; d; i; r) = c+ g1(s) + g2(d) + g3(i) + g4(r); (14)

compare also Appendix 2, especially for estimation.

Furthermore we consider both the situation where the entering gi0s are nonparametric and the

situation where all the entering gi0s are parametric and follow a linear model. In our study

we consider three types of models with all combinations of subsets of (St�1; Dt�1; It�1; rt�1):

Namely (see above)

} Linear models

} Nonparametric additive models

} Fully nonparametric models.

The more complex the model is, the bigger the estimation error will be and the smaller the

modeling error will be. To be able to choose among the entering models, we use the validated

R2
V de�ned in Section 5. All in all, we have 41 models to consider, namely 15 linear models,

15 full models and 11 nonparametric additive models (leaving out the one-dimensional models

that we counted among the full ones). As mentioned and explained in the appendices we always

looked for the optimal bandwidths in the nonparametric procedures using Cross Validation.

Some �rst �ndings of the estimation respective model structure are the following:

Though the multidimensional nonparametric additive model reaches a positive R2
V for some of

the considered models, the corresponding full model did always better. This is a clear indicator

for having here a more complex structure than additivity. This is not surprising when we

consider the complicated relationship between these variables as described in Section 2. From
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our calculated R2
V values we also concluded that the only linear model that does better than

the simple constant is the linear model based on the dividend divided by price for the period

1947�1996 as described in the sections before. However, best among all estimators is the fully

nonparametric two-dimensional model based on dividend divided by price and lagged excess

stock return. This two-dimensional model has a R2
V value of 1:16% for the period 1922� 1996

and 4:62% for the period 1947�1996: For the time period this is much better than the negative

values of the R2
V obtained in Section 5. For the time period 1947 � 1996 we get a signi�cant

improvement from the 3:3% we obtained in Table 6. While 4:62% in R2
V value corresponds to

a prediction accuracy of more than 4% on the mean, the 3:3% in R2
V value obtained in Table

6 corresponds to a prediction accuracy of about 3:5%, compare Table 1.
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Figure 4: Nonparametric regression �t of excess returns on D/P and excess returns lagged at

excess returns equal to �25% (dotted, starting above zero), 1% (solid), and 30% (dashed) in

1922 � 1996. Bandwidth= 3:8�X

Once again have a look on the relation excess returns to dividend by price. In Figure 4 we see

three slices from the two-dimensional predictive �lter based on the dividend-price ratio and

the lagged excess return of stocks. We plot the dependency on the dividend yield for three

�xed values of excess returns: �25%, 1% and 30% corresponding to the lower 5% fractile,

the median and the upper 95% fractile. We see a clear tendency of the excess stock return

to be increasing with the dividend-price ratio and decreasing with last years excess return.

Again, a clear indication based on this graph is that Danish investors should keep away for

new investments in stocks, since they are just about to �nish a magni�cant year with a general

Danish excess return on stocks above 30% resulting in a historical low dividend-price ratio of

around 1%:

7 Appendix

Appendix 1. Local linear regression

In this appendix we give a brief insight into the algorithms of nonparametric 
exible function

regression. In particular we explain the local linear smoothing. The basic idea is to construct
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an estimator that lays a smooth surface (or hyperplane), e.g. in the one dimensional case a

smooth line, into the point cloud that presents its functional form. The smoothness of that

surface can be (pre-) determined by choosing a respectively large smoothing parameter (h),

called bandwidth. Actually, often this parameter can also be data driven, see Appendix 3.

First, it is important to understand that this estimator works locally, e.g. we estimate the

wanted function, the hyperplane, at each point we are interested in separately. This is, using

the notation E[Y jX = x] = m(x), x 2 IRd having (Xi; Yi)
n
i=1 observed and being interested in

m(x0) for some point x0 2 IRd, we calculate bm(x0). This is done by minimizing

nX
i=1

n
Yi � a0 � aT1 (Xi � x0)

o2
Kh(Xi � x0) (15)

over a0 2 IR, a1 2 IRd and setting bm(x0) = â0. In equation (15) Kh(v) =
Qd

j=1
1
h
K(

vj
h
) is

a IRd
! IR weight function. In our calculations we chose the so called quartic kernel, i.e.

K(u) = 15
16
(1 � u2)211fjuj � 1g. So we just use a weighted least squares estimator for linear

regression that becomes a local estimator due to the weights Kh giving a lot of weight to points

(Xi; Yi) where Xi is close to x0 but no weight to points far from x0.

Here, in the weighting function comes the smoothing parameter h in: the larger h and conse-

quently the environment with positive weighting, the smoother gets the resulting hyperplane

whereas h = 0 would be equivalent to interpolation of the Yi's. Consistency, asymptotic theory

and properties are well known and studied for the multivariate case in Ruppert and Wand

(1994), for a general introduction see Fan and Gijbels (1996).

Remarks:

1. An often discussed question is how to choose bandwidth h in practice. As we are concerned

about prediction, we take that bandwidth that is minimizing the \out of sample" prediction

error using the Cross Validation measure, see Appendix 3. This is equivalent to maximizing

our R2
V . For more discussion of data driven bandwidth choice by Cross Validation in time

series context, see e.g. Gy�ofri, H�ardle, Sarda, Vieu (1990).

2. The resulting vector â1 when minimizing equation (15) is a consistent estimate for the

gradient dm(x)=dx. This can easily be understood when interpreting the expression a0 +

aT1 (Xi � x0) as being the �rst terms of the Taylor approximation of m(�) around x0 . Again,

for more discussion see Fan and Gijbels (1996).

Appendix 2. Local linear additive regression

We speak of an additive model if the model E[Y jX = x] = m(x), with x 2 IRd is of the form

m(x) = c+
dX

j=1

mj(xj); with c = E[Y ] and E[mj(Xj)] = 0 (16)

for identi�cation. These models are quite popular thanks to its straight forward consequences

in economic theory, interpretability (as only one dimensional functionals have to be considered),

and some statistical properties as getting rid of problems in multidimensional smoothing (\curse

of dimensionality", compare Stone, 1985). For the nonparmetric case, i.e. letting the additive

components mj arbitrary smooth functions, several procedures are known in the literature (see
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Sperlich, 1998). In this article we focus only on the back�tting by Hastie, Tibshirani (1990). If

m(x) is really of additive form, this is a consistent and e�cient procedure; if not, it still gives

at least the projection on that additive model that �ts the data best, for both see Mammen,

Linton, Nielsen (1999). Actually, the back�tting tries to minimize E[fY �m(X)g2] over all

m(�) of additive form as in equation (16). This can be done by iteration; start with some

initials bm[0]
j (�), ĉ = 1

n

Pn
i=1 Yi and regress Y � ĉ�

Pd
j 6=k bm[r�1]

j (Xj) against Xk to get bm[r]
k until

the estimates do not di�er from those yield in the last iteration.

For the regression the (one dimensional) local linear estimator, presented in Appendix 1 can be

applied. This is exactly the procedure we did in our data analysis when modeling additively.

Remarks:

1. Certainly, there exist a growing amount of articles how to test additivity. But, a comparison

of the Cross Validation values yield for the multidimensional local linear and the back�tting

smoothing gives already an idea how far the true model is from additivity.

2. Bandwidths can again be chosen using Cross Validation, compare Appendices 3 and 1.

7.1 Appendix 3. Cross Validation

A typical question of interest, not only in prediction problems, is how to evaluate the di�erent

models. This concerns the model or variable selection as well as the bandwidth choice. In

general, a natural way to evaluate an estimator is to look on the mean squared error or the

expected squared di�erence between estimate and observation Y E[fY � bm(X)g2] which cer-

tainly itself can only be estimated. Additionally, as we speak about prediction, we would like

to know how well the estimate works outside the considered sample. Both aspects are taken

into account in the so called Cross Validation (CV) values, de�ned as

CV - value =
1

m

mX
l=1

fyl � bm�l(xl)g
2 (17)

where (Xl; Yl)
m
l=1 is the evaluation sample, e.g. can be the whole sample (Xi; Yi)

n
i=1 itself, andbm�l(xl) the considered estimator evaluated at point xl but determined without observation

(xl; yl). This CV value is an approximation for the mean squared error (also for prediction)

and a quite common used validation measure in nonparametric regression. For time series

context and more references see e.g. Gy�ofri, H�ardle, Sarda, Vieu (1990).

Remark: It is important to eliminate always all information that is aimed to predict from the

estimation of m. So, if we predict the increase of assets over a period of 4 years, the estimator

m̂�l is calculated not only without the lth observation but also without the three years before

and after year l.

How can it be used for bandwidth or model selection? We give an example for bandwidth

selection. we write bm as a function of the bandwidth ( bmh) and look for that h that minimizes

CV(h) =
1

m

mX
l=1

fyl � bmh;�l(xl)g
2

This has been shown to give the optimal bandwidth in nonparametric regression; we refer again

at Gy�ofri et al.(1990). So the idea is always just to minimize the CV criteria and to take that

model as the best that is minimizing equation (17).
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