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Abstract

In this paper we propose a bootstrap resampling scheme to construct prediction

intervals for future values of a variable after a linear ARIMA model has been …tted to

a power transformation of it. The advantages over existing methods for computing

prediction intervals of power transformed time series are that the proposed bootstrap

intervals incorporate the variability due to parameter estimation, and do not rely on

distributional assumptions neither on the original variable nor on the transformed

one. We show the good behavior of the bootstrap approach versus alternative proce-

dures by means of Monte Carlo experiments. Finally, the procedure is illustrated by

analysing three real time series data sets.

KEY WORDS: Forecasting, Non Gaussian distributions, Box-Cox transformations,

Resampling methods.
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1. INTRODUCTION

Forecasting future values of time series data is one of the main objectives of time

series analysis. Generally, predictions are given as point forecasts, although, it is

even more important to provide as well interval forecasts; see, for example, Chat…eld

(1993).

In empirical time series analysis, it is common practice to transform the data using

a power transformation prior to the estimation of the model used for forecasting.

There are several reasons to transform the data before …tting a suitable model, for

example, the necessity of stabilizing the increasing variance of trending time series, to

reduce the impact of outliers, to make the normal distribution a better approximation

to the data distribution, or because the transformed variable has a convenient eco-

nomic interpretation; for example, …rst di¤erenced log-transformed data correspond

to growth rates.

The family of Box-Cox transformations is given by

g (Xt) =
X¸
t ¡ 1
¸

, for 0 < ¸ < 1 (1)

= ln (Xt) ; for ¸ = 0;

where the transformation for ¸ = 0 follows from the fact that lim¸!0
X¸
t ¡1
¸

= ln (Xt);

see Box and Cox (1964). Substracting 1 and dividing by ¸ does not in‡uence the sto-

chastic structure of X¸
t , and hence one often considers the transformation suggested

by Tukey (1957)

g (Xt) = X¸
t , for 0 < ¸ < 1 (2)

= ln (Xt) ; for ¸ = 0;

instead of (1), without loss of generality. In both cases, fXtg denotes the observed
time series with Xt > 0; ¸ is a real number and ln (¢) denotes the natural logarithm.
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Once a model has been estimated, point and interval forecasts can be obtained for

the transformed series yt = g (xt) de…ned as in (2). We will focus on ARIMA models

…tted to yt. The speci…cation of the model and the parameter ¸ will be assumed

to be known. If the objective is to predict future values of Xt, the retransformed

point forecasts induces bias in the forecasts, as is shown for linear models in Granger

and Newbold (1976). When YT+k is normally distributed and the point forecast of

XT+k is just the inverse transformation of the forecast obtained for the transformed

variable, this naive point prediction is not the minimum mean squared error (MMSE)

forecast, but the minimum mean absolute error (MMAE), that is the median of the

conditional probability density function (pdf) of XT+k: Therefore, if the error loss

function is quadratic, this naive prediction of XT+k is not optimal; see Guerrero

(1993).

Assuming Gaussianity of Yt, Granger and Newbold (1976) propose a debiasing fac-

tor to reduce the transformation bias in the point forecast. Unfortunately, since they

solve the problem using Hermite polynomials expansions, their procedure becomes

very complicated for many fractional power transformations, making this approach

not useful in practice. Latter, Taylor (1986) proposes a simpler expression for the

debiasing factor, but for ¸ = 0 does not provide an adequate solution. Notice that

the logarithmic transformation is one of the most usual in practice. Another alterna-

tive proposed by Pankratz and Dudley (1987) is complicated, and additionally, only

admits a closed form expression when ¸ is a fractional positive integer. Finally, the

method proposed by Guerrero (1993) avoids all the drawbacks found in previous ap-

proaches. His proposal is both simple and general. In a comparative study, Guerrero

(1993) shows that his method has a performance similar to or better than the other

procedures.

Although it is relatively well studied how to obtain a good estimate for the con-

ditional mean in the original metric, there is no generally accepted method of con-
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structing prediction intervals for the untransformed variable. One solution is based

on a normal assumption on XT+k, providing a symmetric interval. This seems not to

be a good choice unless the distribution of XT+k is close to be Gaussian; see Chat-

…eld (1993). Another alternative is to construct prediction intervals for XT+k by

retransforming the upper and lower values of the corresponding prediction interval

for YT+k. Finally, Guerrero (1993) suggests to correct for bias the endpoints of the

latter prediction intervals using a procedure similar to the one he proposes for the

point forecast.

In this paper, we propose a bootstrap resampling scheme to obtain an estimate of

the pdf of XT+k conditional on the available data when an ARIMA model has been

…tted to yt. Given this density, the required prediction intervals for XT+k can be

constructed. There are several advantages over the methods previously described.

First of all, the bootstrap procedure does not rely on distributional assumptions

neither on the transformed data nor on the original scale. The second advantage is

that the bootstrap intervals incorporate the variability due to parameter estimation,

which is not allowed by any of the alternative procedures. Finally, the method is very

easy to implement.

The …nite sample behavior of the bootstrap intervals is compared with the alter-

native intervals by means of an extensive simulation study. It is shown that the

proposed procedure performs as well as the best alternatives when Yt is Gaussian,

and tends to outperform to its competitors when leaving this assumption.

The paper is organized as follows. Section 2 presents a description of the existing

methods for obtaining prediction intervals for a variable in its original scale. In

Section 3 we introduce the bootstrap approach. A Monte Carlo study comparing the

…nite sample performance of all existing methods is presented in Section 4. In Section

5, we illustrate the procedure analysing empirically three real data sets. Finally, we

conclude with some remarks and suggestions for future research in Section 6.
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2. PREDICTION INTERVALS FOR TRANSFORMED TIME SERIES

There are two main alternatives proposed in the literature to obtain prediction

intervals for XT+k given the observed series (xt; t = 1; : : : ; T ) after an ARIMA model

has been …tted to the power transformed variable Yt. In this section these two

procedures are described.

Consider that fx1; : : : ; xTg is an available sequence of T observations such that,

for any of the reasons previously mentioned, need to be transformed adequately by a

function g (¢) de…ned in (2), to obtain a new sequence fy1; : : : ; yTg. Let also assume
that the transformed sequence is well …tted by an ARIMA(p,d,q) process given by

rdyt = Á0 + Á1rdyt¡1 + :::+ Áprdyt¡p + at + µ1at¡1 + :::+ µqat¡q; (3)

where at is a white noise process, r is the di¤erence operator such that ryt =
yt¡yt¡1 and

¡
Á0; Á1; :::; Áp; µ1; :::; µq

¢
are unknown parameters. From the transformed

series fy1; y2; :::; yTg, these parameters can be estimated by a consistent estima-
tor, for example, conditional quasi-maximum likelihood (QML). Given the estimates

(bÁ0; bÁ1; : : : ; bÁp;bµ1; : : : ;bµq), the residuals are calculated by the following recursion
bat = rdyt¡bÁ0¡bÁ1rdyt¡1¡:::¡bÁprdyt¡p¡bµ1bat¡1¡:::¡bµqbat¡q; t = p+d+1; :::; T; (4)
where the residuals corresponding to periods of time t = 0;¡1;¡2; ::: are set equal
to zero.

Once the ARIMA model has been estimated, the optimal linear predictor of YT+k,

denoted by bYT (k) ; is given by
rdbYT (k) = bÁ0+bÁ1rdbYT (k ¡ 1)+¢ ¢ ¢+bÁprdbYT (k ¡ p)+baT+k+bµ1baT+k¡1+¢ ¢ ¢+bµqbaT+k¡q;

(5)

where bYT (j) = YT+j for j · 0 and baT+j = 0 for j ¸ 0. The usual Box and Jenkins
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(1976) prediction intervals for YT+k are given by24bYT (k) ¡ z®=2Ãb¾2a k¡1X
j=0

bª2j
!1=2

; bYT (k) + z®=2Ãb¾2a k¡1X
j=0

bª2j
!1=235 ; (6)

where z®=2 is the 1 ¡ ®=2 quantile of the standard normal distribution, b¾2a is the
usual estimate of the innovations variance and bªj are the estimated coe¢cients of
the moving average representation.

2.1 Symmetric prediction intervals

Multistep symmetric prediction intervals have been widely used in linear time series

models. These intervals are constructed under the assumption of normality for the

variable of interest. Therefore, they provide a reasonable performance in terms of

coverage and length if the density of the forecast error is well approximated by the

normal distribution.

To obtain a symmetric prediction interval k periods into the future, it is needed

…rst a point forecast bXT (k) for XT+k, usually corrected by bias using one of the
methods previously mentioned to compute the debiasing factor, and secondly, an

explicit expression for the k-step ahead conditional mean squared error, say Vc (k).

Then, given the assumption of normality, it follows that the conditional distribution

of XT+k given the available data is normal with mean bXT (k) and mean squared error
Vc (k). In such a case, the k-step ahead prediction interval is given byh bXT (k)¡ z®

2
Vc (k)

1
2 ; bXT (k) + z®

2
Vc (k)

1
2

i
: (7)

The expression of Vc (k), given by Granger and Newbold (1976), is very dependent

on the Gaussian assumption for the series Yt. Furthermore, this expression is derived

by using Hermite polynomials and, it is not easy to obtain for a general transforma-

tion g (¢). In fact, Granger and Newbold (1976) only give the …nal expression of Vc (k)
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for the logarithmic and square root transformations. For example, if the logarithmic

transformation is considered, Vc (k) is given by exp
n
2bYT (k) + b¾2 (k)o£exp ©b¾2 (k)ª ¡ 1¤,

where b¾2 (k) = b¾2aPk¡1
j=0

bª2j .
Furthermore, the prediction intervals in (7) ignore the skewness and all higher

moments in the distribution of the forecast error by assuming that is approximately

normal, and therefore, will only be accurate if the corresponding forecast error is

approximately normally distributed.

Notice that usually Yt is assumed to be normally distributed, and consequently,

the untransformed variable Xt will be non-normally distributed unless the parameter

¸ in the Box-Cox transformation is equal to 1, i.e. Xt is not transformed.

2.2. Naive prediction intervals

Alternatively, prediction intervals for the variable in the original scale can be con-

structed by retransforming the upper and lower values of the corresponding prediction

intervals for the transformed variable Yt given by (6). If the prediction interval for

Yt has a prescribed probability, say (1-®), then the retransformed prediction interval

for Xt should have the same prescribed probability; see Harvey (1989).

The corresponding prediction interval with nominal coverage of 1¡ ® is given byh
g¡1

nbYT (k)¡ z®
2
b¾ (k)o ; g¡1 nbYT (k) + z®

2
b¾ (k)oi : (8)

Additionally, as proposed by Guerrero (1993), it is possible to correct for bias the

previous con…dence interval, by multiplying the end points of (8) by the following

debiasing factor

C¸ (k) =

½
0:5 + 0:5

h
1 + 2

¡
¸¡1 ¡ 1¢¾2 (k) =bY 2T (k)i1=2¾1=¸ ; for ¸ 6= 0 (9)

= exp
¡
¾2 (k) =2

¢
; for ¸ = 0:

Notice that the prediction intervals in (8) are able to cope with the potential
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asymmetry of the distribution of Xt, although they still rely on the Gaussianity

assumption for the transformed variable, Yt, and do not incorporate the uncertainty

due to parameter estimation.

3. THE BOOTSTRAP APPROACH

In this section we describe a bootstrap procedure to obtain prediction densities

and prediction intervals of future values of the series of interest Xt. The resampling

scheme is based on the proposal by Pascual et al. (1998) to estimate prediction

densities and intervals of series generated by ARIMA(p,d,q) processes.

Denote by bFa the empirical distribution function of the centered residuals of the
ARIMA model for yt given in (4). Given a set of p + d initial values of the variable

yt, say fy1; : : : ; yp+dg, a bootstrap replicate of the transformed series fy¤1; : : : ; y¤T g is
constructed by the following equation

rdy¤t = bÁ0 + pX
j=1

bÁjrdy¤t¡j +
qX
j=1

bµjba¤t¡j + ba¤t ; t = p+ d + 1; : : : ; T; (10)

where y¤t = yt; t = 1; :::; p+ d and ba¤1+p+d¡q; : : : ;ba¤T are random draws from bFa: Once
the parameters of this bootstrap series are estimated, say (bÁ¤0; bÁ¤1; : : : ; bÁ¤p;bµ¤1; : : : ;bµ¤q),
the bootstrap forecast k steps ahead is obtained as follows,

rdy¤T+k = bÁ¤0 + pX
j=1

bÁ¤jrdy¤T+k¡j +
qX
j=1

bµ¤jba¤T+k¡j + ba¤T+k; k = 1; 2; ::: (11)

where y¤T+k¡j = yT+k¡j, j > k, and ba¤T+k¡j = baT+k¡j, j > k; i.e., the last p + d

observations of the series and the last q residuals are …xed in order to obtain the

prediction density conditional on the observed data. Finally, in expression (11),ba¤T+k¡j; j < k; are random draws from bFa.
Once B bootstrap replicates of Y¤T+k are obtained, it is possible to construct a

bootstrap estimate of the distribution of YT+k conditional on fy1; : : : ; yT g and the
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corresponding prediction intervals. Pascual et al. (1998) prove that for the trans-

formed series fytg, Y ¤T+k ! YT+k in conditional probability, in probability, as the

sample size T goes to in…nity. They also show that the …nite sample properties

of the bootstrap procedure just described outperforms other alternative bootstrap

mechanisms proposed to compute prediction intervals in stationary AR(p) models.

However, the objective is to estimate the distribution of XT+k conditional on

fx1; : : : ; xT g. In this case, a new step has to be introduced in the described pro-

cedure. The bootstrap forecast k steps ahead for the variable in the original metric

is then obtained as

x¤T+k = g
¡1 ¡y¤T+k¢ ; k = 1; 2; ::: (12)

This procedure is repeated B times to obtain a set of B bootstrap replicates for

XT+k, say
³
x¤(1)T+k; : : : ; x

¤(B)
T+k

´
. Then, the prediction limits are de…ned as the quantiles

of the bootstrap distribution function of X¤
T+k; i.e., if G

¤(h) = Pr(X¤
T+k · h) is the

distribution function of X¤
T+k and its Monte Carlo estimate is G

¤
B(h) = #(x¤(b)T+k ·

h)=B; a 100®% prediction interval for X¤
T+k is given by

[L¤B ; U
¤
B] =

·
Q¤B

µ
1¡ ®
2

¶
; Q¤B

µ
1 + ®

2

¶¸
; (13)

where Q¤B = G
¤¡1
B .

Before summarizing the steps for obtaining bootstrap prediction densities and in-

tervals for XT+k, we illustrate the method with a simple example. Suppose that

after taking an adequate power-transformation, the sequence fy1; : : : ; yTg follows an
ARIMA(0,1,2) model without constant term

ryt = at + µ1at¡1 + µ2at¡2: (14)

Once the parameters of model (14) have been estimated and the bootstrap drawsba¤0;ba¤1; : : : ;ba¤T are available, a bootstrap replicate of the transformed series is con-
structed by

y¤t = y
¤
t¡1 + ba¤t + bµ1ba¤t¡1 + bµ2ba¤t¡2, t = 2; :::; T , (15)
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where y¤1 = y1. Then, bootstrap estimates bµ¤1 and bµ¤2 are obtained for the bootstrap
series and bootstrap replicates of future values of the transformed series are generated

by

y¤T+1 = yT + ba¤T+1 + bµ¤1baT + bµ¤2baT¡1
y¤T+2 = y¤T+1 + ba¤T+2 + bµ¤1ba¤T+1 + bµ¤2baT
y¤T+3 = y¤T+2 + ba¤T+3 + bµ¤1ba¤T+2 + bµ¤2ba¤T+1:

It is important to note that since the predictions are conditional on the sample in-

formation available at time T, in the recursions above baT and baT¡1 are kept …xed in
the di¤erent bootstrap replicates of y¤T+1 and y

¤
T+2 while ba¤T+1, ba¤T+2 and ba¤T+3 change

from one to another replicate. Finally, bootstrap replicates of future values of the

series in the original scale are generated by expression (12).

Now, we summarize all the steps needed for obtaining bootstrap prediction intervals

for XT+k:

Step 1. Compute the residuals bat as in (4) for the transformed series. Let bFa be
the empirical distribution function of the centered residuals.

Step 2. Generate a bootstrap series using the recursion in (10) and calculate the

estimates (bÁ¤0; bÁ¤1; : : : ; bÁ¤p;bµ¤1; : : : ;bµ¤q):
Step 3. Obtain a bootstrap future value for the transformed series by expression

(11). Note that the last p+d values of the transformed series and the …nal q residuals

are …xed in this step but not in the previous one.

Step 4. Obtain a bootstrap future value for the series in the original scale by

expression (12).

Step 5. Repeat the last four steps B times and then go to Step 6.

Step 6. The endpoints of the prediction interval are given by quantiles of G¤B; the

bootstrap distribution function of X¤
T+k, given by expression (13).

Alternatively, the bootstrap procedure just described could be also applied to con-
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struct prediction intervals conditional on the parameter estimates; hereafter CB (con-

ditional bootstrap). This procedure has been previously proposed by Cao et al. (1997)

for series fx1; : : : ; xT g following an AR(p) processes, and has been generalized by Pas-
cual et al. (2001) for the general ARIMA(p,d,q) processes. With this method, the

parameters are estimated once and these estimates are used in the calculation of all

bootstrap forecasts x¤T+k. The steps to obtain bootstrap forecasts are similar to those

presented above except that Step-2 is avoided since now it is not necessary to gen-

erate bootstrap replicates of the transformed series. Then, the expression to obtain

bootstrap future values for the transformed series in Step-3, is replaced by

rdy¤T+k = bÁ0 + pX
j=1

bÁjrdy¤T+k¡j +
qX
j=1

bµjba¤T+k¡j + ba¤T+k; k = 1; 2; :::;
where y¤T+k¡j and ba¤T+k¡j are de…ned as in (11). Since the parameter estimates are
kept …xed in all bootstrap replicates of future values, the CB prediction intervals do

not incorporate the uncertainty due to parameter estimation.

Notice that the estimated bootstrap density of XT+k can also be used to obtain a

bootstrap estimate of the expected value and/or the median of XT+k conditional on

the available series. These estimates can then be taken as point forecasts of XT+k.

Finally, using the asymptotic results in Pascual et al. (1998) and since g (¢) is
a known continuous invertible function, it is straightforward to prove using the

bootstrap version of the Continuity Theorem, that g¡1
¡
Y ¤T+k

¢ ! g¡1 (YT+k), i.e.,

X¤
T+k ! XT+k; in conditional probability, in probability, as T !1.

4. SMALL SAMPLE PROPERTIES

4.1 Monte Carlo design

We now describe the results of several Monte Carlo experiments carried out to

study the small-sample performance of the prediction intervals built by the alterna-
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tives considered in this paper. Prediction intervals built by the proposed bootstrap

procedure (PRR) are compared with CB intervals and with the non-bootstrap meth-

ods described in Section 2. As previously mentioned, PRR is the only approach that

does not condition on parameter estimates and then, introduces the variability due

to parameter estimation in the intervals. Comparing PRR with CB intervals, we

are studying the e¤ect of parameter estimation variability on the shape of estimated

prediction densities. The basic symmetric prediction intervals in (7) will be denoted

hereafter by STD1, the intervals based on retransforming the ends in (8) will be de-

noted by STD2, and …nally, the corrected by bias prediction intervals using (9) by

STD3.

The focus of the simulation experiments is on prediction of future values of a series

xt, such that a linear ARIMA(p,d,q) model is …tted to a power transformation of its

original values, say yt. We consider the following ARIMA processes,

yt = 0:95yt¡1 + at (16)

yt = 1:75yt¡1 ¡ 0:76yt¡2 + at (17)

and

yt = 0:7yt¡1 + at ¡ 0:3at¡1: (18)

The …rst two models considered are pure autoregressive with orders one and two

respectively, and the third one includes a moving average component. The AR(1)

model was chosen because the autoregressive polynomial has a root close to the non-

stationarity region. The AR(2) model was selected because it was one of the models

used by Thombs and Schucany (1990) in their seminal paper on using the bootstrap

to approximate prediction densities for AR(p) processes. Finally, the ARMA(1,1)

model was chosen to analyse the …nite sample properties of the proposed procedure

in models with moving average components.
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For each model considered, we generate arti…cial series with several choices of

error distributions, in particular, Gaussian, Student-t with 5 degrees of freedom,

and two asymmetric distributions, exponential (exponential+) and minus exponential

(exponential¡) respectively. In all cases, we have centered the errors to have zero

mean. With respect to the variance of the simulated errors, its value was chosen

to have reasonable values of the original series xt when the inverse transform was

taken to the yt series. These values are ¾2a =0.1, 0.01 and 0.5 for the AR(1), AR(2)

and ARMA(1,1) models respectively. Note that the coverage properties are exactly

the same whichever the value of the variance, and the only di¤erence appears in the

lengths of the prediction intervals.

We only report the results obtained for the logarithmic transformation, i.e. yt =

log (yt). It is important to note that the conclusions with other power transformations

and models considered are the same and, therefore, are not reported in this paper to

save space.

All the models for the log-transformed series are estimated by conditional QML. In

all cases, the sample sizes considered are 50 and 100. The prediction horizons under

study are k=1, 2 and 3, and the corresponding intervals are constructed with a nomi-

nal coverage 1-® equal to 0.80, 0.95 and 0.99. For each particular series generated by

any of the models considered, with a particular sample size and error distribution Fa,

we generated R=1000 future values of xT+k from that series and obtain 100(1¡ ®)%
prediction intervals, denoted by (LX ; UX) by each of the …ve procedures considered.

PRR and CB prediction intervals are constructed based on B=999 bootstrap repli-

cates. The conditional coverage of each procedure is computed by

b®¤X = #©L¤X · xrT+k · U¤Xª =R;
where xrT+k (r = 1,: : :,R) are future values of the variable generated previously.

The Monte Carlo results are based on 1000 replicates. Prediction intervals are
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compared in terms of average coverage and length, and the proportion of observations

lying out to the left and to the right through all Monte Carlo replicates.

Computations have been carried out in a HP-UX C360 workstation, using Fortran

77 and the corresponding subroutines of Numerical Recipes by Press et al. (1986).

4.2 Results of Monte Carlo experiments

The results of the Monte Carlo experiments for model (16) with Gaussian inno-

vations appear in table 1. First of all, as measured by interval content, the STD1

intervals appear to be about as accurate as STD2 and PRR at the 95% level. How-

ever, the interval content is somewhat misleading, because STD1 generate rather

biased one-sided prediction intervals; see the average of observations lying out to the

left and to the right. The results for the 80% prediction intervals are reported in

table 2, where it can be observed that the symmetric intervals have even a worse

performance, since in all cases the average coverage is over the nominal values. Addi-

tionally, notice that the accuracy of the STD1 intervals does not improve with sample

size. Therefore, the symmetric STD1 intervals seem to be not adequate to predict

future values of transformed variables. This e¤ect was also observed by Collins (1991)

in the context of regression models. As an illustration, …gure 1 plots the prediction

density corresponding to the STD1 intervals together with the empirical density. It is

rather obvious that the symmetric density is not adequated to represent the empirical

density of XT+k. Furthermore, notice that in tables 1 and 2 the average length of the

STD1 intervals is systematically larger than the empirical length.

Next, analyzing the behavior of the intervals based on (8) and (9) in tables 1 and

2, it is interesting to note that the use of the bias corrected STD3 intervals do not

improve in any case the results of the STD2 intervals. They have larger average

length than STD2 and the average observations left on the right and on the left is

clearly asymmetric. This means that using the debiasing factor (designed to obtain
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a better estimation of the conditional expectation in the original scale) for correcting

the bias of the prediction intervals does not seem to work for the cases considered in

this paper.

Comparing PRR and STD2 intervals, it is possible to observe that they have similar

performance in terms of both average coverage and length. The reason for the good

behavior of STD2 seems clear. In this case when taking logarithms of the original

observations, the resulting transformed series has normal errors, and therefore, the

usual Box and Jenkins (1976) and the PRR intervals have similar performance; see

Pascual et al. (1998). Consequently, when going back to the original metric this

similar behavior remains. In …gure 1, we also plot the density of XT+k corresponding

to retransforming YT+k as is done when constructing the STD2 intervals. Notice

that, although this density is closer to the empirical density than the one based on

STD1 intervals, the shape is still slightly di¤erent.

Finally, we concentrate on the comparison of PRR with respect to CB which does

not incorporate the parameter uncertainty variability. The results reported in table

1 show that CB intervals have lower average coverage than PRR, the latter having

average coverage closer to the nominal value. Therefore, it seems to be important to

include the uncertainty due to parameter estimation in prediction intervals in order

to obtain coverages close to the nominal values. The necessity of using PRR is more

evident for small sample sizes. As expected, since the conditional QML estimator

is consistent, CB and PRR intervals get closer in terms of coverage and length as

the sample size increases. The conclusions are essentially the same for predictions

made one, two and three steps ahead. In …gure 1, it is rather clear that the PRR

prediction density is closer to the empirical density than the CB and STD2 densities.

The densities plotted in …gure 1 also show that the STD2 and CB densities are rather

close. This could be due to the fact that, in this case, the improvement of PRR over

STD2 intervals is not due to the distribution of the forecast errors but to the inclusion
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of the variability due to parameter estimation.

Table 3 reports the Monte Carlo results for the 80% prediction intervals for log-

transformed series generated by the AR(1) model with innovations generated by a

Student-t with 5 degrees of freedom. The conclusions with respect the STD1, STD3

and CB intervals are the same as before. In this table it is also possible to observe

the improvement of PRR with respect to STD2 intervals. In this case, the average

coverage and lengths of the STD2 intervals are larger than nominal values, and what is

even more important, this bad behavior does not improve as the sample size increases.

Remember that the STD2 intervals are built assuming that the transformed variable

Yt is normal. Therefore, as soon as this assumption is not satis…ed, the intervals do

not have the usual properties. Figure 2 illustrates the results for a particular series

generated by model (16) with Student-5 innovations with T=100. The conclusions

from this picture are as previously. The PRR density is closer to the empirical density

than any of the others. The symmetric density is clearly inadequated and the STD2

and CB densities are very similar.

Table 4 reports the results for the 80% prediction intervals for log-transformed series

generated by the AR(2) model with exponential+ innovations. The non-bootstrap

methods have in general average coverage and length over nominal values and, as

the sample size increases this bad behavior tends to be even worse. They are not

able to cope with the asymmetry of the transformed series Yt. Notice that the PRR

intervals have an adequated performance and additionally, as the sample size gets

bigger, its average coverage and, as expected, length measures get closer to nominal

values, given the asymptotic properties mentioned in section 3. Also, notice that

in this case the necessity of introducing the variability due to parameter estimation

by the use of PRR is crucial even for large sample sizes. For this asymmetric to the

right distribution, CB intervals have lower average coverage than PRR. Figure 3 plots

kernel estimates of the densities obtained for a particular replicate in this case. It is
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possible to observe that the non-bootstrap densities do not resemble the shape of the

empirical density while the PRR density is able to mimic it.

Finally, table 5 shows the results obtained when generating series by the ARMA(1,1)

model in (18) with exponential¡ errors for the 95% prediction intervals. Once more,

we can observe that the STD1 intervals are not able to cope with the asymmetric

shape of the density of XT+k. Notice that in this case, the STD2 intervals have aver-

age lengths too large when compared with the empirical length and that this problem

is still severe for samples as large as 100 observations. Figure 4 plots the kernel den-

sities obtained for a particular replicate generated by this model with exponential¡

innovations and T=100. The conclusions are the same as in the previous pictures,

and again, PRR density is the closest to the empirical one. Therefore, the proposed

procedure seems to behave properly in models with moving average components.

Summarizing, PRR intervals perform as well as STD2 intervals when the innova-

tions of the transformed data are well approximated by a normal distribution and,

outperform the existing procedures when this distribution di¤ers from the Gaussian

one, a situation frequently found when working with real data. Furthermore, the

symmetric intervals based on (7) are shown to have poor properties even when the

transformed data are Gaussian. The bias correcting factor for the end of the pre-

diction intervals in (8) proposed by Guerrero (1993) is also shown not to improve

the properties of the non corrected intervals. Finally, we have shown that including

the uncertainty due to estimation of the parameters of the model in the bootstrap

prediction intervals may be crucial depending on the distribution of the transformed

data.

5. REAL DATA APPLICATIONS

In this section, we illustrate empirically the use of the suggested bootstrap method

to construct prediction intervals for transformed variables. We start considering the
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Sales Data, studied …rstly by Chat…eld and Prothero (1973) and latter by Pankratz

and Dudley (1987) and Guerrero (1993) among others. The series, plotted in …gure

5a, consists on 77 observations of the monthly sales of an engineering product with

a marked trend and a strong seasonal pattern. Since the size of the seasonal e¤ect

increases with the mean level of sales, Chat…eld and Prothero used originally the log-

transformation; however, this transformation was criticized by Wilson (1973) who

found by maximum likelihood that a more convenient power transformation was b̧ =
0:34. This found was latter supported by Guerrero (1993). Therefore, we will consider

¸ = 1
3
as known. Figure 5b represents the transformed observations. The model

…nally …tted to the transformed data is

(1¡ ÁB) ¢¢12yt =
¡
1¡£B12¢ at (19)

where yt = x
1=3
t , xt denotes the original series and B is the backshift operator. The

…rst 65 observations of the series, corresponding to the period from January 1965

up to May 1970, are used to estimate the parameters of model (19). The last 12

observations, corresponding to the period from June 1970 up to May 1971, are used to

assess the predictive performance of the STD2, STD3 and PRR prediction intervals.

Note that for this particular transformation STD1 prediction intervals can not be

computed since no formulas for the variance of the prediction error of xt are available.

The QML estimates are bÁ = ¡0:5437 and b£ = 0:5466. A kernel estimate of the

residuals density together with the normal density appear in Figure 6. The empirical

distribution of the residuals has a long tail to the left. The skewness coe¢cient is

-0.2946, and the excess kurtosis is 0.065, with the former signi…cantly di¤erent from

zero.

Then, we implement the procedure proposed by Pascual et al. (1998) to construct

prediction densities of the transformed variable y65+k for k = 1; : : : ; 12. The estimated

density for lead time 1 together with the normal density, appears in …gure 7. In this
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…gure, it can be observed that the bootstrap density has the same asymmetry to

the left observed in the residuals distribution. Additionally, using the estimated

bootstrap densities we construct prediction intervals for futures values of the variable

in the transformed scale.

Finally, we implement the new procedure to construct prediction densities and

prediction intervals for future values of the variable in the original scale. Figure 8

plots the prediction intervals for XT+k constructed using the bootstrap procedure

and the retransformed ends. Notice that the bootstrap intervals are able to capture

the asymmetry inherent in the prediction densities, and have lower length than the

standard intervals in almost all forecast horizons. In table 6 that reports the interval

lengths for some selected horizons, it can be observed that the bootstrap intervals are

always thinner than the STD2 intervals.

In this case, using the mean or the median of the bootstrap density does not

improve the mean squared prediction error over the retransformed point predictions.

Next, we analyze two economic time series, the U.S. dollar-pound real exchange

rate (RXR) and the ratio of nonborrowed of total reserves (NBRX). These series

are studied by Kilian (1998) in the context of VAR models, where can be seen that

the residuals clearly reject the normality assumption. Both series consists on 197

observations, where the …rst 173 are used to estimate the parameters of the ARIMA

model …tted to the log-transformed data, and the last 24 observations are used to

asses the predictive performance of the methods considered in this section.

The …nal model …tted to the log-RXR series is

¢yt = (1 + 0:401B)bat (20)

with yt = log (xt) and xt been the original series. Figure 9 shows a kernel estimate

of the residuals density together with the normal density. The skewness coe¢cient is

0.2112, and the excess kurtosis is 0.37, with the former di¤erent from zero. Figure
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10 shows PRR and STD2 prediction intervals at 80%. It is clear how at the 80%

level, the bootstrap intervals have a better behavior in terms of coverage since only

one observation lies out of the bootstrap limits but three observations lie out of the

STD2 intervals.

Finally, the model …tted to the log-NBRX data is

yt = ¡0:031 + 0:8481yt¡1 (21)

with yt = log (xt), where xt is the original series. In …gure 11 is shown a kernel

estimate of the residuals density together with the normal density. The skewness

coe¢cient is -0.9071, and the excess kurtosis is 6.50, both signi…cantly di¤erent from

zero. Therefore, the usual assumption of normality is clearly rejected. In …gure 12

can be seen again how the bootstrap prediction intervals capture the asymmetry and

kurtosis inherent in the residuals, and consequently in the prediction densities. It

is important to note that the length of the bootstrap intervals are shorter than the

STD2 ones.

6. SUMMARY AND CONCLUSIONS

This paper extends the bootstrap technique proposed by Pascual et al. (1998)

to construct prediction intervals for a variable after a linear ARIMA model is …tted

to a power transformation of it. In this situation, there is no generally accepted

method of computing prediction intervals. The proposed resampling scheme does

not assume any distribution for the errors neither in the original nor in the trans-

formed metrics and, at the same time, allows to incorporate the variability due to

parameter estimation. By means of Monte Carlo experiments, we compare the …nite

sample performance of alternative methods previously proposed in the literature to

construct prediction intervals for power-transformed series with the bootstrap ap-

proach proposed in this paper. There are two main alternatives. The …rst one based
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on Granger and Newbold (1976) assumes a symmetric distribution for both the orig-

inal and the transformed variable and can only be implemented for logarithmic and

root squared transformations. These prediction intervals ignore the skewness and all

higher moments of the variable of interest. As a result, this approach will generate

biased one-sided prediction intervals.

The second alternative is based on retransforming the ends of the prediction inter-

vals for the transformed variable. In this case, only Gaussianity of the transformed

variable is needed. None of these intervals are able to take into account the un-

certainty due to estimation of the parameters. The intervals constructed simply by

retransforming the upper and lower values of the usual prediction intervals for the

transformed series have only good properties when the transformed series has normal

errors. In this case, the usual Box-Jenkins intervals for the variable in the trans-

formed metric have very good properties, and then, when going back to the original

scale, this good behavior remains. The results show that for nonnormal innovations,

these prediction intervals can be heavily distorted. The bias-correction proposed by

Guerrero (1993) does not improve the results for the cases considered in this paper.

The bootstrap intervals seem to have appropriate properties.

We also analyze how coverage and length of prediction intervals are a¤ected by not

taking into account the variability due to parameter estimation. We show that the

average coverage of the intervals is closer to the nominal value when intervals are con-

structed incorporating parameter uncertainty. As expected, since we are considering

consistent estimators, the e¤ects of parameter estimation are particularly important

for small sample sizes. Furthermore, these e¤ects are more important when the error

distribution is not Gaussian; see also Pascual et al. (2001).

To conclude, the bootstrap approach presented in this paper seems to have rea-

sonable properties when prediction intervals are required for a variable after a power

transformation is taken to its original values. This approach gives prediction intervals
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with a reasonable …nite sample performance in terms of average coverage and average

length with both normal and nonnormal distributions of the innovations. Addition-

ally, this method not only gives prediction intervals but also provides estimates of

the prediction density function of the variable in its original scale. As expected, its

behavior improves as the sample size increases.

Finally, the behavior of the PRR technique is illustrated with the analysis of three

real time series. It is shown that the PRR intervals are shorter than the retransformed

intervals having better coverage properties.
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Table 1

Monte Carlo results for AR(1) model w ith Gauss ian erro rs.

Lead Sample Average Coverage Average

time s ize Method coverage be low/ab ove length

1 n Empirical 95% 2.5% /2.5% 2.04

50 STD1 94.96 (.0 3) .33/4 .71 2.12(2.81 )

STD2 94.23 (.0 3) 2 .90/2.86 2.09(2.77 )

STD3 93.94 (.0 3) 4 .00/2.06 2.20(2.93 )

CB 92.43 (.0 4) 3 .77/3.80 2.02(2.74 )

PRR 93.45 (.0 3) 3 .32/3.23 2.06(2.76 )

100 STD1 95.24 (.0 2) .22/4 .54 2.09(2.68 )

STD2 94.63 (.0 2) 2 .67/2.70 2.06(2.65 )

STD3 94.34 (.0 2) 3 .76/1.90 2.18(2.79 )

CB 93.83 (.0 3) 3 .08/3.09 2.05(2.71 )

PRR 94.10 (.0 2) 2 .92/2.98 2.04(2.62 )

2 n Empirical 95% 2.5% /2.5% 2.86

50 STD1 94.54 (.0 3) .07/5 .39 3.04(4.26 )

STD2 93.65 (.0 3) 3 .18/3.17 2.97(4.14 )

STD3 93.10 (.0 3) 4 .84/2.05 3.28(4.62 )

CB 92.81 (.0 4) 3 .53/3.65 2.89(4.06 )

PRR 93.32 (.0 3) 3 .32/3.36 2.87(4.04 )

100 STD1 94.93 (.0 2) .01/5 .06 2.98(3.86 )

STD2 94.33 (.0 2) 2 .79/2.87 2.91(3.75 )

STD3 93.83 (.0 2) 4 .39/1.78 3.20(4.17 )

CB 93.91 (.0 2) 2 .93/3.16 2.85(3.68 )

PRR 94.04 (.0 2) 2 .89/3.06 2.82(3.51 )

3 n Empirical 95% 2.5% /2.5% 3.44

50 STD1 94.15 (.0 4) .04/5 .80 3.80(5.64 )

STD2 93.11 (.0 4) 3 .47/3.42 3.65(5.38 )

STD3 92.38 (.0 4) 5 .54/2.08 4.21(6.34 )

CB 92.31 (.0 4) 3 .79/3.90 3.55(5.31 )

PRR 92.87 (.0 4) 3 .56/3.57 3.50(5.18 )

100 STD1 94.69 (.0 3) .00/5 .31 3.68(4.82 )

STD2 94.05 (.0 3) 2 .93/3.01 3.54(4.62 )

STD3 93.34 (.0 3) 4 .91/1.74 4.07(5.38 )

CB 93.65 (.0 3) 3 .07/3.28 3.48(4.58 )

PRR 93.78 (.0 3) 3 .03/3.19 3.40(4.32 )

Quantities in parenthesis are standard deviations.
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Table 2

Monte Carlo results for AR(1) model w ith Gauss ian erro rs.

Lead Sample Average Coverage Average

time s ize Method coverage be low/ab ove length

1 n Empirical 80% 10%/10% 1.29

50 STD1 82.29 (.0 5) 6.79/10.92 1.38(1.84 )

STD2 78.98 (.0 5) 10 .53/10.49 1.31(1.74 )

STD3 78.43 (.0 5) 13.57/8.00 1.38(1.84 )

CB 77.98 (.0 6) 11 .04/10.98 1.29(1.67 )

PRR 78.97 (.0 5) 10 .58/10.45 1.30(1.70 )

100 STD1 82.83 (.0 4) 6.44/10.73 1.37(1.75 )

STD2 79.51 (.0 4) 10 .18/10.30 1.30(1.66 )

STD3 78.98 (.0 4) 13.23/7.79 1.37(1.75 )

CB 79.01 (.0 4) 10 .36/10.62 1.29(1.66 )

PRR 79.46 (.0 4) 10 .18/10.36 1.29(1.62 )

2 n Empirical 80% 10%/10% 1.75

50 STD1 84.21 (.0 6) 4.73/11.06 1.99(2.78 )

STD2 78.01 (.0 6) 11 .03/10.96 1.81(2.50 )

STD3 76.94 (.0 6) 15.36/7.70 1.99(2.79 )

CB 77.23 (.0 6) 11 .37/11.39 1.77(2.44 )

PRR 78.06 (.0 6) 11 .05/10.89 1.76(2.42 )

100 STD1 85.27 (.0 4) 4.10/10.63 1.95(2.52 )

STD2 79.01 (.0 4) 10 .45/10.55 1.77(2.28 )

STD3 78.01 (.0 4) 14.75/7.25 1.95(2.53 )

CB 78.67 (.0 4) 10 .59/10.74 1.76(2.27 )

PRR 78.93 (.0 4) 10 .48/10.59 1.74(2.18 )

3 n Empirical 80% 10%/10% 2.05

50 STD1 85.57 (.0 7) 3.24/11.19 2.48(3.68 )

STD2 77.15 (.0 6) 11 .43/11.42 2.16(3.14 )

STD3 75.76 (.0 6) 16.67/7.57 2.49(3.69 )

CB 76.38 (.0 6) 11 .81/11.81 2.12(3.06 )

PRR 77.20 (.0 7) 11 .46/11.33 2.07(2.99 )

100 STD1 87.05 (.0 5) 2.40/10.55 2.40(3.15 )

STD2 78.59 (.0 4) 10 .62/10.79 2.10(2.71 )

STD3 77.11 (.0 4) 15.92/6.98 2.41(3.16 )

CB 78.20 (.0 5) 10 .77/10.03 2.08(2.71 )

PRR 78.45 (.0 5) 10 .68/10.87 2.04(2.54 )

Quantities in parenthesis are standard deviations.
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Table 3

Monte Carlo results for AR(1) model w ith Student-5 erro rs.

Lead Sample Average Coverage Average

time s ize Method coverage be low/ab ove length

1 n Empirical 80% 10%/10% 1.12

50 STD1 84.82 (.0 6) 6 .01/9.17 1.55(2.75 )

STD2 82.40 (.0 6) 8 .76/8.83 1.47(2.58 )

STD3 81.89 (.0 6) 11.15/6.97 1.55(2.76 )

CB 78.06 (.0 6) 10 .91/11.03 1.30(2.29 )

PRR 79.15 (.0 6) 10 .35/10.50 1.31(2.28 )

100 STD1 85.55 (.0 4) 5 .64/8.81 1.34(1.89 )

STD2 83.14 (.0 4) 8 .38/8.48 1.28(1.78 )

STD3 82.63 (.0 4) 10.74/6.63 1.35(1.90 )

CB 79.21 (.0 4) 10 .23/10.55 1.14(1.56 )

PRR 79.54 (.0 4) 10 .15/10.31 1.14(1.59 )

2 n Empirical 80% 10%/10% 1.58

50 STD1 84.98 (.0 7) 4.92/10.11 2.28(4.73 )

STD2 80.05 (.0 7) 9.95/10.00 2.05(4.18 )

STD3 79.02 (.0 7) 13.71/7.26 2.29(4.75 )

CB 77.40 (.0 7) 11 .21/11.38 1.91(3.90 )

PRR 78.48 (.0 8) 10 .69/10.83 1.88(3.96 )

100 STD1 86.18 (.0 5) 4 .30/9.52 1.91(2.74 )

STD2 81.23 (.0 5) 9 .34/9.43 1.74(2.43 )

STD3 80.25 (.0 4) 13.08/6.68 1.92(2.75 )

CB 78.71 (.0 4) 10 .55/10.74 1.62(2.27 )

PRR 79.01 (.0 4) 10 .46/10.53 1.60(2.19 )

3 n Empirical 80% 10%/10% 1.89

50 STD1 85.52 (.0 8) 3.85/10.63 2.93(7.47 )

STD2 78.51 (.0 8) 10 .68/10.81 2.50(6.22 )

STD3 77.05 (.0 8) 15.47/7.48 2.93(7.49 )

CB 76.44 (.0 8) 11 .66/11.89 2.38(6.11 )

PRR 77.54 (.0 8) 11 .14/11.32 2.31(6.01 )

100 STD1 87.24 (.0 5) 3 .01/9.75 2.36(3.43 )

STD2 80.18 (.0 5) 9 .86/9.96 2.05(2.88 )

STD3 78.75 (.0 5) 14.59/6.65 2.37(3.45 )

CB 78.36 (.0 5) 10 .72/10.91 1.95(2.77 )

PRR 78.38 (.0 5) 10 .75/10.87 1.90(2.62 )

Quantities in parenthesis are standard deviations.
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Tab le 4

Monte Carlo resu lts for AR(2 ) model with Exponential+ errors.

Lead Sample A verage Coverag e Average

tim e size M ethod coverag e b elow/above length

1 n Empirical 80% 10%/10% 0.75

50 STD1 86.49(.07) 1.96/11.54 1.13(5.79 )

STD2 86.33(.07) 2.36/11.31 1.13(5.72 )

STD3 86.29(.08) 2.90/10.81 1.13(5.79 )

CB 75.86(.13) 12.76/11.37 .93 (3.95)

PRR 77.91(.12) 11.35/10.74 1.01(4.81 )

100 STD1 88.43(.04) .5 6/11 .01 .96 (3.87)

STD2 88.43(.04) .8 1/10 .76 .96 (3.84)

STD3 88.53(.05) 1.20/10.27 .96 (3.87)

CB 77.48(.11) 11.79/10.71 .84 (3.40)

PRR 78.77(.10) 10.82/10.41 .86 (3.47)

2 n Empirical 80% 10%/10% 1.64

50 STD1 83.00(.09) 4.38/12.62 2.44(13 .5 )

STD2 81.61(.10) 6.13/12.26 2.35(12 .9 )

STD3 80.57(.10) 8.26/11.17 2.44 (13.58)

CB 74.77(.11) 13.31/11.91 2.25(12 .9 )

PRR 77.09(.11) 11.75/11.16 2.35(13 .5 )

100 STD1 85.87(.05) 2.46/11.67 2.10(9.57 )

STD2 84.54(.06) 4.15/11.30 2.05(9.27 )

STD3 83.41(.07) 6.37/10.22 2.11(9.58 )

CB 77.13(.08) 11.93/10.94 1.91(8.54 )

PRR 78.24(.09) 11.13/10.63 1.95(8.71 )

3 n Empirical 80% 10%/10% 2.60

50 STD1 81.54(.10) 5.02/13.44 4.06(24 .7 )

STD2 78.40(.11) 8.49/13.11 3.74(21 .9 )

STD3 76.60(.12) 12.01/11.38 4.08(24 .8 )

CB 73.53(.11) 13.88/12.59 3.80 (24.35)

PRR 76.08(.11) 12.21/11.71 3.76(22 .7 )

100 STD1 85.00(.06) 2.91/12.09 3.53(18 .0 )

STD2 81.82(.07) 6.40/11.77 3.31(16 .6 )

STD3 79.74(.08) 10.22/10.04 3.53 (18.04)

CB 76.65(.08) 12.08/11.26 3.22(16 .4 )

PRR 77.67(.08) 11.38/10.94 3.19(15 .7 )

Quantities in pa renthesis are standard deviations.
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Table 5

Monte Carlo results for ARMA(1,1) model with Exponential¡ errors .

Lead Sample Average Coverage Average

time s ize Method coverage be low/ab ove length

1 n Empirical 95% 2 .5% /2.5% 1.99

50 STD1 99.67 (.0 3) .0 6/.27 4.43(2.35 )

STD2 94.10 (.0 3) 5.81/ .09 4.02(1.88 )

STD3 91.98 (.0 3) 8.00/ .02 5.38(3.29 )

CB 90.90 (.0 9) 3 .79/5.31 2 .07(.78)

PRR 94.27 (.0 6) 3 .44/2.28 2 .28(.74)

100 STD1 99.99 (.0 1) .0 1/.00 4.41(1.84 )

STD2 94.44 (.0 2) 5.56/ .00 4.05(1.58 )

STD3 92.25 (.0 2) 7.75/ .00 5.29(2.41 )

CB 93.18 (.0 6) 3 .10/3.72 2 .07(.70)

PRR 94.91 (.0 5) 3 .02/2.07 2 .15(.68)

2 n Empirical 95% 2 .5% /2.5% 2.37

50 STD1 99.57 (.0 2) .0 2/.41 5.44(3.27 )

STD2 94.46 (.0 3) 5.44/ .10 4.74(2.20 )

STD3 92.00 (.0 4) 7.98/ .02 6.90(5.09 )

CB 91.35 (.0 8) 3 .57/5.08 2 .43(.77)

PRR 93.75 (.0 6) 3 .31/2.94 2 .60(.75)

100 STD1 99.92 (.0 1) .0 0/.08 5.29(2.21 )

STD2 94.95 (.0 2) 5.04/ .01 4.70(1.70 )

STD3 92.43 (.0 2) 7.57/ .00 6.59(3.19 )

CB 93.20 (.0 5) 3 .03/3.76 2 .41(.66)

PRR 94.32 (.0 4) 2 .93/2.75 2 .49(.64)

3 n Empirical 95% 2 .5% /2.5% 2.58

50 STD1 99.28 (.0 3) .0 1/.71 5.56(3.42 )

STD2 94.29 (.0 4) 5.53/ .19 4.80(2.15 )

STD3 91.78 (.0 3) 8.17/ .05 7.12(5.49 )

CB 91.33 (.0 7) 3 .56/5.11 2 .60(.77)

PRR 93.48 (.0 5) 3 .33/3.19 2 .77(.78)

100 STD1 99.77 (.0 1) .0 0/.23 5.38(2.15 )

STD2 94.83 (.0 2) 5.14/ .03 4.75(1.59 )

STD3 92.19 (.0 2) 7.81/ .00 6.75(3.20 )

CB 93.06 (.0 5) 3 .03/3.91 2 .59(.63)

PRR 93.93 (.0 4) 2 .97/3.09 2 .67(.63)

Quantities in parenthesis are standard deviations.
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Forecast horizon

Nominal Method 1 2 4 6 8 12

80% STD2 108.28 132.86 268.63 400.23 399.38 258.86

PRR 105.30 132.51 257.79 388.62 376.98 258.08

95% STD2 166.18 203.94 412.48 614.75 614.31 401.13

PRR 174.73 203.48 394.92 604.09 608.20 389.36

99% STD2 221.09 271.38 549.16 818.80 819.73 540.45

PRR 217.56 260.74 523.04 753.21 801.73 558.21

Table 6. Naive (STD2) and Bootstrap (PRR) interval lengths for the Sales Data.
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