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1 Introduction

Boundary value problems (BVP) typically arise from the application of the
Pontryagin’s maximum principle to control optimum problems with finite time
horizon, a common way to study the dynamics of growth models. Unfortu-
nately, BVP usually cannot be solved analytically and the use of some numerical
method is required. Despite the rapid growth on numerical methods for approx-
imating solutions to continuous-time models (for recent survey see Rust (1996),
Santos (1999), the text by Judd (1998) and the collection of essays edited by
Marimon and Scott (1999)), few algorithms have been developed to cope with
boundary conditions.
We present a wavelets-collocation method for solving BVP derived from the

recursive rules of the trapezoidal approach. The first part of the paper is devoted
to the computation of deterministic BVP, whilst the second part extends these
results to the stochastic problem.
Given a continuous function f : RR+1 → R

R, and a vector of continuous
linear functionals α = (α1, ..., αR)

′
, with αj : C1 ([a, b])

R → R linearly inde-
pendent, suppose that we are interested in solving the following deterministic
boundary value problem:

Dy (t) = f (t, y) ,
α (y) = c,

where y = (y1, .., yR)
′
, yj ∈ C1 ([a, b]) for j = 1, ..., R. This boundary condition

specification α (y) = c includes most of the initial and boundary value problems
considered in macroeconomic analysis. In particular, we are concerned with
the boundary conditions of the form y (t) = 0 for some t ∈ [a, b] , or other

more general specifications such as α (y) =
∑K
k=1Aky (tk), where Ak is an

R−dimensional square matrix and tk ∈ [a, b].
Shooting methods are probably the most popular numerical method for solv-

ing BVP. A shooting method is a successive substitution method based on the
idea of guessing the initial condition which associate solution satisfies the desired
boundary condition. Then, any finite-difference algorithm can be considered to
solve this “new” initial value problem. For details see Ascher et al (1995),
Roberts and Shipman (1972) and Keller (1976). Unfortunately, these meth-
ods can be quite inefficient as they may often converge quite slowly, or not at
all, and a wrong guess could substantially increases the computer time. Fur-
thermore, the numerical errors can be magnified. The possible difficulties with
shooting methods are frequently discussed in the literature, see Conte (1966),
Keller (1968, 1976), and Osborne (1969) for example.
As an alternative, boundary value problems can be solved using some projection-

based method, such as Galerkin or collocation techniques. In particular, those
based on splines are commonly used, see Varga (1971), Russell and Shampine
(1972), Lucas and Reddien (1972), de Boor and Schwartz (1973), and Prenter
(1975), for example. In this context collocation methods often have better
performance than Galerkin methods, but the choice of the collocation points
greatly influences the effectiveness of the method. Furthermore, if the solution
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path exhibit some abrupt changes, the approximation could be inaccurate.
In numerical analysis, the discovery of compactly supported wavelets has

proven to be a useful tool for the approximation of functions, differential and
integral operators. The use of wavelets based algorithms is superficially similar
to other projection methods, but these algorithms are more efficient because of
the localization of wavelet bases in both space and frequency domain. Therefore,
the approximation of a function using wavelets bases may be advantageous when
it exhibits abrupt changes. Wavelets have been applied to a wide range of
problems such as signal processing, image analysis, data compression and time
series econometrics.
The proposed method exploits the good approximation properties of wavelets.

Moreover, being a collocation-based approach, this algorithm is flexible enough
to deal with complex boundary conditions. Furthermore, the use of trapezoidal
discretization avoids the numerical instabilities often observed in many algo-
rithms for solving differential equations, and also offers a great advantage in
terms of cost as it does not require the computation of wavelets derivatives.
However, others finite-iterative methods, such as high-order Runge-Kutta ap-
proximations, could be considered under some high order differentiability re-
quirements.
Often, associated with the Euler’s equation and the transversality conditions

there are additional inequality constraints on the states or/and controls. For
example, many economic models with borrowing constraints have been consid-
ered extensively in growth theory. Using the wavelets-collocation method pro-
posed, we also present an algorithm to deal with inequality constraints based
on interior-point algorithms.
The rest of the paper is organized as follows. Section 2 is devoted to present

the method for a deterministic BVP and some examples that illustrate the good
performance of the algorithm (Annexo A presents a MATLAB code for solving
a simple example). Section 3 presents the theoretical convergence analysis. In
Section 3 we study the extension to the stochastic BVP. All the proofs can be
found in Annexo B.

2 Algorithm for deterministic BVP

The main idea of the proposed method is the use of a wavelet-collocation ap-
proach for the solution of the finite-difference approximation of the BVP. With
this end in view, we first introduce the main concepts of wavelet approximation.
Let L2 (R) denote the vector space of all classes of Lebesgue-measurable

functions y defined almost everywhere on R (we identify functions that are

equal almost everywhere) such that
∫
|y (t)|2 dt <∞.

Let consider a sequence of closed subspaces {Vn}n∈Z which is monotonously
increasing Vn ⊂ Vn+1, for all n ∈ Z, and satisfies

⋂
n∈Z Vn = {0} , and

⋃
n∈Z Vn is

dense in L2 (R) . In particular we say that {Vn}n∈Z is a multiresolution if each
subspace Vn is the span of an orthonormal basis

{
φn,k

}
k∈Z

, with φn,k (t) =
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2n/2φ (2nt− k) and φ ∈ L2 (R), is known as the father wavelet. This idea was
introduced by Mallat (1989).
As
{
φn,k

}
k∈Z

are orthonormal, if ΠVn (y) denote the orthogonal projection

of an arbitrary y ∈ L2 (R) into Vn, then

ΠVn (y) (t) =
∑

k∈Z

〈
y, φn,k

〉
L2

φn,k (t) . (1)

Whenever φ has compact support, for each t ∈ R the summation in (1) contains
a finite number of non null terms. Otherwise it should be truncated for practical
applications. If {Vn}n∈Z is a multiresolution, then

y (t) = lim
n→∞

ΠVn (y) (t) = lim
n→∞

∑

k∈Z

〈
y, φn,k

〉
L2

φn,k (t) .

in L2 sense, which means that ‖y −ΠVn (y)‖L2 → 0 as n → ∞. Under appro-
priate conditions, the approximation property holds in the supremum norm, for
y (t) continuous with compact support. The wavelet analysis can be analogously
established for L2 ([a, b]), taking a wavelet multiresolution {Vn}∞n=1 , where φ is
supported on [a, b] .
In practice, one of the most popular wavelets systems in L2 (R) is the

compact-valued wavelet proposed by Daubechies (1992). Similar wavelets can
be established for L2 ([a, b]), see Daubechies (1994) for a detailed review. Some
wavelets basis, for example the Daubechies basis of order N , also approximate
the derivatives of smooth functions y. LetW q

2 (R) the Sobolev space of functions
weakly differentiable up to order q with derivatives square integrable. Then, it
can be established that for any y ∈W q

2 (R) with q ≤ N

Dmy (t) = lim
n→∞

∑

k∈Z

〈
y, φn,k

〉
L2

Dmφn,k (t)

for any derivative of order m ≤ q. Furthermore, when y ∈ Cq (R) and have
compact support the convergence is uniform.
Whenever φ has compact support as Daubechies wavelets, a finite set of

functions φn,k is just needed to approximate y (t) for any t. In particular, we
only consider those functions φn,k which support contains t. Therefore, as we
only use local information at each point t, wavelets provide particularly good
performance when non smooth functions y (t) are approximated. However, when
a smooth path is considered, splines and other polynomial basis could be rec-
ommendable.
The first wavelet basis can be at least traced to the Haar (1910) work, but

the theoretical foundations of wavelets have been established by physicians and
mathematicians from the early 30’s to the 80’s. The interest on wavelets has
increased since Mallat (1989) and Meyer (1992) introduced the use of multires-
olution as a framework to study wavelets expansions. A historical perspective
can be found in Daubechies (1992) and Meyer (1993). Excellent monographs in
wavelets are Chui (1992), Daubechies (1992), Meyer (1992, 1993) and Walnut
(2001).
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In order to consider the wavelet approximation of a vector of R functions
y (t) = (y1 (t) , ..., yR (t))

′ , we will use the following notation throughout the
remainder of the paper

ΠVn (y) (t) =
∑

k∈Z

θRn,k φn,k (t) ,

where θRn,k ∈ RR is a vector of coefficients.
The second step is the choice of an appropriate finite-difference approxima-

tion for the BVP. We will consider the trapezoidal approach

yn (ti)− yn (ti−1) =
hn
2
(f (ti, yn (ti)) + f (ti−1, yn (ti−1))) ,

α (yn) = c,

where hn = (ti − ti−1) , due to its good stability properties and its applicabil-
ity to systems without high order differentiability requirements. Nevertheless,
under higher order differentiability, we could consider other high-order approx-
imations such as Runge-Kutta approaches.
Thus, the third and final step consists of applying the wavelet-collocation

method to the trapezoidal approximation yn ∈ Vn, and the problem to find the
solution of the BVP is reduced to solve the following system of equations in
θRn,k ∈ RR,

∑

k∈Z

θRn,k
(
φn,k (ti,n)− φn,k (ti−1,n)

)

=
hn
2

(
f

(
ti,n,

∑

k∈Z

θRn,k φn,k (ti,n)

)
+ f

(
ti−1,n,

∑

k∈Z

θRn,k φn,k (ti−1,n)

))
,

∑

k∈Z

θRn,k α
(
φn,k

)
= c,

at the points ti,n = 2−ni, i ∈ Z, taking values in [a, b]. Let H (θ) = 0 denote this
system of equations. Whenever f is linear, this system is solved analytically in{
θRn,k

}
. Otherwise, it is solved numerically by Newton methods. An additional

advantage of the method, is that it does not require the computation of the
derivatives DΠVn (yn) =

∑
k∈Z θ

R
n,k Dφn,k, i.e. the computation of Dφn,k.

Note that the order N of the Daubechies wavelets determines the support
of φ, and as a consequence, it could be necessary to consider a change of scale
such that the support of function y is similar to the support of φ (see Example
2).

In Annexo A we present a MATLAB code to solve the stiff problem
•
y+y = 0,

y (0) = 1, that illustrates how to compute the solution of a simple differential
problem using the proposed method. Next we present some BVP examples to
illustrate the proposed approach. The algorithm has been implemented, and
the tests have been carried out, on MATLAB 6.0.
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Example 1 A two-body problem.

Consider the periodic problem:

••
y = −y√

y2+z2
, y (0) = 1,

•
y (0) = 0,

••
z = −z√

y2+z2
, z (0) = 0,

•
z (0) = 1,

(2)

whose analytical solution is given by y (t) = cos t, z (t) = sin t. We rewrite
Problem (2) as

•
y = u,

•
u =

−y√
y2 + z2

, y (0) = 1, u (0) = 0,

•
z = v,

•
v =

−z√
y2 + z2

, z (0) = 1, v (0) = 0.

For a step size h = 2−2 over [0, 1], N = 3, n = 2, the proposed method
obtains the approximation to its solution with an error of 10−3. In Figure 1, we
present a detail of the results:
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Fig. 1. Numerical resolution of Example 1, with N = 3, n = 2.

Previously, we have presented a methodology to solve BVP. But, as we
mentioned before, often variables y (t)must satisfy inequality constraints. Using
the method describe above, we also propose an algorithm to deal with these
inequalities based on interior-point methods.
Consider the BVP with y (t) ≥ 0, for example. As yn ∈ Vn, it is satisfied

ΠVn (y) (ti,n) =
∑
k∈Z θ

R
n,kφ

R
n,k (ti,n) ≥ 0 at the points ti,n = 2−ni, i ∈ Z.

These inequalities can be transformed into equations by adding nonnegative
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slack variables, si,n as: ΠVn (y) (ti,n) − si,n =
∑
k∈Z θ

R
n,kφ

R
n,k (ti,n) − si,n = 0.

Therefore, we will formulate the problem as a bound-constrained least squares
problem:

min

{
1

2

∥∥∥∥
(

H (θ)∑
k∈Z θ

R
n,kφ

R
n,k (ti,n)− si,n

)∥∥∥∥
2

2

, s ≥ 0

}

and solve it as a nonlinear constrained problem. Although this problem can
be solved using any standard programming packages, we propose the use of
the interior-point algorithm presented in Esteban-Bravo (2003). The use of
interior-point methods avoids one of the weaknesses of the least-squares ap-
proach, namely, the ill-conditioning problem often observed. An additional
major advantage in terms of cost is that this algorithm exploits the special
structure of the problem, omitting the second order information of the system
of equations to solve as in the Gauss-Newton method.

2.1 Illustrative economic examples

In this section we present numerical results of two continuous-time life-cycle
models to illustrate the performance of the proposed method in economic ap-
plications.

Example 2 Continuous-time life-cycle model for an economy with one good
and one capital stock per capita:

max
∫ T
0

e−ρtu (ct) dt

s.t.
•
At = f (At) +wt − ct
A (0) = a0, A (T ) = aT .

Assume that the asset return function is given by f (A) = rA, and that
u (c) = c1+γ/ (1 + γ) with ρ = 0.05, r = 0.10, γ = −2, w (t) = 0.5 + (t/10) −
4 (t/50)2 , T = 50 and A (0) = A (T ) = 0 (see Judd (1998), p. 389). Then, the
solutions (c (t) , A (t)) of this problem satisfy the following system of differentials
equations:

•
c− 0.025 c = 0,

•
A− 0.1 A− 0.5− (t/10) + 4 (t/50)

2
+ c = 0;

(3)

with the boundary conditions A (0) = 0 and A (T ) = 0. And, by applying the
proposed method with N = 3, n = 2 and changing the time scale to [0, 5], the
equilibrium path is obtained as illustrated by Figure 2.
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Fig. 2. Numerical resolution of Example 2, with N = 3, n = 2.

Example 3 Continuous-time life-cycle model of Example 2 with borrowing con-
straints:

max
∫ T
0 e−ρtu (ct) dt

s.t.
•
At = f (At) +wt − ct,
At ≥ 0,
A (0) = a0, A (T ) = aT .

The solutions of this problem (ct, At) are the solution of the System (3)
with the boundary conditions A (0) = a0 and A (T ) = aT , and the inequality
constraints At ≥ 0 for all t ∈ [0, T ]. We will consider the equivalent constraints
At − st = 0 for all t ∈ [0, T ], where st ≥ 0 are nonnegative slack variables.
Thus, approximating (ct, At) with a Daubechies wavelets N = 3, n = 2 as
ct =

∑
k∈Z akφn,k (t) and At =

∑
k∈Z bkφn,k (t) , the problem to be solved is

min 1
2

∥∥∥∥
(

H ({ak}k , {bk}k)∑
k∈Z bkφn,k (ti,n)− si,n

)∥∥∥∥
2

2
s.t. si,n ≥ 0, ∀n, i such that ti,n = 2−ni ∈ [0, T ],

A0 =
∑
k∈Z bkφn,k (0) = 0,

AT =
∑
k∈Z bkφn,k (T ) = 0.

And, by changing the time scale to [0, 5], Figure 3 contains the equilibrium
path obtained:
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Fig. 3. Numerical resolution of Example 3, with N = 3, n = 2.

3 Convergence analysis

In this section, we will prove the convergence of the method. First, we will
establish an interpolative property for wavelets. We will formulate the following
assumption, which is satisfied for the commonly used wavelets:

A.1. Let {Vn} be a multiresolution in L2 (R) , with compactly supported father
wavelet φ and assume for all y ∈ W r

2 (R) with 1 ≤ r ≤ q, q ≥ 1, and all
integer vector ν, 0 ≤ ‖ν‖1 ≤ r − 1, it is satisfied

‖Dνy −DνΠVn (y)‖L2 = O
(
2−(r−‖ν‖1)n

)
,

Whenever y ∈ Cr (R) with compact support the same rates are satisfied
replacing the L2 norm by the supremum norm. In spaces L2 ([a, b]) , an
analogous behavior is assumed.

Several sufficient conditions for this result can be found in the literature,
often based on the regularity of order q assumption. The father wavelet φ
is said to be regular of order q ∈ N, if φ has a version q times continuously
differentiable and for 0 ≤ ‖ν‖1 ≤ q, and any positive integer p ∈ N, there exists
a constant Cp > 0 such that

|Dνφ (x)| < (1 + ‖x‖)−pCp, ∀x ∈ R.

8



See Meyer (1992) for details.
In order to prove the convergence of the proposed method, we first provide

a result on interpolation which will play a crucial role to prove the wavelet-
collocation convergence, then we prove the convergence of the wavelet-Galerkin
and finally, the convergence of the wavelet-collocation methods. All the proofs
can be found in Annexo B.

Theorem 4 Consider a multiresolution {Vn} in L2 (R) satisfying A.1. For each
y ∈ L2 (R) with an a.e. continuous version with compact support, we de-
fine ΓVn (y) as the function gn ∈ Vn such that gn (xn,i) = y (xn,i) , for all
{xn,i = 2−ni}i∈Z, that is, the function gn (x) =

∑
k∈Z θn,kφn,k (x) satisfies

∑

k∈Z

θn,kφn,k (xn,i) = y (xn,i) .

Then, there exists a unique ΓVn (y).
Furthermore, assuming

1. φ is regular of order q ≥ 1, and

2. the Poisson summa
∑
k∈ZΦ(ω + 2πk) > 0, for almost every ω ∈ [0, 2π] ,

being Φ(ω) =
∫
R
φ (x) eixωdx the Fourier transformed of φ;

for all y ∈ W q
2 (R) with compact support, there exist K > 0 and n0 such

that, ∀n > n0,
‖ΓVn (y)− y‖L2 ≤ K ‖ΠVn (y)− y‖Wq

2

.

The same result trivially holds for multiresolutions in L2 ([a, b]).
Next, we prove the convergence of the wavelet-Galerkin and wavelet-collocation

methods. Note that there is a unique solution associated to the homogeneous
problem Dy (x) = 0 with α (y) = c since α are linearly independent (at least
over Ker {D}). Moreover, let define a Green’s matrix of functions G (x, z) such
that any g continuous in [a, b] with Dg integrable can be expressed as follows

g (x) = P0 (g) (x) +

∫ b

a

G (x, z)Dg (z) dz,

where P0 (g) is the unique element in Ker {D} which agrees with α (g) . Fur-
thermore,

Dg (z) = DxP0 (g) (x) +

∫ b

a

DxG (x, z) g (z) dz.

As a consequence, the following property can be used to express the BVP
in a more convenient way: Let define Dy = u, thus u = G [y] and G−1 [u] = y,
reciprocally, with

G [y] (x) = P0 (y) (x) +

∫ b

a

G (x, z) y (z) dz, (4)

G−1 [u] (x) = Dx {P0 (y) (x)}+
∫ b

a

DxG (x, z) y (z) dz.
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Therefore, rewriting the BVP as u = f
(
x,G−1 [u]

)
and defining T (u) :=

f
(
x,G−1 [u]

)
, we can guarantee the existence of solution in BVP by proving

the existence of a fixed point u for T, u = Tu. It is sufficient to prove that T is
a continuous retraction on the Banach space C ([a, b])

R
, and a unique solution

u0 exists, so that y0 = G−1 (u0) is the unique solution of BVP.
Now, given the multiresolution {Vn}, let yn ∈ Vn be the wavelet-Galerkin

solution to the BVP, and therefore yn satisfies

ΠVn {Dyn − f (x, yn)} = 0, α (yn) = c.

The next result establishes the rate of approximation of the wavelet-Galerkin
method.

Theorem 5 Let consider the problem BVP with solution y0 (x) , and a mul-
tiresolution sequence {Vn} in L2 ([a, b]) such that ‖y −ΠVn (y)‖L∞ → 0, for

all y ∈ C ([a, b]). Let define the curve C =
{(

x, y0 (x)
′)′

: x ∈ [a, b]
}
. As-

sume that, f ∈ C2 (N ) where N ⊂ RR+1 is an ε-neighborhood of C in the L∞
norm, and it is satisfied that det {(I −Dyf (x, y0 (x)))} �= 0, for all x ∈ [a, b].
Then there exist δ > 0 and an integer M such that y0 is unique in B (y0, δ) ={
y : ‖y − y0‖L∞ ≤ δ

}
, and the projected system

ΠVn {Dyn − f (x, yn)} = 0,

has a unique solution yn ∈ Vn ∩B (y0, δ) . Furthermore, there exists c > 0 such
that

max
{
‖yn − y0‖L∞ , ‖Dyn −Dy0‖L∞

}
≤ c ‖Dy0 −ΠVn (Dy0)‖L∞ .

If {Vn} satisfies assumption A.1. and y ∈ C1 ([a, b]), then

max
{
‖yn − y0‖L∞ , ‖Dyn −Dy0‖L∞

}
= O

(
2−n

)
.

Given the multiresolution {Vn}, let yn ∈ Vn denote the wavelet-collocation
solution to the BVP, and therefore satisfying

ΠVn {Dyn − f (x, yn)} = 0, α (yn) = c.

The following result is an immediate consequence of Theorems 4 and 5.

Corollary 6 Under the assumptions of Theorems 4 and 5, the wavelet-collocation
method satisfies the approximation property at rate O (2−n) .

Therefore, we only need to prove the consistence of the proposed method
based on the trapezoidal rule:

ỹn (xi,n)− ỹn (xi−1,n) =
hn
2
(f (xi,n, ỹn (xi,n)) + f (xi−1,n, ỹn (xi−1,n))) , (5)

for ỹn ∈ Vn.

Proposition 7 Under the assumptions of Theorems 5 and 4. Let ỹn ∈ Vn
denote the approximation generated by the proposed method and yn the solution
of the wavelet-collocation method. Then, it is satisfied ‖ỹn − yn‖ = O (2−n) .
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4 Extension to Stochastic BVP

Finally, we consider the extension of the proposed method to the numerical
resolution of stochastic differential equations with functional boundary condi-
tions. Such systems are the natural extension of deterministic BVP, when the
uncertainty is included in terms of a Brownian motion.
There is an increasing literature on boundary value stochastic differential

equations, see e.g. Huang (1984), Ocone and Pardoux (1998), Nualart and
Pardoux (1991a), and Alabert and Ferrante (2002). Typical examples are
·
Y (t) = f (Y (t))+

·
W (t) , for t ∈ [0, T ] with a1Y (0)+a2Y (T ) = ρ, or the second

order integral
··

Y (t) = f

(
Y (t) ,

·

Y (t)

)
+

·

W (t) with Y (0) = ρ1, Y (T ) = ρ2. As

second order systems can be expressed as a first order system in the space of
states, see e.g. Nualart and Pardoux (1991b), we will just focus on the first or-
der case. In this context, the solution will not be Markovian, though some weak
analogous properties can be considered see Alabert et al (1995) and Alabert and
Ferrante (2002).
Let (Ω,F , P ) be a complete probability space on which a standardR−dimensional

Brownian motion {Wt : t ∈ [0, T ]} with W0 = 0 a.e. is defined, and {Ft} is a
left continuous filtration, where Ft is the completion of the σ-algebra generated
by {Ws : 0 ≤ s ≤ t} . The stochastic BVP is defined as:

dYt = b (t, Yt) dt+ σdWt,
α (Y ) = c,

for t ∈ [0, T ] , where σ ∈ RR×R, ‖b (t, y)‖ ≤ C1 (1 + ‖y‖) , and ‖b (t, y)− b (t, z)‖ ≤
C2 ‖y − z‖ , for all y, z ∈ R, uniformly in t ∈ [0, T ] , and c ∈ R

R and α =
(α1, ..., αR)

′ is a vector of R-linearly independent continuous linear functionals

αj : C ([0, T ])→ R, which can be expressed as αj (Y ) =
∫ T
0

Ytνj (dt) where ν is
a bounded signed Borel measure on [0, T ] .
The existence of solution of the stochastic boundary value problem can be

studied analogously to deterministic systems. DefineDy = u, thus u = G [y] and
G−1 [u] = y; with operator G defined as in (4). Therefore, defining U = G (Y ) ,
and the nonlinear operator

T [U ] (t) := b
(
t,G−1 [U ] (t)

)
+ σ

(
t,G−1 [U ] (t)

) ·
W t,

we can express the stochastic BVP as U = T [U ] . Therefore, we can guarantee
the existence of solution in BVP by proving the existence of a fixed point U0

for T, and the stochastic BVP has a unique solution which can be expressed as
Y 0 = G−1

(
U0
)
. However the solution of a stochastic BVP is not necessarily Ft

adapted nor Markovian.
For the sake of simplicity we present the method for autonomous differential

equation systems dYt = b (Yt) dt+ σdWt, with α (Y ) = c. The extension to non
homogenous equations is straightforward.
As in the deterministic context, the wavelet method can be used to ap-

proximate the solution of the stochastic BVP. Instead of the trapezoidal rule,

11



we consider the Euler-Maruyama approach (for an introduction to stochastic
finite-difference approximation methods, see Kloden and Platen, 1999),

Yn (ti,n)− Yn (ti−1,n) = (ti,n − ti−1,n) b (Yn (ti−1,n)) + σ
(
Wti,n −Wti−1,n

)
,

α (Yn) = c.

Applying the wavelet-collocation method to the Euler-Maruyama approxi-
mation, the computation of the approximate solution of the stochastic BVP is
reduced to solve the following system of equations in θRn,k ∈ RR,

∑

k∈Z

θRn,k
(
φn,k (ti,n)− φn,k (ti−1,n)

)
= hnb

(
∑

k∈Z

θRn,k φn,k (ti−1,n)

)

+σ
(
Wti,n −Wti−1,n

)
,

∑

k∈Z

θRn,k α
(
φn,k

)
= c,

where ti,n = 2−ni ∈ [0, T ] with i ∈ Z, and hn = 2−n.
The same methodology can be applied to the non autonomous differential

equation systems, considering an approximation for non homogeneous stochastic
differential equations, see e.g. Kloeden and Platen (1999, Chap 5, Sect. 5).
The following example illustrate the good performance of the method using

Daubechies wavelets.

Example 8 Stochastic BVP with integral boundary condition.

Consider the problem

dYt = dWt, t ∈ [0, 1], with

∫ 1

0

Yt = 0.

The solution of this problem has the general form Yt = −
∫ 1
0 Wtdt + Wt.

Using the step length h = 2−6, Figure 4 shows the computed approximation by
the proposed approach with ‖Y ∗ (ti)− Yθ∗,n (ti)‖2 ≤ 10−4,where ti = 2−6i, for
all i = 0, 1, ..., 2n (2N − 1) , with N = 3, n = 6.

12
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Fig 4. Numerical resolution of Example 4 with N = 3, n = 6.
The wavelet-collocation method is also useful in order to solve stochastic

differential equations with inequality constraints, such as dYt = b (Yt) dt +
σ (Yt) dWt, with Y0 = c, and δ (Yt) ≥ 0 for all t ∈ [0, T ] , where δ is a continuous
linear functional. In this context, if σ is differentiable we can use the Milstein
finite-difference approach instead of the classical Euler-Maruyama approach,

Yn (ti,n)− Yn (ti−1,n) = hnb (Yn (ti−1,n)) + σ
(
Wti,n −Wti−1,n

)

+σ (Yn (ti−1,n))
∂σ

∂x
(Yn (ti−1,n))

[∫ ti,n

ti−1,n

∫ s1

ti−1,n

dWs1dWs2

]
,

δ (Yn (ti,n))− si,n = 0,

Yn (0) = c,

where si,n ≥ 0 are slack variables. The double stochastic integral can be readily
computed, e.g. in the scalar case

∫ ti,n

ti−1,n

∫ s1

ti−1,n

dWs1dWs2 =
1

2

((
Wti,n −Wti−1,n

)2 − hn
)
.

For the multivariate case see Kloeden and Platen (1999, Chap 5, Sec. 8).
Thus, applying the wavelet-collocation method to this approximation, the

computation of the stochastic BVP is reduced to solve the above system of
equations in θRn,k ∈ RR, via interior point methods as in the deterministic case.
To illustrate the approach, consider the following economic example.

4.1 Stochastic Solow-Swan Model

Consider the neoclassic growth model introduced by Solow (1956) and Swan
(1956), with a two factors technology Yt = AtK

α
t L

1−α
t , as function of capital

Kt and work Lt, where At is the exogenous technological component. Assume

13



a constant rate of saving s ∈ (0, 1) , and an exogenous rate for the population
·

Lt = nLt, in equilibrium the stock of capital per capita kt = Kt/Lt, follows the
fundamental equation of the Solow-Swan model,

·

kt = sAtk
α
t − (δ + n) kt.

There are many variations of the Solow-Swan model, for details see e.g. Barro
and Sala-i-Martin (1995). The classical model considers At = A > 0, but Romer
(1986) introduced external effects due to the learning by doing effect, and the

knowledge spillovers. ConsideringAt = Akηt we obtain
·

kt = sAkα+ηt −(δ + n) kt.
However, there are random and unknown effects affecting the technology

evolution. Assume that At = A0k
η
t + σ

•

W t, with A0 > 0, where
•

W t denotes
Gaussian white noise generalized stochastic process. Then, we get the stochastic
equation

dkt =
(
A0k

α+η
t − (δ + n) kt

)
dt+ (skαt σ) dWt,

with k0 > 0.
In order to obtain a meaningful solution it is necessary to set At ≥ 0, for

all t ∈ [0, T ] . This constraint is equivalent to
∫ t1
0

Asds ≤
∫ t2
0

Asds for all

t1 ≤ t2, where
∫ t
0
Asds = A

∫ t
0
kηsds + σWt. In other words, for all t1 ≤ t2,

A
∫ t2
t1

kηsds+σ (Wt2 −Wt1) ≥ 0. Imposing these constraints at consecutive points

ti,n, ti−1,n where ti = 2−ni, for all i = 0, 1, ..., 2j (2N − 1) , and approximating∫ ti,n
ti−1,n

kηsds ≈ kηti−1,n (ti,n − ti−1,n), the inequality constraints to be satisfied are:

kηti−1,n (ti,n − ti−1,n) + σ
(
Wti,n −Wti−1,n

)
≥ 0.

Assuming A = 1, α = 0.33, η = 0.03, δ = 0.03, n = 0.01, s = 0.25 and
σ = 3, we compute its numerical solution by the presented method using Euler-
Maruyama and Milstein finite-differences approaches (see Fig. 5).
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Fig 5. Numerical resolution of Stochastic Solow-Swan model with N = 3, n = 6.

5 Conclusions

In this paper we present a projection-based method derived from the recursive
rules of the finite-iterative methods for computing deterministic or stochastic
differential equations with boundary conditions. We also consider the numerical
solution of BVP with inequality constraints. This type of problems are common
in the economics literature. The results confirm the well-performance of the
proposed approach, achieving a high level of accuracy, and its practicability.
Therefore, this approach is an efficient alternative to the existing methods for
solving boundary-value problems. Given the local adaptability of wavelets, this
method is especially useful when the solution path is nonsmooth.

6 Annexo A: MATLAB code example

% This MATLAB program computes the solution of the problem dy (x) /dx+
Ay (x) = 0, and the initial condition y(0) = 1, for all x, T1 <= x <= T2,
by the proposed wavelet-based method using the implicit trapezoidal method.
Solution y = exp(−x).
y0=1;
N=3; % N order of the Daubechies wavelets.
n=2; % n level of resolution of the wavelets
T1=0; % [T1,T2] interval
T2=6;
wname=’db3’; % wavelet function: Daubechies, dbN with N=3
h=2^(-n); % distant between points where the wavelet function is defined
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% definition of the wavelet and scaling function given by the Wavelet toolbox
[phi,psi,x] = WAVEFUN(wname,n);
dimension=length(x);
% number of points where the wavelet and scaling function is defined
n_vars=T2*2^n-1-(T1*2^n+2-2*N)+1; % number of coefficients
theta=zeros(n_vars,1); % initialization of the coefficients to zero
% Computing the value of sum(phi(x(i,n))) in k
for i=T1*2^n+2-2*N:T2*2^n-1,
summ(:,i-(T1*2^n+2-2*N)+1)=zeros(dimension,1);
for l=1:length(x),
phi_i(l)=0;
if ( ((2^n)*x(l)-i>=0) & (((2^n))*x(l)-i<=2*N-1) ),
phi_i(l) = (2^(n/2)) * phi(((2^n)*x(l)-i)*2^n+1);
end
end
summ(:,i-(T1*2^n+2-2*N)+1)=phi_i(:);
end
% Compute sum(phi(x0(i,n))) in k
aux_K=zeros(n_vars,1);
for j=T1*2^n+2-2*N:T2*2^n-1,
if ((-j>=0) & (-j<=2*N-1)),
aux_K(j-(T1*2^n+2-2*N)+1)=(2^(n/2))*phi((-j)*2^n+1); end
end
% Compute K and b such that K*theta=b.
K=[
(1+(h/2)).*summ(2:dimension,:)+(-1+(h/2)).*summ(1:dimension-1,:);
aux_K’];
b=[zeros(dimension-1,1);y0];
% Solve the system K*theta=b.
theta=K\b;
% Then, compute the approximation
x=0:h:T2;
aprox=zeros(length(x),1);
for k = T1*2^n+2-2*N:T2*2^n-1,
for i=1:dimension,
phijk(i,k-(T1*2^n+2-2*N)+1)=0;
if (((2^n)*x(i)-k>=0) & (((2^n))*x(i)-k<=2*N-1)),
phijk(i,k-(T1*2^n+2-2*N)+1)=(2^(n/2))*phi(((2^n)*x(i)-k)*2^n+1);
end
aprox(x(i)*2^n+1)=aprox(x(i)*2^n+1)+theta(k-(T1*2^n+2-2*N)+1).*phijk(i,k-

(T1*2^n+2-2*N)+1);
end
end
% Plot of the approximation and the exact solution.
f=(y0).*exp(-x);
figure(1)
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plot(x,f,’-*’,x,aprox,’s-’)
h =title(’Exact and Approximate solution to dy/dx+y=0’);
h = legend(’Solution’,’Approx.’,2);
xlabel(’0 \leq x \leq 6’)
disp(’||Solution-Aprox||’)
disp(norm((y0).*exp(-x)’-aprox))
disp(’x, Solution, Approximation, Error’)
disp([x’,f’,aprox,f’-aprox])

7 Annexo B: Proofs

A) Proof of Theorem 4

The problem of interpolation in Vn at points xn,i = 2−ni can be reduced
to solve the problem g0 (i) = y (xn,i) in g0 ∈ V0 and then take gn (x) =
2n/2g0 (2

nx). Therefore, assume that g0 (x) =
∑
k∈Z θkφ (x− k) solves this

problem, i.e. ∑

k∈Z

θkφ (i− k) = y (xn,i) .

Clearly, a unique solution exists since {φ (x− k)}k∈Z are linearly independent
functions. To simplify the notation, we denote yi = y (xn,i) , hence

∑
k∈Z θkφ (i− k) =

yi. This is a convolution equation that we will solve in the spectral domain. Let
define the discrete Fourier transform of φ by

Φ̃ (ω) =
∑

k∈Z

φ (k) e−ikω.

The Poisson formula states that Φ̃ (ω) =
∑
k∈ZΦ(ω + 2πk) . If φ is regular of at

least order 1, this series converges uniformly on compact sets. Furthermore, as

Φ̃ (ω) > 0 a.e. for ω ∈ [0, 2π], the inverse has a Fourier expansion
(
1/Φ̃ (ω)

)
=

∑
k∈Z βke

−ikω where b :=
∑
k∈Z |βk| <∞, by the Wiener-Lévy theorem. Thus,

we can explicitly evaluate the coefficients {θk} as,

θk =
∑

k∈Z

βk−iyi.

Obviously,

∑

k∈Z

|θk|2 =
∑

k∈Z

∣∣∣∣∣
∑

l∈Z

βl−iyi

∣∣∣∣∣

2

≤ b2
∑

k∈Z

|yi|2 = b2
∑

i∈Z

|y (xn,i)|2 ,

with sup
n>1

∑
i∈Z |y (xn,i)|

2 <∞ as y is continuous with compact support.

Next, we will prove that

‖ΓVn (y)‖L2 ≤ b ‖y‖n ,
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where ‖y‖n =
(
2−n

∑
i∈Z |y (xn,i)|

)1/2
.

Notice that ‖gn‖L2 = 2−n ‖g0‖L2 = 2−n ‖F (g0)‖L2 , where F (g0) (ω) is

the continuous Fourier transformed of g0. We will prove that ‖F (g0)‖2L2 =∑
k∈Z |θk|

2
and the result follows. Let define c̃ (ω) =

∑
k∈Z θke

−ikω, then

‖F (g0)‖2L2 =

∫

R

∣∣∣∣∣F
(
∑

k∈Z

θkφ0,k

)
(ω)

∣∣∣∣∣

2

dω =

∫

R

∣∣∣∣∣Φ(ω)

(
∑

k∈Z

θke
−ikω

)∣∣∣∣∣

2

dω

=

∫

R

|Φ(ω) c̃ (ω)|2 dω =
∑

k∈Z

∫ 2(k+1)π

2kπ

|Φ(ω) c̃ (ω)|2 dω

=

∫ 2π

0

|c̃ (ω)|2
∣∣∣∣∣
∑

k∈Z

Φ(ω + 2πk)

∣∣∣∣∣

2

dω

=

∫ 2π

0

|c̃ (ω)|2 dω =
∑

k∈Z

|θk|2 ,

as {φ (x− k)}k∈Z is orthonormal if and only if
∑
k∈Z |Φ(ω + 2πk)|2 = 1 a.e.,

for details see Daubechies (1992). Hence, we have that ‖ΓVn (y)‖2L2 ≤ b2 ‖y‖2n .
Defining yn = ΠVn (y) , we have that ΓVn (yn) = yn since yn ∈ Vn and has

compact support. And as a consequence,

‖ΓVn (y)− y‖L2 = ‖ΓVn (yn − y) + yn − y‖L2 ≤ b2 ‖yn − y‖n + ‖yn − y‖L2
= b2 ‖ΠVn (y)− y‖n + ‖ΠVn (y)− y‖L2 .

Moreover, as for all y ∈W r
2 (R) , with r ≥ 1,

‖y‖2n ≤ C

{∫ 2nπ

−2nπ

|F (y) (ω)|2 dω + 2−nr ‖y‖2W r
2

}

see Thomée (1973, Lemma 4.4.), the result follows applying the same bound to

‖ΠVn (y)− y‖2n .

B) Proof of Theorem 5

We will use the following Theorem,

Theorem 9 Let B a Banach space, {Vn} ⊂ B a sequence of increasing lin-
ear subspaces, and ΠVn a sequence of continuous projections converging point-
wise to the identity operator on B. Let T a (non linear) operator in B. If
(1− T )u = 0 has a solution u0, T is continuously Frechet differentiable at
u0 and

(
1− T ′u0

)
u = 0 has only the trivial solution in B, then u0 is unique in

some sphere B (u0, δ) = {u ∈ B : ‖u− u0‖ ≤ δ} for some δ > 0, and there exists
an integer M such that for all n > M the equation ΠVn {(1− T )u} = 0 has a
unique solution un ∈ Vn ∩B (u0, δ) . Moreover, ∃K > 0 such that

‖un − u0‖ ≤ K ‖ΠVnu0 − u0‖ .

18



Proof. See e.g. Vainikko (1967, Th. 5).
Using the properties of the Green function and the continuity of f, the

functional T is continuous relative to the uniform norm on a neighborhood of
u0 = G (y0) . Since (1− T )u = 0 can be seen as an equation in C ([a, b]) , we
will consider the equation Πn (I − T )un = 0 in Vn.
First, we check the continuously Frechet differentiability of T. For any u ∈

B (u0, δ) define h = u − u0. Notice that N contains all line segments in RR+1

such as {u0 + θh : θ ∈ [0, 1]} , since

y (x)− y0 (x) =

∫ b

a

DxG (x, z)h (z) dz,

with ‖y − y0‖L∞ < ε whenever δ is small enough, using that

χ := ess sup
x∈[a,b]

∫ b

a

|DxG (x, z)| dz <∞.

Notice that u0 = G (y0) .We will see that the Frechet derivative T at u0 (x) =
Dy0 (x) respect to the direction h = (u− u0) is given by

T ′u0 (h) (x) = Duf (x, u0)

∫ b

a

DxG (x, z)h (z) dz,

and the error term is given by

ǫu0 (u) (x) = |‖h‖|2
∫ b

a

(1− θ) f ′′ (x, u0 (x) + θh (x)) dz,

being f ′′ the second directional derivative of f (x, ·) in the direction h/ |‖h‖| ,
and |‖h‖|2 =

∑R
r=1 ‖hr‖

2 . Clearly ‖ǫu0 (u)‖L∞ ≤ c1 ‖u− u0‖2L∞ , where c1 is
the maximum between the bound on f ′′ over all directions on adh (N ) and χ.
Notice also that T ′u0 (h) (x) can be expressed in the original domain as the op-

erator T ′y0 (y) = Dyf (x, y0 (x))Dy. Since det {(I −Dyf (x, y0 (x)))} �= 0, for all
x ∈ [a, b] , there exists a unique trivial solution for (I −Dyf (x, y0 (x)))Dy = 0
with α (y) = c. This implies the same result for

(
I − T ′u0

)
u = 0, hence assump-

tions of Theorem 9 are satisfied.
Thus, there exists an integer M > 0 such that, for all n > M a solution

un ∈ Vn exists and is unique in the same sphere. Moreover, there exists a
constant c > 0 such that un = Dyn, u0 = Dy0 and

‖un − u0‖L∞ ≤ c ‖Πnu0 − u0‖L∞ .

By the Banach-Steinhaus theorem,

‖Πnu0 − u0‖L∞ = ‖Πn (u0 − u)− (u− u0)‖L∞ = ‖(1−Πn) (u0 − u)‖L∞
≤ c′ inf

{
‖u0 − u‖L∞ : u ∈ Vn

}
,
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therefore ∃K > 0 such that

‖Dyn −Dy0‖L∞ = ‖un − u0‖L∞ ≤ K inf
{
‖u0 − u‖L∞ : u ∈ Vn

}
.

Finally, using that yn − y0 = G−1 (un − u0) , we have

‖yn − y0‖L∞ ≤
∥∥G−1

∥∥
L∞
‖un − u0‖L∞ ,

Finally, the rate O (2−n) follows from Assumption A.1.

C) Proof of Proposition 7

By assumption f ∈ C2 (N ) . The collocation solution satisfies the system
yn (xi,n)−yn (xi−1,n) =

∫ xi,n
xi−1,n

f (x, yn (x)) dx, and we have proved that yn → y0
uniformly. Using the trapezoidal integration rule it can be expressed as,

yn (xi,n)− yn (xi−1,n) =
hn
2
[f (xi,n, yn (xi)) + f (xi−1,n, yn (xi−1,n))]

−h3n
12

f ′′
(
ξi,n, yn

(
ξi,n

))
,

with ξi,n ∈ [a, b] . Let An (yn) = bn (yn) denote this system of nonlinear equa-
tions, where ‖bn (yn)‖ ≤ h3nM/12.
Let ỹn (x) denote the solution of the proposed method that satisfies (5). Let

An (ỹn) = 0 denote this system of nonlinear equations. Then, applying the
mean value theorem, we have

bn (yn) = An (yn) = An (ỹn) +DAϕn (yn − ỹn) = DAξn (yn − ỹn) ,

where DAϕn is the Frechet derivative at some intermediate point ϕn. Since
DAϕn (·) has uniformly continuous inverse, it is satisfied

‖yn − ỹn‖ ≤ ch3nM/12,

and the result follows.
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