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Abstract. Trends have a crucial role in finance such as setting investment strategies and 
technical analysis.  Determining trend changes in an optimal way is the main aim of this 
study. The model of this study improves the optimality by cubic b-spline fitting to the 
equations to reduce the error terms. The results show that cubic b-spline fitting is more 
efficient compared to the first order Fisher Method and original Fisher Method. This 
method may be used to determine regime switches as well. 
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1. Introduction  
t is often the case that when trying to extract information out of a data stream; 
researchers face the problem of dividing the financial data into homogeneous 
parts. When they work with time series, or when they aim to determine trends 

within a particular data set, it may be essential for them to know how to decompose 
a sample into sub- samples in which homogeneity is maximized.  Intuition or 
segmenting the data visually may be used for grouping the data, however; these 
methods lack the efficiency when compared with the statistical methods that are 
available in the literature. 

Various disciplines have the problem of clustering a set of objects as there are 
different usages, applications and objective functions. Thus, there are many 
variations of this clustering problem. Maharaj and Inder (1999) and Duncan, Gorr 
and Szczypula (2001) have given methods of clustering time series data. Eventually, 
numerous clustering algorithms from different fields of study are present in the 
literature, however; the merits of these algorithms are dubious (Gonzales 1985). 

The method proposed in this study is a continuation of the line of research first 
established by Fisher (1958), who proposed a novel method for segmenting time 
series data. This method is then futher developed by Baran and Sonmezer (2013).  
It has to be noted that Fisher has divided the grouping problem into two parts; first 
one is introduced as the “unrestricted problem” and second one is as the “restricted 
problem”. This paper deals with the restricted problem, which arises in many cases 
in finance where certain conditions, on the basis of prior information, theory or for 
convenience, are imposed most of the time and offers an improved version that 
gives smaller error terms. The first part of the study provides literature survey 
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regarding the method used in finance related sectors. In the second part, Fisher 
method and the proposed improvements is presented. The final part presents an 
example showing the improvement. 
 

2. Literature Review  
There is a huge amount of publication devoted to the problem of dividing a time 

series into homogenous segments, mostly by statisticians and economists.  In this 
paper, only the articles that have utilized methods that determine homogeneous 
grouping with financial data are reviewed. We also limited ourselves to review only 
the puplications which have some relation to Fisher's method. 

Boginski, Butenko & Partelos (2005) have examined market graph with cliques 
and independent sets by using correlations; cliques are sets of interconnected 
vertices and independent sets are sets of vertices without connections. Similar 
object clusters are assumed to be reflected by cliques whereas, objects that are not 
similar are represented by independent sets. They claim that a suitable similarity 
criterion shall be determined before dividing a data set into parts and there is 
hardship in the fact that the number of clusters are not known a priori. 

Huang & Zhang (2012) have investigated structural changes in Singapore’s 
private housing market and in particular the impact of government policies on 
housing price determination by utilizing Fisher method to find “1) the specification 
of the number of changes in the model 2) the detection of the change point, or the 
boundaries of intervals over which each of the model pieces applies 3) the 
estimation of the model parameters within each subdomain.”  

Kumar & Patel (2010) have come up with a new method derived from Fisher 
method which is based on the tradeoff between decreased variance and increased 
bias arising from combining. With this modified version, it is possible to determine 
when it is beneficial to combine or not. Adams and Lim (2011) also utilized the 
Fisher method in forming sub groups for their data to minimize sum of squared 
deviations for growth polarity.  

Baran & Sonmezer (2013) used linear regression (instead of constant levels as 
proposed by Fisher) in the original Fisher Algorithm and their method of clustering 
financial data reduced the errors substantially compared to Fisher (1958).  A review 
of this algorithm is presented here below. The method presented below is a 
continuation of the line of research initiated by this article. 
 

3. Grouping (Segmenttation) Algorithms  
A grouping algorithm divides a time series consisting of N data points x(i), 

1<=i<=N,  into K contiguous and mutually exclusive segments: 
 (1) 

where   denotes a segment which begins at a and ends at b. The division is 
done in such a way that the “homogeneity” within the segments is minimized, 
while the differences between the segments are maximized.  When such a grouping 
is found, the segments are said to represent the “trends” in the data and the segment 
boundaries represent the transition regions between the trends. 
Grouping algorithms can be classified by their criterion of “homogeneity”. Below, 
we will define three grouping algorithms: Fisher (1958), Baran & Sönmezer (2013), 
and the grouping algorithm proposed in this article.  
 
4. Fisher Grouping  
Define the mean of the j th segment by: 

 TER, 2(1), M. Baran, S. Sönmezer & A. Uçar. p.20-25. 
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(2) 

where  and .  
Define the mean-square error of the j th segment by 

 
(3) 

Define the mean-square error of the whole time series by 

 
(4) 

 
In 1954, Fisher proposed an algorithm that computed the segment boundaries 
, , .... , in  Eq. (1) in such a way that the MS error E  defined in Eq. (4) 

is minimized.  The algorithm is based on dynamic programming, whose time 
complexity is   . For details of fisher algorithm, see Fisher (1954), Baran 
& Sönmezer (2013). 
 

6. Problems of Fisher grouping in Segmenting Financial 
Data  

Fisher grouping is perfect for time series where the data remains in near-
constant trends for long durations, and the transition regions from one trend to the 
neighboring trend are relatively narrow. This is one reason why Fisher algorithm 
found particular favor with hydrologists: Most of the lakes and rivers have near-
constant depth for long periods, with very rapid change of depth during short 
intervals of time (ie, spring rains) between them. Unfortunately, financial data does 
not fit into this pattern. "Trends" in financial data are rarely defined by 
approximately constant levels with quick changes between them.  Therefore, Fisher 
algorithm in its classical form is largely unsuitable for discovering trends in 
financial data, and boundaries between the neighboring trends. 
 

7. First Order Grouping  
In order to alleviate the deficiencies of the Fisher grouping algorithm, the first 

order grouping algorithm is proposed by Baran & Sönmezer (2013).  In this 
algorithm, everything is the same with the Fisher grouping algorithm, with the 
exception that the definition of homogeneity for a segment (ie, equations (2) and 
(3) ) is replaced by 

 
(3) 

For every segment j, least mean squares (LMS) algorithm is used to compute aj 
and bj.  Then, equation (4) is used to calculate the segment error ej.  After the ej's 
are computed for all possible segments, the rest of the algorithm is exactly the 
same with Fisher's original algorithm: Employing dynamic programming to find 
optimal trends and trend boundaries. Time complexity remains the same, even 
though each step is more expensive because of the LMS algorithm. 

A possible improvement of this algorithm, not mentioned in Baran & Sönmezer 
(2013), is to use least median squares rather than least mean squares (Rousseeuw, 
1984).  Least median squares is more expensive than LMS, but it brings a degree of 
insulation against outliers. 
 

 TER, 2(1), M. Baran, S. Sönmezer & A. Uçar. p.20-25. 

22 



Turkish Economic Review 

8. Problems of First Order Grouping in Segmenting 
Financial Data 

First order grouping algorithm is good for time series composed of trends with 
linear growth or decay, and regions of quick transition between them. This is a 
much better assumption to use when working in financial data. Indeed, compared 
with the Fischer algorithm, first order grouping algorithm finds a much improved 
segmentation with much lower error rates for the same number of segments.  
But, trends are frequently neither constant, nor linear. Usually they do not have a 
recognizable shape.  Hence, an algorithm with a more malleable homogeneity 
criterion is required. 
 

9. Cubic B-Spline Grouping 
In this article, a more developed version of First order grouping algorithm is 

proposed, in which the deficiencies mentioned in the above paragraphs are taken 
into account. Fisher's original algorithm is "zero order", as it approximates 
segments with constants, which are zero order curves. First order algorithm will 
approximate segments with first order curves, i.e. lines, which are least mean 
squares approximations of the data in the segment. Newly proposed algorithm, in 
contrast, will approximate segments with cubic b-splines.  As cubic b-splines are 
completely elastic and malleable, they have more degrees of freedom fit to the 
underlying trends. As they are smooth, they will not overfit and they will reject all 
noise.  

In cubic b-spline grouping algorithm, each segment [Ni, Nj] is divided into three 
contiguous subsegments and a spline curve formed from the weighted sum of six 
cubic splines are defined on these subsegments (a maximum of six cubic splines on 
a line divided to three).  The weights of these cubic splines are chosen in such a 
way to minimize the L2 distance ej  between the spline curve and the data, by the 
least mean squares algorithm.  Once  the errors ej are computed, the trend 
boundaries are found by following exactly the same steps as described in Baran 
and Sönmezer (2013), using dynamic programming.   

If the data contains large number of outliers, least median fit rather than least 
mean fit may be preferred. 

 
10. Practical Considerations 
For least-squares spline fitting, MATLAB's spap2 function is used, with l=3 

(each segment is divided into three subsegments) and k=4 (cubic splines are used), 
as described in Mathworks documentation.  With these parameters, spap2 internally 
divides each segment into three by calling aptknt function of MATLAB.  

 
11. Results 
The three algorithms (original fisher algorithm, first order fisher algorithm and 

cubic b-spline grouping algorithm) are compared by running them on seven 
different time series: Namely, they are; 10 year US treasury returns, Volatility 
Index, 2030 Turkish Eurobonds, Silver, USD, Euro and Crude Oil prices. Table 1 
indicates that when data is segmented into nine parts, Spline fitting outperforms the 
remaining models by reducing the error term significantly for each variable. These 
results are valid for other segmentation counts as well. Segment count of nine is 
chosen arbitrarily. 
 
Table 1: Error Term reduction by Methods 
Variable Segment count  Original Fisher First Order Fisher Spline Fit 

 TER, 2(1), M. Baran, S. Sönmezer & A. Uçar. p.20-25. 
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             9    
10 yr US treasury(YUST10) 2.50e-02 2.37e-02 2.13e-02 
VIX  5.07e-00 4.73e-00 4.31e-00 
TURKEY CDS 1.25e-00 1.14e-00 9.57e-01 
SILVER  6.27e-01 6.01e-01 5.17e-01 
USD  2.06e-01 1.94e-01 1.70e-01 
EURO  1.75e-01 1.66e-01 1.46e-01 
CRUDE OIL 5.99e-01 5.53e-01 4.90e-01 
 

  
Figure 1: Segmentation with cubic b-spline fitting for 10 yr US Treasury Bonds 

 
Figure 2: Segmentation with first order Fisher Method for 10 yr US Treasury Bonds 

 
Figure 3: Segmentation with original Fisher Method for 10 yr US Treasury Bonds 

 TER, 2(1), M. Baran, S. Sönmezer & A. Uçar. p.20-25. 
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Figure 1 depicts the results of the Fisher algorithm with cubic b-spline fit with 8 
trends. The resulting error is 2.18e-02. Green vertical lines show the trend 
boundaries and red lines show the fitted curves. Figure 2 is the same but first order 
Fisher method is used. The resulting error is 2.397e-02. Figure 3 depicts the 
original Fisher method finding 8 trends in the same time series. It is clear that cubic 
b-spline fit reduces error terms significantly. 
 

12. Conclusion 
It is concluded that Fisher method can be improved via cubic b-spline fitting. 

Various time series are analyzed and in each of them cubic b-spline fitting 
outperformed original Fisher method and line fitting Fisher methods. Cubic b-
spline fitting may be preferred by the parties interested in setting and finding trends 
with the least possible error terms. These interested parties may be technical 
analysts and momentum investors who may want to time the market by finding 
trends.  
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