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Abstract Despite their potential to inform past ocean salinity, d18O, and temperature, high-resolution
depth profiles of interstitial water chloride concentration and hydrogen and oxygen isotopes exist in very
few locations. One of the primary limitations to the recovery of these depth profiles is that traditional inter-
stitial water sampling requires 5–10 cm whole rounds of the sediment core, which has the potential to inter-
fere with stratigraphic continuity. The Rhizon sampler, a nondestructive tool developed for terrestrial
sediment interstitial water extraction, has been proposed for efficient and nondestructive sampling of ocean
sediment pore waters. However, there exists little documentation on the reliability and performance of Rhi-
zon samplers in deep ocean sediments, particularly in regard to their effect on chloride concentration and
oxygen and hydrogen isotopic measurements. We perform an intercomparison of chloride concentration
and oxygen and hydrogen isotopic composition in samples taken using traditional squeezing versus those
taken with Rhizon samplers. We find that samples taken with Rhizons have positive biases in both chloride
concentration and stable isotopic ratios relative to those taken by squeezing water from sediments in a
hydraulic press. The measured offsets between Rhizon and squeeze samples are consistent with a combina-
tion of absorption by and diffusive fractionation through the hydrophilic membrane of the Rhizon sampler.
These results suggest caution is needed when using Rhizons for sampling interstitial waters in any research
of processes that leave a small signal-to-noise ratio in dissolved concentrations or isotope ratios.

1. Introduction

The search for reliable proxies of past deep ocean temperature and salinity has proved difficult, thereby lim-
iting our ability to understand the coupling of ocean circulation and climate over glacial-interglacial time
scales. Depth profiles of chloride concentration and oxygen isotopes in ocean sediment interstitial (pore)
water can be used to reconstruct past ocean salinity and d18O, and, in combination with the d18Oc of
benthic foraminifera, past temperature as well [McDuff, 1985; Schrag and DePaolo, 1993; Schrag et al., 1996;
Adkins et al., 2002; Schrag et al., 2002; Adkins and Schrag, 2003]. However, this method has been applied in
few locations.

Obtaining high-depth-resolution pore fluid samples for chloride and oxygen isotope measurement is lim-
ited by the current interstitial water recovery method, which removes 5–10 cm sections of ocean sediment
cores. In order to reconstruct the bottom water concentration history at a given location, we need a high-
resolution depth profile of samples: at least one sample every 1.5 m of core depth down to at least 150 m
below seafloor (mbsf). The traditional way to obtain these samples is to slice off a complete 5–10 cm piece
of the sediment core, known as a ‘‘whole round,’’ and squeeze the water out of the sediment in a hydraulic
press. The pressure in the squeezer can reach as much as 300 MPa, which is well above the typical pressures
reached at the seafloor or in the ocean sediments (6000 m of seawater is �60 MPa), and the pressure is
applied uniaxially. Squeezing the sediment in this way compresses and deforms the sediment, in some
cases crushing foraminiferal tests, making sediment sampling (that is, subsampling) of this piece more chal-
lenging; therefore, the removal of a whole round has the potential to disrupt the chronology of the sedi-
ment core. In general, that is, independent of pore fluid sampling, multiple holes must be drilled at a given
site to ensure full sediment recovery. Therefore, with careful attention during drilling, the potential
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interference of pore fluid sampling with the chronology can be avoided. At the same time, deep core sedi-
ment samples are precious, as for many years the only scientific platform capable of recovering long sedi-
ment cores from the deep ocean has been the Integrated Ocean Drilling Program (IODP; formerly the
Ocean Drilling Program and the Deep Sea Drilling Project). IODP expeditions are costly and logistically com-
plicated, and many scientists with different goals must cooperate to optimize the ratio of time spent on site
to sample recovery. For this reason, we desire a more efficient and nondestructive method than squeezing
with which to sample pore fluids on IODP expeditions.

We tested whether Rhizon samplers (Rhizosphere Research Products) [Seeberg-Elverfeldt et al., 2005], a tool
developed for terrestrial soil sampling, can recover water from deep ocean sediments at high depth resolu-
tion without compromising the water samples or the integrity of the sediment core. Rhizons have been
used on several deep ocean drilling expeditions, but there is little documentation on how these samplers
behave with respect to traditional squeezing methods, in regard to their effect on the concentration and
isotopic content of the pore fluid. Dickens et al. [2007] compared the manganese and ammonium concen-
trations in samples recovered with Rhizons versus those recovered through squeezing, concluding that Rhi-
zons had no deleterious effect on the samples, but their study only compared a few overlapping Rhizon
and squeeze samples (six points). Schrum et al. [2012] made a more comprehensive study of alkalinity, dis-
solved inorganic carbon (DIC), ammonium, sulfate, and chloride. They found that the alkalinity and DIC in
the Rhizon samples were compromised, presumably due to a loss of carbon dioxide and resultant precipita-
tion of calcium carbonate, but concluded that ammonium, sulfate, and chloride were unaffected. However,
visual inspection of their concentration plots (Figure 1) suggests that there may be a positive bias in their
Rhizon sample concentration measurements, which are again difficult to compare to the squeeze sample
measurements due to the small number of overlapping samples.

Previous intercomparisons suggest that Rhizon sampling can affect sample concentrations of dissolved spe-
cies, both those sensitive to carbonate chemistry and those that are conservative. However, the available
data are sparse, limiting our ability to quantify the Rhizon’s effect on dissolved concentrations. Further,
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Figure 1. Intercomparison of measurements from Rhizon (black triangles) and squeeze (open circles) samples as reported in Schrum et al.
[2012]. Note that the reported error bars are smaller than the plot symbols.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005308

MILLER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2402



there have not been tests on water stable isotopes. Here we perform a high-resolution (321 unique samples
measured, with 59 overlapping points in chloride and 88 overlapping points in hydrogen and oxygen iso-
topes) intercomparison in order to better our understanding of the Rhizon sampling effect on dissolved
concentration and to test for the first time whether Rhizon samplers affect sample isotopic composition.
Our analysis demonstrates that both chloride concentration and stable isotopes in samples taken with Rhi-
zons are significantly higher/heavier than in squeezed samples, most consistent with a combination of
absorption and diffusive fractionation through the hydrophilic membrane.

2. Methods

2.1. Shipboard Sampling
We procured the samples for this work during IODP Expedition 339 (Mediterranean Outflow). The full details
of the cruise track and our shipboard scientific results are reported in Stow et al. [2013]. Samples for the
high-resolution intercomparison that follows were taken from IODP Site U1385B, which is located near the
Western Iberian Margin at 37.6�N, 10.1�W and in a water depth of 2587 m.

2.1.1. Squeeze Samples
Following the established IODP protocol, interstitial waters were extracted from 5–15 cm-long sediment
whole rounds at the bottom of every 9.5 m sediment core that were cut and capped immediately after core
retrieval on deck. Standard whole rounds were 5 cm-long, but as porosity decreased down hole the size of
the whole rounds was increased to enable extraction of �30 mL total to split between shipboard and
shore-based analyses. In the shipboard chemistry laboratory, whole round sediment samples were removed
from the core liner, and the outside surfaces (�1 cm) of the sediment samples were carefully scraped off
with spatulas to minimize potential contamination with drill fluids. The drill fluid was surface seawater,
which is conservative in seawater and has a sulfate concentration of �29 mM at salinity 35. Therefore, con-
tamination of samples below the sulfate reduction zone was inferred when there were small deviations
from zero in the shipboard sulfate measurement profile. None of the samples below the sulfate reduction
zone at Site U1385B had detectable sulfate concentration.

To generate a high-resolution profile, we took interstitial water samples to be squeezed from the bottom of
every �1.5 m core section in addition to the routine samples. Small plugs of sediment �10 cm3 were taken
from the bottom of each section, excluding the section from which the whole round came, using a 60 mL
syringe. Each chopped syringe was equipped with a 0.25 mm diameter wire inserted through two holes
drilled at the end. Once the syringe was inserted in the sediment, this attached wire facilitated separation
of the sample from the core and a clean removal of the sediment. When the syringe was completely
inserted into the core, and full of sediment, the syringe was rotated before removal to cut the sample
cleanly from the section. This sampling technique was used to obtain high-resolution interstitial water sam-
ples while minimizing impact on the integrity of the composite section. Sediment plugs were taken on the
catwalk, immediately after cores were sectioned. No acetone was used to seal the end caps of the cut cores
until after all pore water had been extracted, because organic solvents can interfere with the spectroscopic
analysis of water isotopes.

Sediment samples were then placed into a Manheim titanium squeezer and squeezed at ambient tempera-
ture with a Carver hydraulic press [Manheim et al., 1994], reaching pressures typically up to 150 MPa and as
high as 300 MPa when needed. Interstitial water samples discharged from the squeezer were passed
through 0.45 lm polyethersulfone membrane filters, collected in plastic syringes, and stored in plastic sam-
ple tubes for shipboard analyses or archived in flame-sealed glass ampules for shore-based analyses.

2.1.2. Rhizon Samples
At Site U1385B interstitial water was also sampled using Rhizon samplers, consisting of a hydrophilic porous
polymer tube (5 cm porous part, Rhizosphere Research Products) [Seeberg-Elverfeldt et al., 2005]. The poly-
mer composition is a blend of polyvinylpyrrolidine and polyethersulfone. Rhizon samplers were carefully
inserted through holes drilled in the core liner such that the porous membrane was centered in the core.
Syringes were attached to each Rhizon sampler with a Luer-lock, pulled to generate vacuum, and held open
with wooden spacers. Samplers were left in place during the core temperature equilibration (�3 h). The Rhi-
zon samplers were used in sets of three, spaced 3 cm apart, with the center Rhizon inserted at the center of
each section (i.e., 75 cm from the section top for a standard 150 cm section). Water from all three samplers
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was combined into one sample in a centrifuge tube and shaken to mix before splitting (samples were sent
to two separate shore-based labs) and archiving. In the same manner as for the squeeze samples, Rhizon
samples were archived in flame-sealed glass ampules for shore-based analyses.

In contrast to the methods on previous cruises, the Rhizon samplers were used dry in order to avoid sample
contamination from pre-soaking. In qualitative tests, we found that flow rate through the Rhizons did not
depend on pre-soaking. Further, stable water isotope measurements were sensitive to the isotopic values of
the solution in which the Rhizons were pre-soaked even when the first few milliliters were discarded from
the syringe during sampling. That is, the syringe was removed from the core, a few milliliters of water were
discarded, then the syringe was reattached and a fresh sample was taken. This fresh sample’s isotopic mea-
surement was different than those of the sample taken with a dry Rhizon. Because of the low total water
volume recovery, the pre-soaking fluid cannot be flushed completely from the Rhizon in order to recover
an uncontaminated measurement.

2.2. d18O and dD Measurements
Oxygen and hydrogen isotope measurements of interstitial waters were made by cavity ringdown laser
spectroscopy (CRDS). CRDS is a time-based measurement system that uses a laser to quantify spectral
absorption lines unique to H16

2 O;H18
2 O, and 2H16O in an optical cavity [Gupta et al., 2009]. The equipment

consisted of an L1102-i Picarro water isotope analyzer manufactured in July 2009 (Serial Number: 202-
HBDS033; 200-CPVU-HBQ33), an A0211 high-precision vaporizer manufactured in August 2011 (SN: VAP
292), and a CTC HTC-Pal liquid autosampler (SN: 142552). The Picarro L1102-I measures d18O, dD, and total
H2O concentration simultaneously.

For the present work, approximately 500 lL of filtered interstitial water was loaded in a 2 mL septa top glass
vial and placed in the autosampler. Each water sample was injected nine times into the vaporizer. Memory
effects from previous samples were avoided by rejecting the first three results and averaging the final six
injections. An internal seawater standard (SPIT) was analyzed between each unknown sample to track
instrumental drift. Analysis of each sample, consisting of nine injections, took 90 min. Three hours per sam-
ple is required if one includes the time needed to measure bracketing standards. The vaporizer septa were
changed regularly after no more than 300 injections.

The analysis of seawater samples (particularly the initial sample evaporation step) generates considerable
salt buildup in the Picarro’s vaporizer, which compromises both the precision and drift of the measure-
ments. To combat this problem we inserted a stainless steel mesh liner, recently designed and provided by
Picarro, in the vaporizer injection port to capture the salt precipitate. The liner was changed with the same
frequency as the vaporizer septa.

The instrument was calibrated using three working standards from the University of Cambridge with known
values: Delta (d18O 5 227.6&, dD 5 2213.5&), Botty (d18O 5 27.65&, dD 5 252.6&), and either VSMOW
or SPIT (d18O 5 0&, dD 5 0&). The d18O and dD of SPIT are indistinguishable analytically from VSMOW.
Because the Picarro analyzer is extremely linear, it is only necessary to use three calibration standards. The
calibration line was determined by linear regression of the Picarro output isotope values against the stand-
ards’ known values. Measured d18O and dD were corrected to VSMOW in parts per mille (&) by applying
the linear calibration.

Because organic compounds can cause spectroscopic interference in CRDS and affect isotopic results, we
processed the data using Picarro’s ChemCorrect software that identifies irregularities caused by hydrocar-
bons. Despite significant amounts of methane in headspace samples, pore water samples were not flagged
as being contaminated by the ChemCorrect software suggesting that methane gas is lost during the inter-
stitial water sampling and squeezing process.

2.3. [Cl2] Measurements
The [Cl2] of each sample is measured by potentiometric titration against silver nitrate to form the precipi-
tate silver chloride. Our titration apparatus is custom-built around a Gilmont Instruments precision micro-
meter buret (2.5 mL, discontinued parts), a National Instruments USB-6210 Data Acquisition module, and an
Applied Motion STM-23 stepper motor and controller. In brief, the chloride concentration of the sample is
determined by the equivalence point of the reaction, when an equivalent amount of silver nitrate reagent
to the amount of chloride in solution has been added. The equivalence point is determined
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potentiometrically by identifying the maximum DE
DV, where E is the potential difference between the reagent

and solution and V is the volume of reagent that has been added to the sample. The addition of reagent to
the solution is controlled by advancing the stepper motor coupled to the precision micrometer buret. The
stepper motor and the voltage acquisition are driven through a LabVIEW program. After filling the buret
with reagent and placing the tip of the buret in the sample beaker, the entire reaction is automated.

To determine the chloride concentration of an unknown sample, we weigh out a sample and titrate to the
equivalence point. The concentration of an unknown sample is calculated from the sample’s weight, the
volumetric equivalence point, and the concentration of the silver nitrate reagent. Our typical sample sizes
are �600 lL of pore fluid. The true size of the samples was determined through weighing on a precision
balance. The silver nitrate reagent had a concentration of �0.23 M, which resulted in equivalence points at
around 1.5 mL of reagent added. The approximate concentration of the silver nitrate is determined during
its preparation, but to have a more accurate and precise knowledge of its concentration we calibrate the
concentration by titrating against a known standard three to five times at the beginning of each measure-
ment day. Our standard is the IAPSO P-Series Normal Standard Seawater (S 5 35). Once we break the factory
seal on a standard, we store it in its original bottle with parafilm around the top and inside a large glass jar
that is �1/3 full of water. We use a standard for a maximum of two weeks. To check the continuing validity
of this storage method, when we open a new standard we compare the old values to the new ones. We
also validated the storage technique by measuring a consistency standard in triplicate every measurement
day that was stored identically to the open IAPSO standards over the full period of all our measurements.
Our consistency standard is low salinity, �33 g kg21, surface seawater from the North Pacific, in the vicinity
of Hydrate Ridge. The stability of our consistency standard, that is, the absence of any trend in the measure-
ments, confirmed that there is no evaporation of water stored in this way.

3. Results

We found that Rhizons were unable to be used in the very deepest, highly compacted ocean sediments.
Near the Advanced Piston Core (APC) refusal depth, �150 mbsf at Site U1385, our attempts to insert Rhi-
zons into the sediments without pre-drilling the sediment were typically unsuccessful. Even when pre-dril-
ling the sediment, the sediment would quickly fill in, crushing the Rhizon and leading to minimal water
extraction.

There are two major challenges in comparing our Rhizon and squeeze sample results. First, the depth pro-
files of chloride and stable isotopes at Site U1385B neither have a strong trend (increasing or decreasing)
nor are they constant with depth, so our sedimentary signal-to-noise ratio is quite low. This issue exacer-
bates the second issue, which is that the Rhizon and squeeze samples by necessity were taken at different
depths. These issues combined make it difficult to distinguish between offsets in the measurements due to
either analytical or sedimentary noise versus those due to fractionation.

The problem with sediment signal-to-noise ratio is specific to this site, as most sites of interest show a
strong depth dependent signal in both stable isotopes and chloride [e.g., Adkins et al., 2002]. We expected
that the signal-to-noise ratio would be high enough to overcome the problem of comparing values at dif-
ferent depths, but unfortunately this was not the case.

One way around these problems is to consider the population of measurement offsets rather than the indi-
vidual offsets. For this we interpolate linearly between squeeze measurements to find the hypothetical
value that the Rhizon sample should record. We then subtract the interpolated squeeze value from the Rhi-
zon sample value to find the offset. The majority of the following analyses rely on this technique. We note
that if there were a strong second derivative of chloride or isotopic content with depth in the profile, this
interpolation technique would be expected to give biased answers. However, the narrow range of our
measured values makes interpolation suitable for our case.

Another possible issue is that there could be an offset between the reported depth and the actual depth
the sample represents, as the samples span an average of 5–10 cm of sediment. For a straight line profile
that increases with depth, the average value would be higher than the top depth’s value and lower than
the bottom depth’s value. If the profile decreases with depth, the reverse would be true. We find however
that adjusting for this few centimeter difference has no effect on the offset trend.
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3.1. Picarro Calibration and Drift
Calibrations were performed at the beginning of each �24 h period of measurements, as the calibration
shifts significantly over a few days. The slope of the d18O regression varied between 1.05 and 1.07
(average 5 1.05), whereas the dD slope varied from 1.12 to 1.15 (average 5 1.14). For a sample with a
VSMOW value of 0.05&, these different calibration curves would generate a range of VSMOW values
between 20.33 and 0.53&.

Even after re-calibrating on a daily basis, there is significant drift in the standard value over one day, as com-
puted by applying the calibration curve to the measured output. Over the period of one day, the value of
the standard drifts by 0.4–1& in d18O and 1–3& in dD, necessitating a drift correction. One complication is
that the drift is not always unidirectional or linear over the course of a day. For this reason, we use a running
drift correction. We drift-correct the measurements after they have been converted to & using the calibra-
tion curve. For each pair of SPIT bracket measurements, we compute a time-local linear slope and intercept
of the SPIT value from their nominal d18O and dD. We then subtract the appropriately time-weighted drift
correction from the nominal computed values to obtain the drift-corrected values. This removes any trend
from our SPIT standard replicates over the course of our measurements, and the mean and standard devia-
tion of the SPIT standards are 0.09& and 0.05& in d18O and 20.14& and 0.41& in dD. The quoted preci-
sion of the instrument is �0.1& for d18O and �0.5& for dD and the quoted drift is �60.3& for d18O and
�60.9& for dD. Picarro defines precision and drift as the standard deviation and range (max-min) of the
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urements interpolated to Rhizon sample depths. All d values are in & VSMOW.
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average values for 12 injections of the same water sample (tap water) measured 12 times, which is equiva-
lent to 144 injections averaged in blocks of 12.

3.2. Stable Isotopes
Visual inspection of the depth profiles of d18O and dD (Figures 2a and 2b), hints that many of the dD Rhi-
zon measurements are heavier than the squeeze measurements, but the noise in the d18O profile
obscures the relationship between Rhizon sample measurements and squeeze sample measurements.
Figures 2c and 2d show histograms for the d18O and dD offsets. The mean and maximum likelihood are
closely aligned, as can be seen by the location of the mean relative to the bin with the highest number of
samples. The mean offset for d18O is 0.04& while the mean offset for dD is 0.23&. The error in the deter-
mination of each of these means is equal to

ffiffiffiffiffiffiffiffiffiffiffi
r2=N

p
, where r is the precision of an individual measure-

ment, assuming that the precision for each measurement is the same. With a reported precision of 0.1&

in d18O, 0.5& in dD and 87 samples, the error in the mean offset for d18O is 0.02& while the error for the
mean offset of dD is 0.08&.

Neither the offsets in d18O nor those in dD show a clear trend with depth, as demonstrated in Figure 3.
Instead, this view of the data confirms that of the histograms, which is that most of the Rhizon measure-
ment values are greater than the squeeze measurement values.

3.3. Chloride
In contrast, in the [Cl2] depth profile (Figure 4a), the Rhizon measurements lie clearly to the right of the
squeeze measurements in the upper �80 m, although below that point both profiles become noisier and
the distinction between measurement techniques is less clear. The chloride offset histogram (Figure 4b)
again has a closely aligned mean and maximum likelihood and the mean offset is 0.04 g kg21. Given an
average precision of 0.013 g kg21 based on standard replicate measurements, and 59 comparison points,
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the error in this mean offset is 0.0017 g kg21. Considering only the points below 80 m (Figure 4c), the off-
sets in chloride are almost indistinguishable from zero. However, considering the offset in chloride versus
depth in Figure 5, there does not seem to be a significant trend below 80 m. Instead, it seems that perhaps
the change is due to an inflection point in the depth profile. Or, below 80 m there is so much sedimentary
noise that the interpolation technique is no longer valid. There is no relationship between the age of the
IAPSO standard and the offset in chloride, as shown in Figure 6, confirming that the signal we see is real
and not due to problematic storage of our standard.

4. Discussion

We find statistically significant offsets between measurements on Rhizon samples and squeezed samples in
both stable isotopes and chloride. There are several possible reasons for these observed differences, which
we discuss consecutively below.
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4.1. Rhizon Absorption of Water or Diffusional Fractionation
The hydrophilic membrane of the sampler may have absorbed some of the water, creating higher
measured chloride concentrations. However, we expect that absorption alone, that is, bulk volumetric
uptake of water molecules, would not affect the oxygen and hydrogen isotope ratios. Instead, as
there is an offset between Rhizon and squeeze samples in both isotopes and chloride concentration,
these biases are more consistent with a combination of absorption and diffusional fractionation
through the Rhizon membrane. Diffusional fractionation would preferentially affect the dD relative to
d18O as the relative mass difference, and thus the difference in diffusivity, between hydrogen iso-
topes is greater than that between the oxygen isotopes. For this reason, diffusional fractionation pro-
duces a similar trend to evaporative fractionation (see section 4.4) in the relationship between
hydrogen isotope ratios and oxygen isotope ratios.

4.2. Clay Ultrafiltration of Isotopes and Ions
Highly compacted fine-grained clays have the ability to exclude ions and fractionate isotopes of water
passing through them [Coplen and Hanshaw, 1973; Hanshaw and Coplen, 1973]. This ultrafiltration
effect would cause the squeeze samples’ water to have lower chloride concentrations and lighter d18O
and dD than the original water in the sediment, and hence the Rhizon samples. The sediment at Site
U1385 is clay-rich, ranging from 25% to 30% carbonate, indicating potential for ultrafiltration. However,
the only experiments (to our knowledge) studying this effect [Coplen and Hanshaw, 1973; Hanshaw
and Coplen, 1973] maintained a hydraulic pressure gradient across the clay and a residual reservoir of
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Figure 5. [Cl2] (g kg21) offset between Rhizon sample measurements and squeeze sample measurements as a function of depth.
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fluid on the input side of the clay filter. When we sample using a hydraulic press, the pressure in the
sediment is evenly distributed and little water remains in the sediment whole round. More importantly,
this clay ultrafiltration mechanism yields Rayleigh f values �5, which is much larger than any f we
compute (see section 4.4).

4.3. Contamination With Drill Fluid
Another possible source of the offset is drill fluid contamination. We inserted the porous membrane such
that it was not in direct contact with drill fluid; however, in many cases we observed that the sediment in
which we placed the samplers had pulled away from the liner by the time we removed the samplers. Such
a thorough removal of water from the sections may mean that drill fluid was sucked into the sampler as
well. The surface salinity generally exceeds �19.9 g kg21 [Cl2] (36 psu), which is higher than almost all of
our measurements by 0.5 g kg21. This could contribute to the offset we see, particularly in the less com-
pacted sediments in the upper part of the hole, though it is difficult to quantify the expected effect. As
mentioned in section 2.1.1, we did not detect any sulfate in the samples below the sulfate reduction zone,
whether taken with Rhizons or by squeezing. We also did not observe a difference between shipboard sul-
fate profiles in Rhizon or squeeze samples, but our depth-resolution was lower and our instrumental error
higher. For a 10 mL pore water sample with 19.4 g kg21 chloride concentration that was contaminated by
19.9 g kg21 drill fluid to have an offset of 0.04 g kg21, the equivalent contamination volume would be
0.8 mL. If the original sample contained no sulfate, the contamination would appear as a 2.3 mM concentra-
tion, within the shipboard detection capabilities.

4.4. Evaporation
Rhizon samples were taken over an �3 h period during which water evaporation may have altered
the isotopes and chloride concentration. While the sampling system is nominally closed, the syringes
used to collect the samples did not have a perfect seal between plunger and barrel. We observed
that in some cases the seal loosened with time, which would allow air exchange between the
syringe and the surrounding environment. Syringes with imperfect seals are also used to collect sam-
ples from the squeezers, and the squeezing process can also take several hours. However, the
squeezer sampling may be less sensitive to evaporation for three reasons: no vacuum is pulled on
the squeezer syringes, so the headspace in the syringe is smaller; the total sample extracted using a
squeezer is usually larger volume than that using a Rhizon sampler; and the time to extract a sample
using the squeezer is often shorter. We were unable to carefully control for the sampling time, which
may be one contributor to the noisiness in the data. Evaporative fractionation has been intensively
studied, and there are good theoretical predictions for the relationship between d18O and dD under-
going evaporation. We can therefore compare the relationships between the oxygen and hydrogen
isotopic ratios and the chloride concentrations to see if the measured Rhizon-squeeze offsets are
consistent with evaporative fractionation.

Our case can be described best by open system Rayleigh fractionation. The ratio of heavy to light isotope,
R (i.e.,

18O
16O for oxygen or D

H for hydrogen) in a pool of water with essentially infinite molecules and fixed
conditions can be described by

R5R0
N

N0

� � a21ð Þ
: (1)

R0 is the initial isotope ratio, N is the total number of molecules remaining, N0 is the original number of mol-
ecules, and a is the fractionation factor. At 20�C the evaporative fractionation factor for 18O relative to 16O is
1.0098 and for deuterium relative to protium is 1.084 [Gat, 1996].

Under evaporation the fraction of material left, N
N0

, is also known as f. f will be equal for both pairs of iso-
topes, such that there is a linear relationship between the natural logs of the element ratios, i.e.,

aH21
aO21

ln
RO

RO
0

5ln
RH

RH
0
: (2)
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While the spectroscopic technique used in CRDS does not yield isotope ratios, the ratios can be computed
simply from the d values as follows:

d18O
1000

115
R

Rstd
; (3)

such that the relationship between d18O and dD under evaporation is

aH21
aO21

ln
d18Ofinal

1000 11
d18 Oinitial

1000 11

 !
5ln

dDfinal
1000 11

dDinitial
1000 11

 !
: (4)

Substituting in the a values, this is,

8:5714 ln
d18Ofinal

1000 11
d18 Oinitial

1000 11

 !
5ln

dDfinal
1000 11

dDinitial
1000 11

 !
: (5)

For our purpose, we assume the initial isotope ratio is that measured in the squeeze sample, interpolated
to the depth of the Rhizon sample. The final isotope ratio is that measured in the Rhizon sample. The
hypothesis we test with these choices is that the Rhizon values are fractionated relative to the squeeze
values because they are left open to the atmosphere longer. It is important to note that in some cases the
squeeze samples do sit for �1 h in the squeezers; thus, we never have a perfect control on no
evaporation.

The red line labeled evaporative fractionation in Figure 7 shows the expected relationship between the oxy-
gen and hydrogen isotope ratios under evaporative fractionation. The average error (square root of the sum
of square errors) of the data relative to the prediction, assuming all the error is in the hydrogen measure-
ments, is 0.0082. The blue line is a linear fit to the logarithmic data, which has a slope of 4.992. The average
error of the data relative to the fit is 0.0071. Propagating the precision of the hydrogen isotope measure-
ments through the Rayleigh equation, the theoretical average error is �0.2. Therefore, the difference
between the evaporative fractionation line and the empirically calculated relationship between hydrogen
and oxygen isotopes is indistinguishable.

The evolution of concentrations with
evaporations can be described analo-
gously to Rayleigh fractionation,
where f 5 Vfinal

Vinitial
5
½Cl2�initial
½Cl2�final

. Then the rela-
tionship between chloride concentra-
tions and d18O (or analogously, dD)
can be written

1
a21

ln
d18Ofinal

1000 11
d18 Oinitial

1000 11

 !
5ln

½Cl2�initial

½Cl2�final

� �
:

(6)

However, we find no correlation
between the f calculated from the
chloride concentrations and that cal-
culated from the isotope ratios assum-
ing evaporative fractionation, nor
does the fractionation of the isotopes
and [Cl2], as shown in Figure 8, have
any trend with depth.
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Figure 7. Hydrogen isotope ratios versus oxygen isotope ratios computed from
measured d values (blue circles and blue line), compared with the expected rela-
tionship between the isotope ratios (red line) under evaporative fractionation.
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Since the Rhizon bias meas-
ured in [Cl2] is clearer than
that in d18O and dD, we can
consider whether the amount
of fractionation, assuming it is
evaporative, could be
expected to be detectable by
the Picarro. The most fractio-
nated chloride measurement
yields an f of 0.98. This would
yield a ratio R

R0
jO of 0.9998. For

a typical measured d18Ofinal

equal to 0.2&, the measured
d18Oinitial would be equal to
0.4& yielding a measured dif-
ference of 0.2& between Rhi-
zon and squeeze samples.

However, most of the [Cl2] determined f values are greater than 0.995, equivalent to a ratio of R
R0
jO5

0:99995 which would yield a measured difference in d18O of less than 0.05&, below the measurement pre-
cision of the Picarro. Because the relationship between isotope fractionation and chloride concentration
due to evaporation is undetectable, we cannot rule out that the observed fractionation in our two sets of
samples is at least in part evaporative. At the same time, we cannot conclusively point to evaporation as the
culprit. Instead, the lack of correlation between f values computed using chloride concentration and those
computed from isotope ratios suggests a different mechanism causes the offset in measurements between
the two sampling techniques.

While there are multiple factors that may contribute to the measured offsets in chloride concentrations and
stable isotope ratios in Rhizon versus squeeze samples, we maintain that the most likely cause is a combina-
tion of absorption and diffusional fractionation in the Rhizon hydrophilic membrane. Clay ultrafiltration
should yield a much stronger signal in isotopic fractionation. Evaporation of water during the long process
of Rhizon sampling cannot be ruled out; however, we expect a strong correlation between fconc and fisotope if
evaporation were indeed causing the offset, which we do not observe. A slight contamination of drill fluid
is possible, but we did not detect any sulfate in the samples below the sulfate reduction zone, nor do we
see an offset between shipboard Rhizon and squeeze sulfate profiles. Conclusive demonstration that Rhizon
samplers absorb water and cause diffusive fractionation in samples will require controlled experiments
designed to eliminate other potential factors.

The measured offsets in concentration and isotopic composition between Rhizon and squeeze samples
were neither constant nor unidirectional. Further, the end-to-end spreads of the offset distributions were
wide-close to 1 g kg21 in [Cl2], 1& in d18O, and 5& in dD. For these reasons, it is impossible to simply cor-
rect for this artifact post-sampling. It would be reasonable to ignore the bias entirely when measuring a sig-
nal several orders of magnitude larger, but it can be difficult to predict the signal in advance when
choosing a sampling tool. Instead, we urge caution in interpreting concentration and isotopic measure-
ments on samples taken with Rhizons and suggest that controlled experiments should be completed in
order to better characterize the bias we observe.

5. Conclusions

Rhizon sampling alters the chloride concentration and oxygen and hydrogen isotopic composition in pore
water samples relative to those measured in samples taken with traditional squeezing. Average Rhizon-
squeeze offsets in chloride, d18O, and dD were, respectively, 0.04 g kg21, 0.04&, and 0.22&. As these biases
were not constant or unidirectional across samples, it is impossible to correct for this artifact postsampling.
For this reason, signals less than 0.5& in d18O, less than 0.5 g kg21 in concentration and less than 2.5& in
dD that are measured in samples taken by Rhizons must be considered unreliable. Our analysis indicates
that the alteration of the samples’ concentrations and isotopic values is most likely caused by a
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Figure 8. Rayleigh f versus depth computed from [Cl2], d18O and dD, assuming that the dif-
ference in measurements in Rhizons and squeeze samples is due to evaporation of Rhizon
samples.
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combination of absorption by and diffusive fractionation through the Rhizon’s hydrophilic membrane, but
more conclusive evidence will require controlled experiments.
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