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1. Introduction

[2] It is well established that the mantle is chemi-
cally heterogeneous on length‐scales smaller than
the 100 km typical size of the melting region
beneath a plate‐boundary or hot spot volcano [e.g.,
Hofmann, 1997]. Despite this, most studies of
melting at plate tectonic boundaries and hot spots
still treat the mantle as a homogeneous source.
Such models, irrespective of their sophistication,
probably miss crucial aspects of basalt petrogene-
sis; they may therefore lead to incorrect inversions
of geochemical data for mantle properties and
processes. Treatment of melting of a lithologically
heterogeneous mantle remains largely qualitative,
lacking the rigor necessary for quantitative geo-
chemical modeling. The present work seeks to
address this deficiency.

[3] A range of studies have inferred that hetero-
geneities are formed from previously subducted
oceanic and continental crust and lithosphere [e.g.,
Hofmann and White, 1982; Willbold and Stracke,
2010] that has been stirred into the mantle over
geologic time. This stirring continuously reduces the
characteristic size of heterogeneities [Hoffman and
McKenzie, 1985; Allègre and Turcotte, 1986], and
increases the rate of homogenization by solid‐state
diffusion. The surviving heterogeneities are those
that remain larger than the decimeter scale over
which diffusion would erase chemical variations on
the billion‐year time‐scale of mantle convection
[Hofmann and Hart, 1978]. Many of these have a
pyroxene‐rich lithology that may contain garnet,
spinel, and other accessory phases, but has little or no
olivine. In this paper, we do not attempt to distinguish
between the pyroxenites, garnet pyroxenites, and
eclogites that are included in this range of lithologies;
rather we generalize them to a class of mantle het-
erogeneity composed of fertile, recycled crustal
rocks. We do not directly address other classes of
mantle heterogeneity such as recycled sediments.

[4] Within the class considered here, the size‐
distribution and concentration of heterogeneities
throughout the mantle remains the subject of con-
troversy. Geochemical measurements and models
put constraints on the proportion of enriched
materials in the source regions of mid‐ocean ridges.
Hirschmann and Stolper [1996] used a variety of
trace element and isotopic measurements to estimate
that the MORB‐source contains 3–6% garnet
pyroxenite. Melting experiments by Pertermann
and Hirschmann [2003a] more accurately deter-
mined the productivity of upwelling pyroxenite,

and lead them to suggest 2–3% pyroxenite, though
they note that this result is sensitive to the assumed
fertility of the pyroxenite. Sobolev et al. [2007]
studied trace element and forsterite content in oliv-
ine phenocrysts from MORB, OIB, komatiites, and
within‐plate lavas and suggested that variations in
Mn and Ni content, among other indicators, call for
about 5% recycled oceanic crust in theMORB source
and 20% in the OIB source. This is approximately
consistent with estimates by Ito andMahoney [2005],
determined by modeling the melting process for rid-
ges and plumes, and seeking the range of starting
compositions that can explain both OIB and MORB
geochemical and isotopic systematics. Each of these
studies used a different approach to quantify the
contribution of recycled oceanic crust, yet their
results are similar; it seems reasonable to expect that
enriched heterogeneities compose less than one fifth
of the mantle that melts at most ridges and hot spots.

[5] Constraining the sizes and shapes of mantle
heterogeneities has proven more difficult than
determining their relative proportion. Seismic
scattering techniques described by Helffrich [2006]
provide support for blobs of mineralogically dis-
tinct heterogeneities with a characteristic scale of
] 10 km, distributed uniformly throughout the
mantle. Kogiso et al. [2004] argued for a size of
^ 1 m, which they calculated based on the obser-
vational constraint of radiogenic osmium sig-
natures in rocks recovered from mid‐ocean ridges
and hot spots. Yasuda and Fujii [1998] noted that
the negative buoyancy of eclogite blobs means that
blobs of diameter 40 km or larger cannot ascend
through the upper mantle, though the density that
they assumed for eclogite may have been too large
[Pertermann and Hirschmann, 2003b]. Others have
argued for heterogeneity of equal magnitude at all
scales based on observed geographical variation in
the isotopic ratios of lavas [e.g., Gurnis, 1986].

[6] Since fertile heterogeneities are a small fraction
of mantle volume, and are apparently dispersed at
sizes smaller than 10 km, we study their melting
systematics using an idealized model of an isolated
heterogeneity. Such a heterogeneity would initially
be in thermal equilibrium with the surrounding
mantle, because the rate of thermal diffusion is fast
relative to that of convective overturning. Because
of its composition, it would begin decompression
melting at higher pressures than the ambient, more
depleted mantle. This melting requires energy to
convert solid to liquid, and it diminishes the tem-
perature of the blob relative to the surrounding
mantle. The associated temperature gradient drives
heat flow into the blob, and increases the melting
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rate, while cooling the surrounding mantle. What is
the magnitude of this effect? This question was first
addressed by Sleep [1984], who developed models
of heat conduction into a fertile, melting sphere and
tabular body.

[7] Sleep [1984] considered a fertile heterogeneity
undergoing decompression melting at an upwelling
rate of 3 cm/yr and calculated the size it must have
such that the characteristic thermal‐diffusion time
is approximately equal to its duration in the melting
column, obtaining a value of 5 km. Moreover, he
recognized that heterogeneities much smaller than
this size would melt in thermal equilibrium with the
surrounding mantle, while those much larger would
melt in thermal isolation. Sleep [1984] then derived
a mathematical model of partial melting of such
heterogeneities based on diffusive heat flow and
parameterized thermodynamic properties. Analysis
of this model lead him to conclude that thermal
diffusion could cause an enhancement of melting
by up to a factor of seven over the thermally iso-
lated case. This extremely large enhancement
contrasts with the results that we present below.

[8] In the present paper we take a similar approach
to Sleep [1984]—we consider thermal diffusion
into a fertile heterogeneity of spherical or tabular
shape—but we provide a more comprehensive
study and obtain significantly different results. Our
approach is more rigorous in that we derive an
equation for conservation of energy that explicitly
couples melting with thermal diffusion. In contrast
to Sleep [1984], we obtain full analytical solutions
in terms of non‐dimensional parameters, and use
them to elucidate the controls on and limits of
partial melting of heterogeneities. Furthermore, on
empirical [Pertermann and Hirschmann, 2003a]
and theoretical grounds [Hirschmann et al., 1999],
we consider the nonlinear relationship between
melt fraction and temperature, where Sleep [1984]
assumed linearity. For the nonlinear case, we rely
on numerical solutions of the governing equations;
these are documented and validated in Appendix B.
Our calculations are based on parameter values
from published experiments on G2 pyroxenite
[Pertermann and Hirschmann, 2003a], which has a
composition thought to approximate recycled oce-
anic crust. We compare the results of these calcu-
lations with those obtained by Sleep [1984],
who used different and probably unrealistic para-
meters for pyroxenite melting (for example, Sleep
[1984] assumed a near‐solidus isobaric productiv-
ity ∂F/∂T∣P that is a factor of five to twenty times
larger than the value obtained empirically by
Pertermann and Hirschmann [2003a]).

[9] Our work is also related to that of Phipps
Morgan [2001], who considered narrow, multilay-
ered tabular veins of fertile pyroxenite within
depleted peridotite, and computed melting behavior
for a variety of compositional scenarios. He
assumed thermal equilibrium between all the layers
in the model. Similar models were developed by
Hirschmann and Stolper [1996] and Stolper and
Asimow [2007]. And whereas these authors’ work
focused on the effects of melting a compositional
mélange with variable solidus (and solidus slope)
between solid phases, here we are interested in
accounting for the finite time‐scale of thermal
equilibration. Our model is not restricted to any one
set of pyroxenite melting parameters, though in this
paper we limit consideration to a single example
that we hope is representative.

[10] The relative simplicity of the physical model is
based on a number of key assumptions. The most
important of these is that heterogeneities are iso-
lated from one another, such that their thermal
disturbances do not interact. We further assume
that the characteristic size of a heterogeneity is
small relative to the vertical distance between the
depth at which it reaches its solidus and the depth
of the ambient mantle solidus. This latter assump-
tion allows us to approximate the lithostatic pres-
sure as being constant within the heterogeneity. We
assume that heterogeneities upwell at the same
speed as the ambient mantle; other authors have
considered the possibility that chemically dense,
unmolten, recycled material upwells at a slower
speed due to its negative buoyancy [Yasuda and
Fujii, 1998; Pertermann and Hirschmann, 2003b].
Finally, we assume that melt does not segregate
from the host rock, which is the thermodynamic
equivalent of assuming batch melting. If the
ambient mantle remains unmolten as an embedded
heterogeneity partially melts, magma may be held
within the heterogeneity by a permeability barrier.
Alternatively, it may chemically react with the
surrounding rock [Yaxley and Green, 1998; Kogiso
et al., 2004], propagate through it by diking, or
open the pores through surface‐energy driven flow
[Riley and Kohlstedt, 1991]. Even a leaky perme-
ability barrier around a fertile enclave would sig-
nificantly restrict magmatic segregation if the scale
of the sphere is smaller than the compaction length
[Spiegelman, 1993]. For the case of a tabular vein,
these arguments are clearly tenuous; we therefore
justify the assumption on grounds of mathematical
convenience, and flag this as an issue to be remedied
in future work. These assumptions enable us to for-
mulate a mathematical model that admits analytical
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solution in some cases, and high‐accuracy, efficient
numerical solutions in others. We can thus provide a
thorough exploration of the model behavior, and
draw conclusions that will inform more detailed
work in which assumptions are relaxed.

[11] Although this paper focuses on the energetics
of pyroxenite melting, the results also have geo-
chemical implications. It is well‐known that garnet
is an important phase in recycled oceanic crust, and
that it has a unique set of affinities for trace ele-
ments [e.g., Stracke et al., 1999; Pertermann et al.,
2004]. The trace element budget of melts derived
from pyroxenite is therefore sensitive to the pres-
ence of residual garnet; the persistence of garnet in
the residue depends on pressure, but it also depends
on the degree of melting. The work presented here
provides a framework for evaluating the degree of
melting of pyroxenite enclaves within the depleted,
peridotite upper mantle; it also highlights the dif-
ficulties in inverting geochemical data for the
physical characteristics of mantle heterogeneity by
showing that the size and shape of heterogeneities
has a significant influence on their melting behavior.
Perhaps a larger difficulty is that the pathways of
melt transport from deep‐melting, fertile hetero-
geneities to the surface are poorly constrained, and it
is increasingly understood that the details of melt
transport have a crucial impact on observed geo-
chemical patterns [e.g., Spiegelman and Kelemen,
2003; Liang et al., 2011].

[12] The next section describes the idealized
physical scenario to be analyzed, and lays out a
mathematical formulation of the problem. The
Results section then presents non‐dimensional
output from analytical and numerical solutions. The
Discussion section examines these results in more

detail and provides a subset of them in dimensional
form. We summarize our findings briefly at the
end, and give the details of analytical and numer-
ical methods in two appendices. Throughout this
paper, the focus is on the slightly more complicated
case of a spherical heterogeneity, however in the
Discussion section, we compare our results for
spherical and tabular bodies.

2. The Mathematical Model

[13] Figure 1 is a schematic representation of the
model set‐up. We consider two end‐member cases:
a spherical blob of radius R and an infinite tabular
vein of half‐width R. Both are made of a uniform,
fertile lithology, and are embedded within the
depleted upper mantle, upwelling at speed W > 0.
We develop the mathematical model using the case
of the spherical blob and present the case of a
tabular vein in Section 2.3.

[14] We assume that the blob is small enough that
we can neglect vertical variation of all properties
within it. This assumption is awkward for the tab-
ular vein, but not unreasonable if we consider that
temperature gradients (and hence heat flow) normal
to the vein will greatly exceed those within it. As
the heterogeneity ascends, it reaches a pressure
p0 = rgz0 where its temperature is equal to the
solidus temperature T0; we label this moment t = 0
(r is the density of all materials under consider-
ation; g is the acceleration due to gravity; both are
assumed constant). The ambient mantle is also
upwelling with speed W, and it reaches its solidus
temperature T1 at a shallower pressure p1 = rgz1
(and hence at a later time t = t1). We investigate the
time interval between 0 and t1, when the blob is

Figure 1. Schematic diagram of the upwelling column with idealized fertile blob and fertile tabular vein. The blob is
a sphere in three dimensions, while the tabular vein is an infinite sheet. The fertile material crosses its solidus at z = z0
and t = 0; far‐field ambient mantle crosses its solidus at z = z1 and t = t1.
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partially molten but the ambient mantle is entirely
solid.

[15] Motivated by the experimental results of
Pertermann and Hirschmann [2003a], the solidus
and liquidus temperatures of the blob are taken to
depend on pressure only:

Ts pð Þ ¼ T0 þ ��1 p� p0ð Þ; ð1aÞ

Tl pð Þ ¼ T0 þ ��1 p� p0ð Þ þDT ; ð1bÞ

where DT is a constant and g is the Clapeyron
slope. Because of the uniform upward motion, the
pressure experienced by the blob changes with time
according to

p tð Þ ¼ p0 � �gWt: ð2Þ

[16] The coordinate system is fixed to the center of
the spherical heterogeneity, which has a radius R.
The goal is to determine the temperature field T(r, t)
outside the blob as it melts, and to calculate the
average temperature and melting rate within the
blob. Magmatic segregation can be neglected if
the blob is much smaller than the compaction
length within it. This will be true for smaller values
of R, but since we are concerned only with the
averaged melting properties of the blob, we expect
that mass redistribution within the blob would have
only a small effect on our results.

[17] With the above assumptions, conservation of
energy is

@H

@t
þ �gW ¼ kr2T ; ð3Þ

where rgW is the rate of change of potential energy
and

dH ¼ �L dF þ �cp dT þ 1� �Tð Þ dp ð4Þ

represents an infinitesimal change in bulk enthalpy
in terms of its contributing parts. F here is the
volume fraction of melt, and the remaining sym-
bols are defined in Table 1. Combining (2), (3), and
(4) gives

�L
@F

@t
þ �cp

@T

@t
� �T

@p

@t
¼ kr2T : ð5Þ

[18] We will non‐dimensionalize with the follow-
ing scales

x½ � ¼ R; t½ � ¼ Dp

�gW
; ð6Þ

and define the non‐dimensional temperature and
pressure as

� ¼ �

Dp
T � T0ð Þ; P ¼ p� p0

Dp
; ð7Þ

whereDp = p0 − p1 and the temperature scale is the
change in the solidus temperature from p0 to p1.
Using these scales and linearizing the adiabatic
gradient about T = T0 gives

S @F

@t
þ @�

@t
þA ¼ 1

Pe
r2�; ð8Þ

where the Peclet number is

Pe ¼ �R
�a

¼ �gWR2

�Dp
;

Table 1. Dimensional and Non‐Dimensional Parameters

Parameter Value or Range Units Comment

a 0.25 – 1 ‐ Coefficient in melting relation (11)
cp 1200 J kg−1K−1 Specific heat capacity
g 10 m s−2 Gravitational acceleration
k = rcp� J K−1m−1s−1 Thermal conductivity
L 4 × 105 J kg−1 Latent heat of melting
R 10−2 – 103 km Characteristic size of heterogeneity
T0 1623 K Reference melting temperature
W 10−1 – 103 cm a−1 Upwelling rate
a 3 × 10−5 K−1 Thermal expansivity
g 8.3 × 106 Pa K−1 Clausius‐Clapeyron slope (120 K/GPa)
Dp 1.7 × 109 Pa Pressure interval (110–60 km depth)
DT 250 K T‐difference between liquidus and solidus
� 10−6 m2s−1 Thermal diffusivity
r 3300 kg m−3 Density
A 0.1 ‐ Adiabatic parameter
D� 1.2 ‐ Melting‐temperature interval
Pe ‐ Peclet number
S 1.7 ‐ Stefan number
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the Stefan number is

S ¼ L�

cpDp
;

and the adiabatic parameter is

A ¼ ��T0
�cp

:

All symbols in equation (8) represent non‐
dimensional quantities. The Peclet number is the
ratio of the time‐scale tR = R2/� for diffusion of
heat across the blob to the time‐scale ta =Dp/(rgW)
for advection of the blob from p0 to p1. It is
the principal control parameter in the problem; for
Pe → 0 the diffusive heat transport dominates the
thermal budget and the blob is in thermal equilib-
riumwith the surroundingmantle, while for Pe→∞,
diffusion is negligible relative to advective trans-
port, and the blob melts adiabatically.

[19] The adiabatic parameter is the linearized rate
of energy consumption by adiabatic expansion. We
neglect the term associated with the adiabatic
parameter in what follows. In A5 we show that
incorporating this term gives rise to the usual adi-
abatic temperature gradient, and introduces a factor
of (1 − A) into the melt productivity.

[20] With the above scaling, the equations for the
solidus and liquidus (1) become

�s ¼ P ¼ �t; ð9aÞ

�l ¼ P þD� ¼ �t þD�; ð9bÞ

where D� = gDT/Dp is the non‐dimensional,
constant temperature offset between solidus and
liquidus. The non‐dimensional pressure is given by
P(t) = − t with 0 ≤ t ≤ 1.

[21] We can put rough constraints on all of the
material parameters, as given in Table 1, but cannot
prescribe the radius of the blob or its upwelling
rate. However, these latter two parameters are
combined in the Peclet number, so we need explore
the variation in only a single dimensionless
parameter. Note that a value ofD� larger than unity
indicates that the temperature difference between
the solidus and the liquidus of the blob is larger
than the temperature difference between its solidus
for non‐dimensional pressures P = 0 and P = −1.
This means that for D� > 1 and t ≤ 1, the blob
cannot melt to F = 1. In the current work we do not
consider the case of a fully molten heterogeneity,
which can only occur for t ≤ 1 if D� ≤ 1.

2.1. Within the Blob

[22] Since we are interested in melting of a fertile
blob of recycled material, we first formulate equa-
tions that capture its melting properties.

2.1.1. Simplified Melting Relations for Fertile,
Recycled Oceanic Crust

[23] When the temperature within the blob is above
the solidus, a dimensionless normalized tempera-
ture is

Q ¼ �� �s
D�

; when �s � � � �l: ð10Þ

[24] Pertermann and Hirschmann [2003a] found,
for the anhydrous pyroxenite composition G2
(N.B. Pertermann and Hirschmann [2003a] use the
term pyroxenite to describe all pyroxene‐rich,
olivine‐poor mantle heterogeneities), that the rela-
tionship between the non‐dimensional normalized
temperature Q and the degree of melting can be
represented as

F ¼ aQþ 1� að ÞQ2; ð11Þ

where 0 ≤ a ≤ 1. Their data was best fit for a ≈ 1/4.
Their pyroxenite composition, chosen to be similar
to typical oceanic crust, cannot represent all flavors
of mantle heterogeneity. It is, instead, a well‐
characterized and important example. We assert that
the melting consequences of other compositions can
be investigated within the mathematical framework
established below, by repeating our calculations
with modified values for material constants. For
example, one could model the presence of volatile
elements in the pyroxenite by modifying para-
meters T0, p0 and a to produce a “tail” of low‐F
melting at high pressure [Hirschmann et al., 1999].

2.1.2. The Degree of Melting of the Blob

[25] To simplify the analysis, we now assume a
homogeneous distribution of temperature and melt
fraction within the blob, and define these as �B and
FB respectively. This approximation will hold at
small Peclet numbers; in Section 3.3 we relax this
constraint and consider radially variable blobs.
Proceeding with the averaged quantities �B and FB,
we can integrate equation (8) over the non‐
dimensional volume of the blob V = 4p/3. This
gives

S @FB

@t
þ @�B

@t
¼ 3

4�

1

Pe

Z
S
rrr� � dS; ð12Þ
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where we have used the divergence theorem to
convert the volume integral into a surface integral.
We can evaluate this integral in spherical coordi-
nates as the spherically symmetric gradient in the
radial direction times the non‐dimensional surface
area of the blob 4p. We then integrate with respect
to time to obtain

SFB þ �B ¼ 3

Pe

Z t

0

@�

@r

����
1;�

d�: ð13Þ

[26] Both �B and FB can be expressed in terms of
QB by using (10) and (11). Equation (13) becomes

D�þ aSð ÞQB þ 1� að ÞSQ2
B ¼ t þ 3

Pe

Z t

0

@�

@r

����
1;�

d�; ð14Þ

which relates the homologous temperature inside
the blob to the integrated heat flux into the blob
from the ambient mantle. The above equation can
be solved for QB; the result is

QB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4LfB

p � 1

2L
; ð15Þ

where

L ¼ 1� að ÞS
D�þ aS ; fB ¼ 1

aS þD�
t þ 3

Pe

Z t

0

@�

@r

����
1;�

d�

 !
:

ð16Þ

In the linear limit where a → 1 (L → 0),
equations (15) and (16) simplify to

QB ¼ fB ¼ 1

S þD�
t þ 3

Pe

Z t

0

@�

@r

����
1;�

d�

 !
: ð17Þ

This linear case can be treated analytically; details
are provided in A.

2.2. Outside the Blob

[27] Outside the blob, the mantle is below its soli-
dus and hence F = 0 . Equation (8) becomes

@�

@t
¼ 1

Pe

1

r2
@

@r
r2
@�

@r

� �
; ð18Þ

where we have chosen spherical coordinates and
used the symmetry of the problem to discard terms.

[28] Equation (18) has boundary conditions

� 1; tð Þ ¼ �t þQBD�; ð19aÞ

� ∞; tð Þ ¼ 0; ð19bÞ

where QB is given by (15) and (16). The first of
these boundary conditions represents the continuity

of temperature at the surface of the blob, and the
second represents the constant far‐field temperature
of the ambient mantle. The initial condition is
uniform temperature,

� r; 0ð Þ ¼ 0: ð20Þ

2.3. A Tabular Heterogeneity

[29] The governing equations are simplified slightly
if we consider a tabular heterogeneity of half‐width
R and infinite extent; equations (14) and (18) are
replaced by

D�þ aSð ÞQB þ 1� að ÞSQ2
B ¼ t þ 1

Pe

Z t

0

@�

@x

����
1;�

d�; ð21Þ

@�

@t
¼ 1

Pe

@2�

@x2
; ð22Þ

where we have taken the x‐axis in the direction
normal to the tabular body. The boundary conditions
(19) are unchanged, except for use of the modified
solution for QB. As with the spherical blob, we
neglect magmatic segregation for the tabular body.
A model similar to this was considered by Sleep
[1984]. In the Results section, we limit our atten-
tion to solutions for the spherical blob. The tabular
vein is reintroduced in the Discussion section, where
we examine the consequences of blob shape on
melting behavior, for these two end‐member cases.

[30] For a spherical (or tabular) blob, the solution is
obtained by solving the system of equations (14)
and (18) (or (21) and (22)), with (16), (19), and
(20) on the domain 1 ≤ (r, x) < ∞ and 0 ≤ t ≤ 1 for
given values of a, Pe, S, and D�.

[31] In the end‐member cases of melting for infinite
and zero Peclet number corresponding, respec-
tively, to purely adiabatic and purely isothermal
melting, it is not necessary to solve for the tem-
perature structure outside the blob [Sleep, 1984].
Figure 2 shows a schematic representation of the
temperature–pressure path taken by the blob in
these two cases, and illustrates the thermodynamic
phase diagram (for a = 1). Solutions for interme-
diate Peclet numbers follow paths between the end‐
member curves, but must be obtained through
analytical or numerical solutions to the governing
equations. These are presented in the next section.

3. Results

[32] In this section we present results from both
analytical and numerical solutions of the governing
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equations for a spherical blob. We fix all the
dimensionless parameters except the Peclet num-
ber, which captures the variation in both upwelling
rate and blob size. Solutions are presented for a
range of Peclet numbers.

3.1. Linear Melting Approximation

[33] When a = 1, the boundary condition described
by (17) and (19a) is linear and an analytical solution
can be obtained using Laplace transforms (see
section A1). These are plotted in Figure 3 for dif-
ferent values of the Peclet number. Figure 3a shows

the degree of melting of the blob as a function of
time. The range of curves is bounded by dashed
lines for solutions at asymptotic values of Pe.
When Pe → 0, the blob is in thermal equilibrium
with its surroundings. In this case, the degree of
melting is determined entirely by the Clapeyron
slope and the relationship between temperature and
degree of melting in (11). Blobs of radius O(1 km)
or smaller would behave according to the small‐
Peclet limit. When Pe → ∞, the blob is a closed
thermodynamic system, exchanging no heat with
the surrounding mantle. In this case, the degree of
melting is controlled by the decreasing solidus

Figure 2. Thermodynamic analysis of the melting of the blob in the two extreme cases of complete thermal isolation
(Pe = ∞) and complete thermal equilibration (Pe = 0). Diagram based on Sleep [1984, Figure 5]. Orange and green
lines represent temperature‐pressure paths for these extremes. Linear solidus and liquidus lines are assumed (red and
blue lines), the dependence of melt fraction on homologous temperature is taken to be linear (i.e., a = 1), and we
neglect the adiabatic temperature gradient (i.e., A = 0). Degrees of melting are depicted by dotted contours.

Figure 3. Analytical solution for equations (17)–(20) with a = 1 and other parameters as in Table 1. Curves are
labeled with log10 Pe. (a) The mean degree of melting within the blob as a function of time, for different values of Pe.
The red dashed curves are the limiting cases of Pe → 0 and Pe → ∞. (b) The dimensionless temperature disturbance
∣�(r, 1)∣ caused by diffusion into the blob as a function of dimensionless radius at the dimensionless time t = 1.
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temperature and the latent‐heat cost of melting.
Blobs of radius O(100 km) or larger would behave
according to the large‐Peclet limit. Further dimen-
sional considerations are deferred to the discussion
section, below.

[34] For finite values of Pe, the ambient thermal
state, �(r, 0) = 0, is altered by diffusion of heat into
the relatively cool blob. The magnitude of the
disturbance is plotted in Figure 3b for t = 1. The
amplitude of the near‐field disturbance grows with
increasing Pe, while the decay length of the dis-
turbance decreases. In other words, when diffusion
is unimportant (Pe → ∞), temperature differences
from the background are large, but the radius of the
thermal halo is small. When diffusion is important
(Pe → 0), the opposite is true. In the latter case,
where diffusive equilibrium is reached in infinites-
imal time, we can make the quasi‐steady approxi-
mation, setting ∂�/∂t ≈ 0 in (18) to obtain

0 � 1

r2
@

@r
r2
@�

@r

� �
: ð23Þ

Inspection of this equation shows that solutions
must take the form �(r, t) = �B(t)/r. This predicts
that at small Peclet number, the thermal disturbance
close to the blob should scale as r−1 (Figure 3).

3.2. Nonlinear Melting

[35] Melting experiments on pyroxenite by
Pertermann and Hirschmann [2003a] are best fit
with a ≈ 1/4, so we now examine solutions for that
case. Since equation (14) is then nonlinear, we
must rely on numerical methods to solve the

problem (see Appendix B). Figure 4 shows the
results of a suite of calculations for different values
of Pe, with a = 1/4. As with the case of a = 1, the
curves for FB(t) are bounded above and below by
asymptotes for Pe → 0 and Pe → ∞, respectively.
The latter case, representing adiabatic melting,
results in a temperature evolution given by

QB t; Pe ! ∞ð Þ ¼ 1

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Lt

D�þ aS

r
� 1

 !
; ð24Þ

which can be obtained from (15) and (16) by
neglecting the term describing conduction of heat
into the blob. The Pe → 0 case represents melting
in thermal equilibrium with the surrounding man-
tle, and hence at the fixed temperature � = 0. Using
(9a) and the definition of Q in (10) we obtain

QB t; Pe ! 0ð Þ ¼ t

D�
: ð25Þ

Equations (24) and (25) can be substituted into the
melting relationship (11); the results are plotted in
Figure 4 as red, dashed lines.

[36] Figure 4b shows that the perturbation to the
ambient temperature field surrounding the blob is
not significantly different from the linear case. For
small Peclet numbers, the temperature perturbation
falls off as r−1, in accordance with a quasi‐steady
approximation (23) of the diffusion equation.

3.3. Radially Variable Melting Within
the Blob

[37] At small Peclet number, diffusion efficiently
transports heat to the center of the blob, and neutralizes

Figure 4. Numerical solutions for equations (15), (16), and (18)–(20) with a = 1/4 and other parameters as in
Table 1. Each curve is labeled with log10 Pe. Details as in Figure 3.
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any temperature gradients. In contrast, when the
Peclet number is O(1), the time‐scale for diffusion
of heat across the blob is comparable to the time for
vertical advection through the domain. In this case,
we expect a significant temperature gradient across
the radius of the blob, with warmer temperatures at
the edge and cooler temperatures at the center. For
larger Peclet numbers, diffusive heat transport is
inefficient, and the temperature gradient does not
penetrate far into the blob, but rather yields higher
temperatures and melt fractions in a rim at the edge
of the domain. To capture the behavior for Pe ^ 1,
we relax the assumption of homogeneous properties
FB(t) and �B(t) within the blob, and instead calculate
radially variable properties F(r, t) and �(r, t). This is
the approach taken by Sleep [1984], although his
calculations used 1‐dimensional Cartesian rather
than spherical geometry. In this section we consider
only the linear melting relation, a = 1; based on the
similarity of Figures 3 and 4, we infer that com-
parable behavior would be observed for the non-
linear case. For a = 1, the Laplace transform method

can be used, with a numerical scheme to invert the
transform (details and references in section A2).

[38] Figure 5 shows the results of calculations for a
radially variable blob. Figure 5a illustrates the
discussion in the preceding paragraph about the
structure of the blob at Peclet numbers around or
above unity. The degree of melting shows a radial
dependence at Pe ≈ 1 and this gradient steepens and
localizes with increasing Pe. Figure 5b shows the
evolution of the radially resolved degree of melting
with time, for Pe = 1. From an early state that is
nearly homogeneous in F, the diffusive heat flux
penetrates progressively further into the blob with
time, as shown in Figure 5d, and establishes a
temperature gradient that spans the radius of the
blob. Figure 5c compares the final temperature
distribution within and outside the blob for a range
of Peclet numbers. Section 4.1 includes a quanti-
tative comparison of the radially resolved model
and the radially averaged model, showing that

Figure 5. Radial profiles of melt fraction F(r, t) and temperature �(r, t) through the blob with a = 1 (compare with
Figure 6 of Sleep [1984]). (a) F(r, t) at t = 1 for different values of Pe. Red, dashed lines are the asymptotic values
of F(r < 1, t) for Pe → 0, ∞. (b) F(r, t) at Pe = 1 for different values of t. (c) �(r, t) at t = 1 for different values of
Pe. (d) �(r, t) at Pe = 1 for different values of t.
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differences are relatively small, but are maximized
for 1 ] Pe ] 10.

[39] We obtain a parallel set of results (not shown)
for the case of the tabular vein, with moderate but
systematic differences from those above. Part of the
discussion below is a comparison of results for
spherical and tabular models.

4. Discussion

[40] In this section we make a detailed examination
of results for spherical and tabular heterogeneities.
Before doing that, however, we compare the
behavior of the radially averaged spherical model
(Figures 3 and 4) with the radially resolved
spherical model (Figure 5). Most of this Discussion
section compares results as a function of the Peclet
number, but at the end, we interpret the results
in terms of dimensional heterogeneity size and
upwelling rate. At that point, we also provide a
quantitative comparison with the results obtained
by Sleep [1984].

4.1. Model Behavior as a Function of Peclet
Number

[41] Section 3.3 showed that at intermediate and
large Peclet numbers, the spherical blob can have
significant radial structure. What error do we make,
then, in assuming a homogeneous distribution of
melting a priori? Figure 6 shows that in terms of
mean quantities, this difference is rather small (the

radially resolved model has been averaged over the
spherical blob to produce an a posteriori mean). In
general, the figure shows that the assumption of a
homogeneous blob leads to a larger melt produc-
tion and larger temperature contrast. This is
because imposing homogeneity within the blob is
equivalent to requiring that diffusion is infinitely
fast there, leading to perfect redistribution of
energy. Without this assumption, the rim of the
sphere warms more rapidly than the core, and
insulates it from inward diffusion of heat. The
difference is largest at intermediate Peclet numbers
because there, as shown in Figure 5, the gradient in
F and � spans much or all of the spherical blob
radius.

[42] The maximum difference for the mean degree
of melting between the two models is about 5%,
and indicates that a blob at Pe ≈ 1 may melt to
∼60% rather than ∼65% (for a = 1). In the present
idealized context, this difference may be consid-
ered insignificant. Similar models that assume
progressive removal of melt from the blob (e.g.,
fractional melting), or that are concerned with the
chemistry of individual “packets” of melt produced
within the blob, might find the assumption of
homogeneity to be problematic, especially for large
Peclet numbers.

[43] How does melting vary as a function of Peclet
number? Figure 7 provides an answer in terms of
the mean degree of melting (Figure 7a) and tem-
perature (Figure 7b) inside the heterogeneity. Evi-
dently, for Peclet numbers smaller than ∼10−1,

Figure 6. Difference between the radially averaged FB(t) and the radially resolved F(t) solutions for a = 1 at time
t = 1. For comparison, the radially resolved solution has been averaged over the blob. The temperature difference
between the two models (not shown) is a factor of D� larger than the difference in degree of melting.
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diffusion of heat into the spherical blob (black lines
& symbols) dominates the melting budget and
keeps the temperature of the blob equal to the
ambient temperature. For Peclet numbers larger
than ∼102, diffusion of heat makes a negligible
contribution to the overall budget and blob tem-
peratures approach their adiabatic limit (although
Figure 5a shows that the diffusive heat flux may be
important in a narrow rim at the edge of the blob).
In the intermediate‐Peclet regime, diffusion makes
a significant but not dominant contribution, and the
final degree of melting and blob temperature are
sensitive to the value of Pe.

[44] The tabular vein shows a qualitatively similar
behavior (blue lines and symbols in Figure 7). At
very large Peclet numbers, where diffusion makes
an insignificant contribution to melting, the spheri-
cal blob and the tabular vein melt to equal extents; at
very small Peclet numbers, where diffusion makes a
substantial contribution to powering melting, the
two also agree. Differences appear between these
extremes, with the tabular vein exhibiting less
extensive melting at any intermediate value of Pe.
This can be understood in terms of the symmetry of
each blob shape. In the spherical case, a circular
patch on the surface of the heterogeneity draws a
diffusive heat flow from a (truncated) cone of
mantle, its volume increasing with the cube of dis-
tance from the blob. In the tabular case, a circular
patch on the surface of the heterogeneity draws heat
only from a cylinder of mantle, with a volume
proportional to linear distance from the vein.

[45] Figure 7 also shows that the nonlinearity of the
temperature–melting function (11) has a simple and
uniform effect on the final degree of melting and
the final temperature. Lower values of a require
higher temperature to reach a given FB. With other
parameters held constant, decreasing a gives
smaller FB as a function of time, which means less
conversion of sensible to latent heat, and therefore
a smaller blob‐temperature difference from ambi-
ent. Since it is this temperature difference that
drives thermal diffusion and further melting, the
diffusive flow of energy into the blob decreases
with decreasing a.

[46] Despite reductions to maximum FB from
nonlinear effects, geometry of the heterogeneity,
and adiabatic decompression (which gives a ∼10%
reduction), melting at low Peclet numbers yields
degrees of partial melting that are well in excess of
50%. And while less fertile compositions than the
ones considered here would generate smaller FB,
our prediction should hold if the G2 pyroxenite
composition ofPertermann andHirschmann [2003a]
is representative of recycled oceanic crust. Fur-
thermore, Figure 7a shows that even for the non-
linear case, we can approximate the maximum
increase in degree of melting due to thermal dif-
fusion by 1/l where

1

	
¼ S þD�

D�
¼ Lþ cpDT

cpDT
; ð26Þ

which is independent of the temperature difference
g/Dp between the solidii of recycled oceanic crust

Figure 7. (a) Summary of degree of melting and (b) dimensionless temperature at t = 1 for three values of a,
computed for a range in Peclet number spanning the transition between asymptotic values. Black lines and symbols
correspond to the spherical‐blob model; blue lines and symbols correspond to the tabular‐vein model. Dotted lines
show asymptotic values as labeled. Note that in interpreting Pe for the tabular vein, R is the half‐width, as shown
in Figure 1.
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and depleted upper mantle (recall that L is latent
heat, cp is specific heat capacity, and DT is the
liquidus–solidus temperature interval of pyroxe-
nite). This equation is equivalent to equation (11)
of Sleep [1984].

[47] How broad is the effect of melting within the
heterogeneity on the mantle temperature around it?
Figure 8 addresses this question for a range of
Peclet numbers for both the spherical blob (black
lines and symbols) and the tabular vein (blue lines).
At large values of Pe, diffusion is highly localized
near the heterogeneity, causing large differences
from the ambient temperature in a narrow region.
Moving toward smaller values of Pe, diffusion
becomes more efficient, and heat flows into the
heterogeneity from a broad region. In the spherical
geometry, the volume of this region increases with
the cube of distance from the blob; when a large
volume of ambient mantle contributes heat to the
blob, the ambient temperature change associated
with that contribution is small. These two tendencies
are reflected by the trends in Figure 8, following
the black curves from right to left. At Pe ≈ 1, where
advective and diffusive heat transport are roughly
in balance for the spherical heterogeneity, we find
a thermal perturbation that is relatively large in
both amplitude and extent. In Cartesian geometry,

volume increases linearly with distance from the
tabular vein, and hence for a given inward heat
flow, the thermal halo reaches greater distances.

4.2. Dependence on Dimensional Size
and Upwelling Rate

[48] To conclude the discussion we reintroduce
dimensional parameters and consider, indepen-
dently, the effect of changing the characteristic size
R and the upwelling speed W. Although these
results could be deduced from earlier, dimension-
less plots, they are presented in Figure 9 for clarity.
To produce this figure, we have assumed values of
material parameters as given in Table 1. Figure 9a
shows contours of degree of melting at t = 1 for
a = 1 (analytical, black lines) and a = 1/4 (numerical,
red lines) for a spherical heterogeneity. Degree of
melting is smallest at the top‐right of the figure, for
large blobs that upwell rapidly and melt adiabati-
cally, and largest at the bottom‐left of the figure, for
small blobs that upwell slowly and melt in thermal
equilibrium with their surroundings. Figure 9b
shows the dimensional temperature perturbation
at a distance 1.5 R from the center of the blob. For
large blobs that upwell rapidly, loss of heat from
the ambient mantle by diffusion into the blob
occurs in a region narrowly confined around the

Figure 8. The non‐dimensional size of the diffusively cooled halo around the spherical blob (black) and the tabular
vein (blue) at t = 1, as a function of the Peclet number. Lines are calculated with the analytical solution for a = 1; each
line represents the radius at which �(r, 1) reaches a specified value (see legend for values). Points are derived from
spherical‐blob simulations with a = 1/4; their close correspondence with the lines indicates the associated value of
�(r, 1).
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edge of the blob, hence the temperature at r = 1.5 R
is unaffected. For small blobs that upwell slowly,
the heat required to maintain thermal equilibrium
with the ambient mantle is small, and it is extracted
over a very large volume around the blob, includ-
ing r = 1.5 R. The case of a tabular vein is shown
by contours of degree of melting and temperature
perturbation in Figures 9c and 9d. The transition to
diffusion‐dominated melting is shifted to lower
Peclet numbers, meaning that tabular veins must be
narrower or upwelling more slowly to overcome
their geometry and reach the same FB as spherical
blobs. Finally, note that contours in all four panels
have a slope of −2, which is consistent with the
dependence of Peclet number on R and W (note
different x‐scales in the two panels in Figure 9).

[49] Results presented here are qualitatively con-
sistent with those obtained by Sleep [1984]. Where
his scaling analysis predicted a transition between
thermally isolated and thermally equilibrated at a
characteristic size of about five kilometers for an
upwelling rate of 3 cm/yr, Figure 9c suggests that
for a tabular vein, the transition occurs at a slightly
smaller size of about one kilometer. This difference
is insignificant given the model assumptions. More
substantial differences can be noted in the amount
of melting and the enhancement factors obtained by
Sleep [1984] compared to our work. His model
considered only the linearized melting relationship
a = 1, and used an isobaric productivity of 0.02 K−1

corresponding to a temperature difference between
the liquidus and solidus ofDT = 50 K. This is about

Figure 9. Contour plots of dimensional quantities as a function of characteristic heterogeneity size R in km and
upwelling rate W in cm/yr. Other dimensional parameters as in Table 1. (a and c) Degree of melting for the spher-
ical blob and tabular vein, respectively. Black contours are computed with the analytical solution and a = 1; red
contours are computed with the numerical simulation and a = 1/4. Degree of melting is maximal in the bottom left
corner and minimal in the top right corner. Contour spacing is linear and the maximum (minimum) contour values are
1% less (more) than the appropriate asymptotic values. Asymptotic values for FB are obtained using equations (24)
and (25) with equation (11). For the nonlinear melting solution, only the maximum and minimum contours are shown.
(b and d) The temperature perturbation at a distance 1.5 R from the center of the spherical blob or tabular vein,
respectively. The largest absolute perturbation is ∼20°C (spherical) and ∼56°C (tabular) at this radius. Only the linear
a = 1 solution is plotted for temperature. As in previous figures, the results here exclude the background adiabatic
gradient (see A5 for details).
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a factor of five smaller than the liquidus–solidus
difference obtained empirically by Pertermann and
Hirschmann [2003a]; furthermore, near‐solidus
productivity for G2 pyroxenite is about 0.001 K−1,
a factor of 20 smaller than the value used by
Sleep [1984]. This difference, as prescribed by
equation (26), explains the very large enhancement
factors (3–7 × adiabatic) that he obtained. Despite
this enhancement to melting, the melt fractions
reported by Sleep [1984] are small relative to those
obtained here. This is because he computed melting
curves for only 5 to 12 km of mantle ascent, which
again is small relative to the value of ∼50 km
between the melting onset‐depth of pyroxenite
and peridotite, as estimated by Pertermann and
Hirschmann [2003a] and used here.

5. Summary and Implications

[50] In this paper we have presented new theory for
the melting of fertile mantle heterogeneities, and
shown that a properly formulated Peclet number
measures the importance of diffusion‐driven versus
adiabatic melting. Our results also show that a
simplified theory that considers a uniformly melt-
ing spherical blob, rather than one that captures the
gradient in F and T with radius, accurately models
the gross behavior of the system, deviating only for
Peclet numbers near unity. For intermediate values
of upwelling rate, our model predicts that uni-
formly melting spherical blobs ] 5 km in radius
have substantial melt enhancement by diffusion;
for tabular veins, this transition occurs at a smaller
size of ] 1 km. These conclusions confirm and
extend the scaling analysis of Sleep [1984].

[51] Under the assumptions and parameter choices
listed above, we have demonstrated that diffusion
of heat into an upwelling, fertile heterogeneity can
lead to an increase in the degree of partial melting
by a factor of two, generating extents of melting of
50–80% beneath the bottom of the ambient melting
region. Furthermore, we have shown that the
thermal anomaly imprinted on the ambient mantle
is confined to within about two times the charac-
teristic size of the heterogeneity, and ranges down
to about −60 K. This temperature difference is
small relative to the absolute temperature of the
mantle, but significant when compared with the
temperature drop due to decompression melting
beneath a ridge. As such, melting of the ambient
mantle will be suppressed in the neighborhood of a
heterogeneity, with the onset of ambient melting
occurring at shallower depths. The expected change
in the overall degree of ambient mantle melting due

to this effect is on the order of 1–2% for a pyrox-
enite fraction of 5% [Phipps Morgan, 2001].

[52] A detailed consideration of the geochemical
implications of variable melting of heterogeneities
based on their size and shape is beyond the scope
of the present paper. It might be argued, for
example, that larger heterogeneities, which melt to
lesser extents, preserve residual garnet to shallower
depth, and hence may impart a greater garnet sig-
nature than smaller heterogeneities. Such argu-
ments are based on the details of the partition
coefficients, the mineral mode of recycled oceanic
crust, and the rate and style of melt segregation
from pyroxenitic heterogeneities [e.g., Prytulak
and Elliott, 2009]. Moreover, most geochemical
models of the contribution of magma from recycled
oceanic crust indicate that to preserve a distinctive
geochemical signature, such melts must ascend
rapidly, in chemical isolation from the ambient
mantle. This is thought to occur either by hydro-
fracture and propagation of dikes, or by reactive
flow and transport though high‐flux dunite chan-
nels [e.g., Kelemen et al., 1995; Lundstrom et al.,
2000; Spiegelman and Kelemen, 2003; Elliott and
Spiegelman, 2003; Kogiso et al., 2004].

[53] In this context, we emphasize that because the
rate of reactive melting is proportional to the ver-
tical magmatic flux, a local excess of melt supplied
to the melting region from below can induce
reactive channelization [Hewitt, 2010; Liang et al.,
2010]. This prediction, considered in light of the
large extents of melting for recycled crust below
the base of ambient‐mantle melting regime, sup-
ports the hypothesis by Lundstrom et al. [2000]
that melt released from a fertile heterogeneity
could induce chemically isolated, channelized
melt transport. Furthermore, it is possible that
the pyroxenite‐derived magmatic flux through a
channel would reduce the local solidus tempera-
ture, cool the channel by consumption of latent
heat, and give rise to a diffusive flux of heat into
the channel (as we predict to occur around the
heterogeneity). A cool diffusion‐halo around a
dunite channel will suppress adjacent melting of
mantle peridotite, further isolating the magma as it
is transported.

Appendix A: Analytical Solutions
A1. Homogeneous Melting
of a Spherical Blob

[54] When the degree of melting is linearly
dependent on the homologous temperature (a = 1
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in (11)), analytical methods can be used to obtain
solutions. For the homogeneous blob, the problem
is to solve for �(r, t) satisfying (18),

@�

@t
¼ 1

Pe

1

r2
@

@r
r2
@�

@r

� �
; ðA1Þ

with boundary conditions

� S
D�

þ 1þ S
D�

� �
@�

@t
1; tð Þ ¼ 3

Pe

@�

@r
1; tð Þ; ðA2Þ

� ∞; tð Þ ¼ 0; ðA3Þ

and initial condition

� r; 0ð Þ ¼ 0: ðA4Þ

The first of the two boundary conditions represents
the heat balance between the heat flowing into the
blob due to the temperature gradient outside, the
heat used to melt the blob (latent heat), and the heat
used to raise the temperature of the blob (sensible
heat). The expression (A2) follows directly from
(10), (11), and (12) when a = 1 (and also follows
from partial differentiation with respect to t of the
integral boundary condition described by (17) and
(19a)). The second boundary condition states that
the far‐field temperature is constant (i.e., neglect-
ing adiabatic decompression effects: see A5 for
discussion of these effects). The total degree of
melting of the blob can be obtained from (9a), (10),
and (11) as

FB tð Þ ¼ � 1; tð Þ þ t

D�
: ðA5Þ

[55] In order to simplify later algebra, it is helpful
rescale time and temperature by the Peclet number
and introduce a parameter l as

�′ ¼ �

Pe
; t′ ¼ t

Pe
; 	 ¼ D�

S þD�
: ðA6Þ

With this new scaling, the problem becomes

@�′

@t′
¼ 1

r2
@

@r
r2
@�′

@r

� �
; ðA7Þ

with boundary conditions and initial condition

@�′

@t′
1; t′ð Þ ¼ �1þ 	þ 3	

@�′

@r
1; t′ð Þ; ðA8Þ

�′ ∞; t′ð Þ ¼ 0; ðA9Þ

�′ r; 0ð Þ ¼ 0; ðA10Þ

and

FB t′ð Þ ¼ Pe

D�
�′ 1; t′ð Þ þ t′ð Þ: ðA11Þ

For the remainder of this appendix, we will drop
the primes and use the rescaled variables.

[56] Laplace transform solution: The governing
partial differential equation (A7) can be simplified
by introducing a new variable u(r, t) as

� r; tð Þ ¼ u r; tð Þ
r

; ðA12Þ

to give

@u

@t
¼ @2u

@r2
ðA13Þ

with boundary conditions and initial condition

@u

@t
1; tð Þ ¼ �1þ 	þ 3	

@u

@r
1; tð Þ � u 1; tð Þ

� �
; ðA14Þ

u r; tð Þ=r ! 0 as r ! ∞; ðA15Þ

u r; 0ð Þ ¼ 0: ðA16Þ

[57] Introduce the Laplace transform in time as

~u r; sð Þ ¼
Z ∞

0
u r; tð Þe�st dt: ðA17Þ

The transformed problem is then

s~u ¼ @2~u

@r2
; ðA18Þ

with boundary conditions

s~u 1; sð Þ ¼ �1þ 	

s
þ 3	

@~u

@r
1; sð Þ � ~u 1; sð Þ

� �
; ðA19Þ

~u r; sð Þ=r ! 0 as r ! ∞: ðA20Þ

(A18) and (A20) imply

~u r; sð Þ ¼ A sð Þe�
ffiffi
s

p
r�1ð Þ; ðA21Þ

for some function A(s) to be determined. (A19)
then becomes

sA sð Þ ¼ �1þ 	

s
þ 3	 � ffiffi

s
p

A sð Þ � A sð Þ� � ðA22Þ

which gives A(s) as

A sð Þ ¼ �1þ 	

s sþ 3	
ffiffi
s

p þ 3	ð Þ : ðA23Þ
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Hence we have

~� r; sð Þ ¼ 	� 1ð Þe�
ffiffi
s

p
r�1ð Þ

rs sþ 3	
ffiffi
s

p þ 3	ð Þ : ðA24Þ

To find �(r, t) we need to find the inverse Laplace
transform of the above function. This can be
obtained by factoring the denominator, splitting
into partial fractions, and performing the inverse
Laplace transform term‐by‐term. Writing

1

s sþ 3	
ffiffi
s

p þ 3	ð Þ �
1

s
ffiffi
s

p þ a	ð Þ ffiffi
s

p þ b	ð Þ ðA25Þ

where

a	 ¼ 3	þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2 � 12	

p

2
; b	 ¼ 3	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2 � 12	

p

2
;

ðA26Þ

the inverse Laplace transform of ~�(r, s) is

� r; tð Þ ¼ 	� 1

r

1

a	b	
erfc 
ð Þ þ e�
2

a	 � b	

"

� 1

a	
w i
 þ ia	

ffiffi
t

p� �� 1

b	
w i
 þ ib	

ffiffi
t

p� �� �#
; ðA27Þ

where h = (r − 1)/(2
ffiffi
t

p
) and w(z) = e−z

2

erfc(−iz) is
the Faddeeva function. (A27) is the analytical
solution to the linear homogeneous blob problem,
and can be calculated rapidly with the aid of effi-
cient routines for calculating the Faddeeva function
[Weideman, 1994]. A solution similar to the above
was recently obtained by Oliver [2008] for a related
problem of spherical heat generation and conduc-
tion. The corresponding degree of melting is given
by (A11),

FB tð Þ ¼ Pe

D�

�
t þ 	� 1ð Þ

� 1

a	b	
þ 1

a	 � b	

1

a	
w ia	

ffiffi
t

p� �� 1

b	
w ib	

ffiffi
t

p� �� �� 	�
;

ðA28Þ
and is plotted in Figure 3.

[58] The expressions in (A27) and (A28) are
somewhat cumbersome to work with when study-
ing the asymptotic behaviors of the solution. It is
easier to study the asymptotic behavior of the
Laplace transform solution in s, and then relate the
asymptotics in s to the asymptotics in t (see A5).
For this purpose, note that ~FB(s) is given by
the expression

~FB sð Þ ¼ Pe

D�

1

s2
þ ~� 1; sð Þ

� �
¼ Pe

D�

1

s2
þ A sð Þ

� �
: ðA29Þ

A2. Radially Variable Melting of a Spherical
Blob

[59] If we do not assume that the blob is homoge-
neous, and instead allow it to have a radial tem-
perature profile due to the conduction of heat
through the blob, then we must solve the heat
conservation equation both inside and outside the
blob. Using the rescaled variables of (A26), the
governing equations are

@�

@t
¼ �1þ 	þ 	

r2
@

@r
r2
@�

@r

� �
; 0 � r < 1; ðA30Þ

@�

@t
¼ 1

r2
@

@r
r2
@�

@r

� �
; r > 1: ðA31Þ

On the surface of the blob, both the temperature
and the heat flux must be continuous, i.e.,

� r; tð Þ; @�
@r

r; tð Þ continuous on r ¼ 1; ðA32Þ

and as before the initial condition is

� r; 0ð Þ ¼ 0; ðA33Þ

and the boundary condition in the far‐field is

� ∞; tð Þ ¼ 0: ðA34Þ

[60] Laplace transform solution: As before, the
governing partial differential equations can be
simplified by writing

� r; tð Þ ¼ u r; tð Þ
r

ðA35Þ

to obtain

@u

@t
¼ 	� 1ð Þr þ 	

@2u

@r2
; 0 � r < 1; ðA36Þ

@u

@t
¼ @2u

@r2
; r > 1; ðA37Þ

with boundary and initial conditions

u r; tð Þ; @u

@r
r; tð Þ continuous on r ¼ 1; ðA38Þ

u r; tð Þ=r f inite as r ! 0; ðA39Þ

u r; tð Þ=r ! 0 as r ! ∞; ðA40Þ

u r; 0ð Þ ¼ 0: ðA41Þ
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[61] The Laplace transformed problem is

s~u ¼ 	� 1ð Þr
s

þ 	
@2~u

@r2
; 0 � r < 1; ðA42Þ

s~u ¼ @2~u

@r2
; r > 1; ðA43Þ

with boundary conditions

~u r; sð Þ; @~u

@r
r; sð Þ continuous on r ¼ 1; ðA44Þ

~u r; sð Þ=r f inite as r ! 0; ðA45Þ

~u r; sð Þ=r ! 0 as r ! ∞: ðA46Þ

The governing equations (A42) and (A43) can be
integrated using the boundary conditions (A45) and
(A46) to give

~u r; sð Þ ¼
	� 1ð Þr
s2

þ B sð Þ sinh
ffiffiffi
s

	

r
r

� �
; 0 � r < 1;

C sð Þe�
ffiffi
s

p
r�1ð Þ; r > 1:

8><
>:

ðA47Þ

The two functions B(s) and C(s) are determined by
the continuity requirements of (A44)

B sð Þ ¼ � 	� 1

s2
1þ ffiffi

s
pffiffi

s
	

p
cosh

ffiffi
s
	

p þ ffiffi
s

p
sinh

ffiffi
s
	

p
 !

; ðA48Þ

C sð Þ ¼ 	� 1

s2

ffiffi
s
	

p
cosh

ffiffi
s
	

p � sinh
ffiffi
s
	

p
ffiffi
s
	

p
cosh

ffiffi
s
	

p þ ffiffi
s

p
sinh

ffiffi
s
	

p
 !

: ðA49Þ

The solution for ~�(r, s) is thus

~� r; sð Þ ¼
	� 1ð Þ
s2

þ B sð Þ
r

sinh

ffiffiffi
s

	

r
r

� �
; 0 � r < 1;

C sð Þ
r

e�
ffiffi
s

p
r�1ð Þ; r > 1:

8>><
>>:

ðA50Þ

To find �(r, t) we must obtain the inverse Laplace
transform of the above function. Unfortunately,
there does not appear to be a simple analytical
inverse of (A50). However, the inverse can be
calculated numerically using efficient routines for
numerical inverse Laplace transforms [de Hoog
et al., 1982; K. Hollenbeck, INVLAP.M: A matlab
function for numerical inversion of Laplace trans-
forms by the de Hoog algorithm, 1998, http://www.
isva.dtu.dk/staff/karl/invlap.htm, hereinafter referred
to as Hollenbeck, matlab function, 1998].

[62] The degree of melting within the blob is given
by

F r; tð Þ ¼ Pe

D�
t þ � r; tð Þð Þ; ðA51Þ

and hence using (A50) we have

~F r; sð Þ ¼ Pe

D�

1

s2
þ ~� r; sð Þ

� �
¼ Pe

D�

	

s2
þ B sð Þ

r
sinh

ffiffiffi
s

	

r
r

� �
:

ðA52Þ
The Laplace transform of the mean degree of
melting F(t) is thus

~F sð Þ ¼ 3

Z 1

0

~F r; sð Þr2 dr

¼ Pe

D�

	

s2
þ 3B sð Þ	

s

ffiffiffi
s

	

r
cosh

ffiffiffi
s

	

r
� sinh

ffiffiffi
s

	

r� �� �

¼ Pe	

D�

1

s2
� 3

s
1þ ffiffi

s
p� �

C sð Þ
� �

: ðA53Þ

F(t) can be obtained by finding the inverse Laplace
transform of the above function. This was done
numerically using the routines of Hollenbeck
(matlab function, 1998) to produce the profiles
plotted in Figure 5.

A3. Melting of a Tabular Vein

[63] In this section we briefly derive the tabular
equivalents of the solutions given in A1 and A2.
The general method of solution for a tabular
geometry is identical to that for a spherical geom-
etry. The only change that needs to be made is that
the Laplacian operator is now given by

r2 ¼ @2

@x2
ðA54Þ

where 0 < x < 1 is inside the sheet, and x > 1 is
outside to sheet. Symmetry is assumed about the
origin, so that

@�

@x
¼ 0 on x ¼ 0: ðA55Þ

A3.1. Homogeneous Melting

[64] The problem is

@�

@t
¼ @2�

@x2
ðA56Þ

with boundary conditions and initial condition
@�

@t
1; tð Þ ¼ �1þ 	þ 	

@�

@x
1; tð Þ; ðA57Þ

� ∞; tð Þ ¼ 0; ðA58Þ

� x; 0ð Þ ¼ 0: ðA59Þ
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The Laplace transformed problem is

s~� ¼ @2 ~�

@x2
; ðA60Þ

with boundary conditions

s~� 1; sð Þ ¼ �1þ 	

s
þ 	

@ ~�

@x
1; sð Þ; ðA61Þ

~� ∞; tð Þ ¼ 0; ðA62Þ

and solution

~� x; sð Þ ¼ 	� 1ð Þe�
ffiffi
s

p
x�1ð Þ

s3=2
ffiffi
s

p þ 	ð Þ : ðA63Þ

The inverse Laplace transform of this is

� x; tð Þ ¼ 	� 1

	2
e�
2 w i
 þ i	

ffiffi
t

p� �þ 2	
ffiffi
t

pffiffiffi
�

p
� ��

� 1þ 2	
ffiffi
t

p



� �
erfc 
ð Þ

	
; ðA64Þ

where h = (x − 1)/(2
ffiffi
t

p
) and w(z) is the Faddeeva

function. The above solution can also be found
in the study by Carslaw and Jaeger [1959] (their
equation (12) in section 12.4). The corresponding
degree of melting is given by

FB tð Þ ¼ Pe

D�
t þ 	� 1

	2
w i	

ffiffi
t

p� �þ 2	
ffiffi
t

pffiffiffi
�

p � 1

� 	� �
: ðA65Þ

A3.2. Laterally Variable Melting

[65] The governing equations are

@�

@t
¼ �1þ 	þ @2�

@x2
; 0 � x < 1; ðA66Þ

@�

@t
¼ @2�

@x2
: x > 1: ðA67Þ

The Laplace transformed problem is

s~� ¼ 	� 1

s
þ 	

@2 ~�

@x2
; 0 � x < 1; ðA68Þ

s~� ¼ @2 ~�

@x2
; x > 1: ðA69Þ

with solution

~� x; sð Þ ¼
	� 1

s2
þ B sð Þ cosh

ffiffiffi
s

	

r
x

� �
; 0 � x < 1;

C sð Þe�
ffiffi
s

p
x�1ð Þ; x > 1:

8><
>: ðA70Þ

The two functions B(s) and C(s) are determined by
continuity as

B sð Þ ¼ �	� 1

s2
1

cosh
ffiffi
s
	

p þ 1ffiffi
	

p sinh
ffiffi
s
	

p
 !

; ðA71Þ

C sð Þ ¼ 	� 1

s2

1ffiffi
	

p sinh
ffiffi
s
	

p
cosh

ffiffi
s
	

p þ 1ffiffi
	

p sinh
ffiffi
s
	

p
 !

: ðA72Þ

The Laplace transform of the mean degree of
melting F(t) is

~F sð Þ ¼
Z 1

0

~F x; sð Þ dx

¼ Pe

D�

	

s2
þ B sð Þ

ffiffiffi
	

s

r
sinh

ffiffiffi
s

	

r !

¼ Pe	

D�

1

s2
� C sð Þffiffi

s
p

� �
: ðA73Þ

A4. Leading Order Asymptotics

[66] All the problems considered in this paper
(both spherical/tabular and homogeneous/radially
varying) have the same leading order behavior for
large and small t. This behavior is exactly that
which is expected from a simple thermodynamic
analysis of the two extremes of a thermally isolated
blob and a blob in thermal equilibrium with the
ambient mantle. This leading order behavior has
been described by Sleep [1984] and is depicted in
Figure 2.

[67] The large‐t and small‐t asymptotic behavior of
FB(t) and F(t) can be obtained directly from the
asymptotic behavior of the Laplace transforms
~FB(s) and

~F(s) for small s and large s respectively.
The leading order asymptotics of ~FB(s) are given
by series expansion of (A29) as

~FB sð Þ �
Pe	

D�s2
þO 1

s5=2

� �
; for s 	 1;

Pe

D�s2
þO 1

s

� �
; for s 
 1:

8>><
>>: ðA74Þ

The leading order asymptotics of ~F(s) from (A53)
are identical. By inverse Laplace transforming
term‐by‐term we obtain the leading order asymp-
totics of FB(t) as

FB tð Þ �
Pe	 t

D�
þO t3=2


 �
; for t 
 1;

Pe t

D�
þO 1ð Þ; for t 	 1:

8>><
>>: ðA75Þ
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The above expression can be written in dimen-
sional units using (2) as

FB tð Þ �
p0 � p tð Þ

� DT þ L=cp
� �þO t3=2


 �
; for t 
 R2=�;

p0 � p tð Þ
�DT

þO 1ð Þ; for t 	 R2=�;

8>><
>>:

ðA76Þ

which agrees with the simple thermodynamic
analysis of Sleep [1984] (his equations 9 and 10
respectively, see Figure 2). Higher order asymp-
totic expansions for FB(t) can be obtained by con-
sidering higher order terms in the series expansions
of (A74). Differences between FB(t) and F(t), and
the tabular and spherical geometries, become evi-
dent with the inclusion of higher order terms.

A5. Adiabatic Decompression Effects

[68] Up to this point the effects of adiabatic
decompression have been ignored, as it has been
assumed that the far‐field temperature of the ambi-
ent mantle is constant. In fact, the far‐field temper-
ature of the ambient mantle will decrease as the
pressure decreases as a consequence of adiabatic
decompression. It is straightforward to include this
effect, at least in a linearized sense. If the tempera-
ture differences are small, such that (T0 − T1)/T0
 1,
the adiabatic decompression term in the energy
equation (5) can be approximated as

��T
@p

@t
� ��T0

@p

@t
: ðA77Þ

The non‐dimensional radially varying blob prob-
lem is then

@�

@t
¼ �	A� 1þ 	þ 	

r2
@

@r
r2
@�

@r

� �
; 0 � r < 1; ðA78Þ

@�

@t
¼ �Aþ 1

r2
@

@r
r2
@�

@r

� �
; r > 1; ðA79Þ

where A is the adiabatic parameter, defined by

A ¼ �T0�

�cp
: ðA80Þ

The boundary conditions on the surface of the blob,
and the initial condition are as before. The far‐field
boundary condition becomes

� ∞; tð Þ ¼ �At; ðA81Þ

reflecting the fact that the far‐field temperature
drops as the blob ascends. By writing

� r; tð Þ ¼ �At þ 1�Að Þ# r; tð Þ; ðA82Þ

we recover the problem that has already been
solved neglecting adiabatic decompression, i.e.,

@#

@t
¼ �1þ 	þ 	

r2
@

@r
r2
@#

@r

� �
; 0 � r < 1; ðA83Þ

@#

@t
¼ 1

r2
@

@r
r2
@#

@r

� �
; r > 1; ðA84Þ

# ∞; tð Þ ¼ 0: ðA85Þ

Hence to calculate the solution for a problem which
includes the adiabatic decompression term, we
simply find the solution without the term, and then
use (A82). This works for both the homogeneous
and the radially varying blob problems, as well as
for the tabular geometry. Since

F r; tð Þ ¼ Pe

D�
t þ � r; tð Þð Þ ¼ Pe

D�
1�Að Þ t þ # r; tð Þð Þ; ðA86Þ

the melt productivity decreases by a factor of
(1 − A) when the adiabatic decompression term is
included. For example, the values of the dimen-
sional degree of melting at the two extremes
changes from that given by (A76) to

FB tð Þ �
p0 � p tð Þ
DT þ L=cp

1

�
� �T0

�cp

� �
þO t3=2


 �
; for t 
 R2=�;

p0 � p tð Þ
DT

1

�
� �T0

�cp

� �
þO 1ð Þ; for t 	 R2=�:

8>><
>>:

ðA87Þ

The first of the above two cases can be recognized as
following directly from the usual expression for the
productivity during isentropic decompression melt-
ing [e.g., Asimow et al., 1997, equation (3.14)]. The
second case is in agreement with expressions for the
productivity assuming complete thermal equilibra-
tion [e.g., Phipps Morgan, 2001, equation (19)].

Appendix B: Numerical Solutions

[69] The governing equations with a < 1 are non-
linear and must be solved numerically. To do so
we use a semi‐implicit, centered‐difference dis-
cretization on a non‐uniform grid. We solve the
resulting system of nonlinear algebraic equations
with a Newton‐Krylov (GMRES) scheme and an
explicit LU preconditioner; these are provided by
the Portable, Extensible Toolkit for Scientific
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Computation (version 3.1 [Balay et al., 2010; Katz
et al., 2007; S. Balay et al., PETSc Web page,
2011, http://www.mcs.anl.gov/petsc]). Details of
the discretization are given in this appendix for the
case of a spherical heterogeneity; corresponding
equations for the tabular vein are obtained in a
similar manner. Simulation code is available by
email request to the first author.

[70] The discretization is semi‐implicit in time,

�nþ1 � �n

Dt
¼ 1

2Pe

1

r2
@

@r
r2
@�

@r

� �� �nþ1

þ 1

r2
@

@r
r2
@�

@r

� �� �n
" #

;

ðB1Þ

whereDt is the time step, chosen such that tn = nDt
for n 2 [0, Nt − 1]. Superscripts in the semi‐discrete
equation (B1) refer to the time step number.

[71] Spatial derivatives are discretized with a cen-
tered difference scheme,

1

r2
@

@r
r2
@�

@r

� �
�

riþ1þri
2

� �2 �iþ1��i
riþ1�ri


 �h i
� riþri�1

2

� �2 �i��i�1
ri�ri�1


 �h i
1
2 riþ1 � ri�1ð Þ r2i

:

ðB2Þ

Values of the radius are specified at a set of discrete
points i 2 [0, Nr − 1] using

ri ¼ 1þ rmax � 1ð Þ i

Nr � 1

� ��

; ðB3Þ

where x ≥ 1 is a power that determines the relative
concentration of grid points near the blob. We have
found that x = 2 provides a good balance between
accuracy and speed of numerical convergence.

[72] The boundary condition at r → ∞ is a
straightforward Dirichlet condition, which we
apply at r = rmax 	 1. The boundary condition at
r = 1 is more difficult. For FB ≤ 1, the semi‐implicit
discretization of this condition is as follows

�n0 ¼ �nDt þD� Qn
B; ðB4Þ

where QB
n is the dimensionless homologous tem-

perature of the blob at the present step, obtained
with equation (15), which depends on the unknown
value of fB. The current Newton iterate �f B can be
calculated using the current Newton iterate of the
solution vector ��i

n by discrete integration with the
trapezoidal rule,

�f nB ¼ f n�1
b þ Dt

D�þ aS 1þ 3

Pe

��n1 þ �n�1
1 � ��n0 � �n�1

0

2 r1 � r0ð Þ

 !
:

ðB5Þ

[73] The discrete boundary conditions and diffusion
equation are then recast as equations for the ele-
ments of the point‐wise Newton residual vector of
the current iterate �%i. We provide an analytical
Jacobian matrix Jij = ∂�%i/∂��j, and the Newton
scheme is iterated until the residual vector satisfies
k�%ik2 < tol. We use a tolerance of 10−10.

[74] Numerical solutions can be compared with the
analytical solution for the linear case, a = 1. Percent
error is computed as

e ¼ k �exact � �numerical k2
k �exact k2 � 100; ðB6Þ

where the 2‐norm is calculated over all combina-
tions of ri, tn used in the numerical model‐run. We
obtain perfect second order convergence with grid‐
spacing for grids up to Nr = 3200 with x = 2; we
obtain little improvement in accuracy for Nt ^ 800.
For a grid with Nr = 1600 and Nt = 1000 we find
that e = 0.003%.
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