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ABSTRACT A petrogenetic grid in the model system CaO–FeO–MgO–Al2O3–SiO2–H2O is presented, illustrating the
phase relationships among the minerals grunerite, hornblende, garnet, clinopyroxene, chlorite, olivine,
anorthite, zoisite and aluminosilicates, with quartz and H2O in excess. The grid was calculated with the
computer software THERMOCALCTHERMOCALC, using an upgraded version of the internally consistent thermodynamic
dataset HP98 and non-ideal mixing activity models for all solid solutions. From this grid, quantitative
phase diagrams (P–T pseudosections) are derived and employed to infer a P–T path for grunerite–
garnet-bearing amphibolites from the Endora Klippe, part of the Venetia Klippen Complex within the
Central Zone of the Limpopo Belt. Agreement between calculated and observed mineral assemblages
and garnet zonation indicates that this part of the Central Zone underwent a prograde temperature and
pressure increase from c. 540 �C/4.5 kbar to 650 �C/6.5 kbar, followed by a post-peak metamorphic
pressure decrease. The inferred P–T path supports a geotectonic model suggesting that the area
surrounding the Venetia kimberlite pipes represents the amphibolite-facies roof zone of migmatitic
gneisses and granulites that occur widely within the Central Zone. In addition, the P–T path conforms to
an interpretation that the Proterozoic evolution of the Central Zone was controlled by horizontal
tectonics, causing stacking and differential heating at c. 2.0 Ga.
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INTRODUCTION

Amphiboles of the grunerite–cummingtonite solid-
solution occur in a wide range of lithologies together
with quartz, chlorite, hornblende, garnet, plagioclase,
clinopyroxene, orthopyroxene, olivine, siderite, ank-
erite, magnetite, hematite and ilmenite. Assemblages
among these minerals are observed in medium to high-
grade metamorphic rocks, comprising banded iron
formations (e.g. Klein, 1966; Immega & Klein, 1976;
Gole & Klein, 1981; Miyano & Klein, 1986), alkali-
poor amphibolites (e.g. Hoinkes & Mogessi, 1986;
Hollocher, 1991; Mottana et al., 1994) and quartzo-
feldspathic rocks (Kenah & Hollister, 1983).

The phase relationships and stability field of gru-
nerite–cummingtonite-bearing assemblages have been
investigated by experimental studies (e.g. Fonarev
et al., 1977, 1979; Fonarev & Korolkov, 1980; Lat-
tard & Evans, 1992), field studies in combination with
conventional thermobarometry on adjacent rocks
(e.g. Immega & Klein, 1976; Hoinkes & Mogessi,
1986; Hollocher, 1991) and theoretical calculations
based on internally consistent thermodynamic data-
sets. So far, the theoretical studies are focused on

phase relationships in the model systems FeO–MgO–
SiO2–H2O–CO2–O (FMSHCO; Miyano & Klein,
1986) and FMSH(O) (Miyano & Klein, 1983; Evans
& Ghiorso, 1995), which were employed to explain
grunerite–cummingtonite assemblages in banded iron
formations with orthopyroxene, olivine, quartz and
magnetite/hematite and/or siderite. However, because
of the system restrictions these models are unable to
explain mineral assemblages comprising aluminium-
and calcium-bearing minerals such as garnet, clino-
pyroxene, hornblende, chlorite and plagioclase, which
may occur in meta-amphibolites (e.g. Hoinkes &
Mogessi, 1986).

In order to close this gap, we present a new petro-
genetic grid in the model system CaO–FeO–MgO–
Al2O3–SiO2–H2O (CFMASH). This grid and related
phase diagrams like P–T pseudosections, T–X sections
and compatibility diagrams are calculated with an
upgraded version of the computer software THERMO-THERMO-

CALCCALC version 3.1, using a modification of the internally
consistent thermodynamic dataset of Holland &
Powell (1998) and activity models presented in the
Appendix. Finally, in order to test whether the results
of the theoretical calculations are suitable to explain
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natural mineral assemblages, quantitative phase dia-
grams (P–T pseudosections) are applied to better
understand the evolution of grunerite-bearing rocks
collected from the Endora Klippe situated north of the
Venetia kimberlite pipes within the Central Zone of the
Limpopo Belt. The derived P–T path provides a new
constraint on the geotectonic interpretation of the
Limpopo Belt, and the geological significance of this
constraint is discussed. Mineral abbreviations follow
Kretz (1983).

PHASE DIAGRAMS

Petrogenetic grid

The CFMASH petrogenetic grid is calculated for
medium to high-grade metamorphic rocks within
a temperature–pressure range of 480–750 �C and
2–12 kbar with quartz and H2O in excess. Non-ideal
solid solutions are used for the minerals grunerite,
hornblende, chlorite, garnet, clinopyroxene, and the
end-member minerals anorthite, zoisite, kyanite, silli-
manite and andalusite. In addition, the subsystems
CaO–FeO–Al2O3–SiO2–H2O (CFASH) and FMSH
consider margarite and orthopyroxene, respectively.
Activity models used for the solid solutions are given in
the Appendix.

The subsystems CFASH and CMASH

As a preliminary step, phase relationships in the sub-
systems CFASH and CaO–MgO–Al2O3–SiO2–H2O
(CMASH) were investigated (Fig. 1). All stable
invariant points in these systems are listed in Table 1.
The petrogenetic grid in Fig. 1a shows that grunerite in
the system CFASH is stable in a temperature range
between 500 and 650 �C. It also demonstrates that
grunerite–anorthite assemblages are restricted to
pressures <3–4 kbar, while assemblages with gar-
net + hornblende occur at pressures >3–4 kbar.
Additionally, the diagram shows that grunerite–olivine
assemblages in CFASH are stable only in a very nar-
row stability field, which is bracketed by the FSH
reaction (Gru ¼ Fa) and the CFASH reactions
(Gru ¼ Grt + Cpx + Ol, Gru ¼ Grt + Ol + Hbl
and Gru ¼ An + Ol + Hbl). Clinopyroxene–gruner-
ite assemblages require temperatures in excess of
540 �C, whereas chlorite will disappear via the
FASH reaction (Chl ¼ Alm + Gru) at temperatures
>540 �C and hornblende is stable until around
610 �C. Furthermore, two singularity points occur
along the reaction between Grt, Zo, Cpx, An, and are
caused by the widely varying garnet composition.

In the CMASH system the assemblage cumming-
tonite–anorthite is stable from 560 �C/2 kbar to
750 �C/10 kbar, and hornblende within the whole
range of the P–T diagram (Fig. 1b, inset). In contrast
to the CFASH system, garnet and olivine are absent in
the CMASH system.

The system CFMASH

In the system CFMASH, three invariant points are
stable in the considered P–T range (Table 1). The uni-
variant reactions emanate or terminate at theCFASHor
CMASH subsystem invariant points, except for the
reaction that connects the CFMASH invariant points
(Fig. 1b). Grunerite–cummingtonite solid-solutions
(Gruss) are stabilised initially by the reactions
Chl + Grt + Hbl ¼ Gru + An (at pressures between
2.7 and 8 kbar) and Grt + Hbl + Chl ¼ Gru + Ky
(at pressures above 8 kbar). Similar to the CFASH
diagram, olivine–Gruss–anorthite assemblages are sta-
ble at pressures below 3–4 kbar, together with garnet,
hornblende or clinopyroxene (Fig. 1b). In the absence of
anorthite the olivine–Gruss stability field extends to
much higher pressures, where these minerals form
assemblages either with garnet or hornblende. The
clinopyroxene–Gruss–anorthite assemblage is restricted
to pressures below 4.5 kbar at temperatures above
710 �C, but may extend to higher pressures in the
absence of anorthite.

Compatibility diagrams and T–X sections

In addition to the petrogenetic grid, phase relationships
between the minerals considered are presented in a
series of compatibility diagrams (Fig. 2), using a pro-
jection from anorthite, quartz and H2O (all in excess)
onto the projection plane of zoisite (Ca4Al6O13),
almandine (Fe3Al2O6) and pyrope (Fe3Al2O6). As the
aluminosilicates (kyanite, sillimanite and andalusite)
plot above the projection plane, their phase relation-
ships can only be shown schematically. Furthermore,
two T–XFe sections at 3.5 and 4.5 kbar with anorthite,
quartz and H2O in excess and for a specific rock com-
position with respect to CaO/(CaO + Al2O3) are pre-
sented in Fig. 3. The compatibility diagrams and T–X
sections illustrate that olivine in the CFMASH system
is only stable in very Fe-rich rocks at low pressure
conditions, whereas Gruss can occur in many different
assemblages, comprising rocks with low to intermediate
Al and Ca contents, and variable Fe/(Fe + Mg) ratios.
Garnet has the widest stability range, and occurs in
many assemblages in Fe and/or Ca-rich rocks, although
not in Mg-rich lithologies. Clinopyroxene assemblages
are generally restricted to low-Al, Ca-rich lithologies.

APPLICATION TO NATURAL ROCKS

Generalities

The petrogenetic grid in Fig. 1b considers monoclinic
grunerite–cummingtonite solid solutions but no
orthoamphiboles such as anthophyllite and gedrite,
which will occur during the transformation of Gruss in
Mg-rich lithologies (see Hollocher, 1991; Evans &
Ghiorso, 1995). Thus, the grid may only be applied
to rocks with high to intermediate Fe/(Fe + Mg)
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Fig. 1. Petrogenetic grids showing phase relationships in the system CFASH and FMSH (a), CFMASH (b) and CMASH (b, inset).
The numbers (1–18) are related to the compatibility diagrams shown in Fig. 2.
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contents above c. 0.4. Furthermore, the grid is calcu-
lated for ferrous iron phases and therefore restricted to
rocks formed at low oxygen fugacities. Nevertheless
for rocks containing Fe3+ bearing oxide minerals like
hematite and magnetite, quantitative phase diagrams
(P–T pseudosections) can be derived from the grid if
the bulk rock composition is corrected for Fe3+, e.g.
using the procedure as outlined by Zeh (2001). The
albite component in plagioclase and Na-bearing solid
solutions in hornblende cannot be considered, as Na is
not taken into account in our calculations. It should be
noted that the addition of Na to CFMASH would
extend the stability field of plagioclase-bearing assem-
blages to higher pressures. Furthermore, the addition
of Mn can extend the garnet stability to considerably
lower temperatures, because of the Mn fractionation
by garnet (Mahar et al., 1997; Tinkham et al., 2001;
Zeh & Holness, 2003).

In the following, quantitative phase diagrams (P–T
pseudosections) are constructed for two grunerite–
garnet-bearing rock samples (AMD & AM52), which
were collected from a restricted area north of the
Venetia kimberlite pipes within the Central Zone of the
Limpopo Belt (Fig. 4). These rocks have intermediate
to high Fe/(Fe + Mg) ratios (0.52–0.78), and low
alkali- (0.3–1.6 wt.%) and Fe2O3-contents (0.2–
1.5 wt.%) (Table 2). They are either plagioclase-free or
contain anorthitic plagioclase. In addition, the two
samples contain no Fe3+ oxide phases and Gruss has
Fe/(Fe + Mg) ratios ranging between 0.51 and 0.67
(Table 2). Consequently, the mineral assemblage

observed in these rocks can be well described by the
CFMASH model system. It is assumed that both
samples experienced similar P–T conditions, as they
were collected from a restricted well-mapped area,
which is not transected by major shear zones and/or
faults (Zenglein, 2004). Consequently, the different
mineral assemblages are interpreted as resulting from
distinct bulk compositions (Table 2).

Petrography and mineral chemistry

Sample AMD (29�18¢28.29¢¢ N, 22�27¢44.07¢¢ E) and
AM52 (29�18¢27.27 N, 22�27¢44.41 E) were collected
from the Endora Klippe, which forms part of the
Venetia Klippen Complex and occurs c. 3 km north of
the Venetia kimberlite pipes (Fig. 4). A detailed des-
cription of the geological setting of the area sur-
rounding the Venetia kimberlite pipes is given by
Barton et al. (2003) and will be discussed below.
Sample AMD contains the minerals garnet, grunerite,
hornblende, chlorite, plagioclase, quartz, ilmenite,
titanite and apatite, and sample AM52 the minerals
garnet, grunerite, chlorite, ilmenite, quartz and apatite.

Garnet

Garnet porphyroblasts in sample AM52 have a maxi-
mum diameter of 2 mm and show only a slight zona-
tion (Fig. 6b). They are commonly round, show little
or no resorbtion, and contain abundant inclusions of
randomly distributed chlorite, grunerite, quartz and

Table 1. Invariant points in the system CFASH, CMASH and CFMASH, related to the phase diagrams shown in Fig. 1, and
compositional parameters as explained in the Appendix.

Phases P (kbar) T (�C) Ca(Grt) y(Hbl) Ca(Hbl) y(Chl) Q(Chl) y(Gru) ca(Gru) ct(Cpx) fs(Cpx) Ca(Ol)

Invariant assemblages in CFASH (+Qtz + H2O)

Grt, Hbl, Chl, An, Zo 3.83 487.7 0.3770 0.2110 0.9955 0.5259 0.4735

Grt, Chl, An, Ma, Zo 4.84 497.6 0.2514 0.6314 0.3685

Grt, Chl, Ky, Ma, Zo 10.41 483.3 0.2145 0.7777 0.2223

Grt, Hbl, Gru, Chl, An 2.86 506.8 0.2491 0.2061 0.9899 0.5250 0.4742 0.00841 0.01659

Grt, Chl, And, An, Ma 3.22 517.3 0.09331 0.8225 0.1775

Grt, Cpx, Hbl, An, Zo 4.14 523.9 0.4995 0.1650 0.9958 0.01101 0.00099

Grt, Ol, Hbl, Gru, An 2.94 580.3 0.2604 0.1630 0.9815 0.00953 0.02587 0.00085

Grt, Ol, Cpx, Hbl, An 3.32 615.9 0.2976 0.1492 0.9807 0.01212 0.00445 0.00147

Grt, Ol, Cpx, Hbl, Gru 5.735 618.41 0.2676 0.1018 0.9723 0.00726 0.03369 0.00744 0.00497 0.00132

Phases P (kbar) T (�C) Ca(Grt) y(Hbl) ca(Hbl) y(Chl) Q(Chl) y(Cum) ca(Cum) ct(Cpx) fs(Cpx) Ca(Ol)

Invariant assemblages in CMASH (+Qtz + H2O)

Hbl, Chl, Ky, An, Zo 8.36 635.4 0.268 0.9828 0.549 0.451

Hbl, Cum, Chl, Ky, An 7.84 662.5 0.260 0.9662 0.549 0.451 0.0209 0.055

Phases P (kbar) T (�C) Ca(Grt) Fe(Grt) x(Chl) y(Chl) Q(Chl) x(Hbl) y(Hbl) ca(Hbl) x(Gru) y(Gru) ca(Gru) ca(Cpx) ts(Cpx) x(Cpx) Fe(Ol)

Invariant assemblages in CFMASH (+Qtz + H2O)

Grt, Chl, Hbl, Zo, An, Ky 8.63 647.5 0.1925 0.5489 0.2288 0.5605 0.4395 0.1954 0.3092 0.9816

Grt, Chl, Gru, Hbl, An, Ky 8.28 663.1 0.1514 0.5335 0.2069 0.5591 0.4408 0.1766 0.2994 0.9724 0.2160 0.02420 0.04692

Ol,Grt,Cpx,Gru,Hbl,An 4.22 725.5 0.2261 0.7165 0.6612 0.1381 0.9544 0.7427 0.01545 0.05507 0.9899 0.01787 0.7135 0.9025

Fig. 2. (a) Tetrahedra showing phases and the triangular projection plane used for compatibility diagrams in the system CFMASH
(with quartz + anorthite + H2O in excess). (b) Compatibility diagrams. The numbers in the black circles are related to Fig. 1b. The
numbers top right beside the respective triangular diagrams are pressures (kbar) and temperatures (�C).
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minor ilmenite (Fig. 5a,b). In contrast, garnet grains in
sample AMD are up to 4 mm in diameter and are
commonly resorbed along their edges and replaced by
grunerite, hornblende and plagioclase (Fig. 5e). In
some places these latter three minerals form pseudo-
morphs after garnet. Garnet grains in sample AMD
contain abundant inclusions of round quartz, lath-
shaped and angular plagioclase, green hornblende and
ilmenite, as well as minor chlorite and titanite
(Fig. 5c,d). Furthermore the garnet shows a complex
zonation pattern (Fig. 6a,c), which is characterized
by a general decrease of Xspss [Mn/(Ca + Mg +
Fe + Mn)] from core to rim (10–4 mol.%), whereas

the XFe-ratio [Fe/(Fe + Mg)] is relatively constant
(0.87). The Xgrs [Ca/(Ca + Mg + Fe + Mn)] and
Xalm [Fe/(Ca + Mg + Fe + Mn)] zonations oppose
each other (Fig. 6a). In addition, there are irregularly
distributed domains with high-Xgrs and low-Xalm con-
tents, disturbing the usually concentric growth zona-
tion (Fig. 6c). There are several possible explanations
for these domains. They may result from the coales-
cence of garnet grains, which started their growth from
distinct nucleii but merged into a single porphyroblast
during progressive growth. This possibility, however, is
not supported by the Xspss zonation profile, which is
unrelated to the Xgrs peaks (Fig. 6a). Alternatively, the
high-Xgrs domains may result from domainal variations
of the bulk composition, in particular of Ca, which for
kinetic reasons could not be smoothed out during
garnet growth and led to a local Ca disequilibrium (see
Chernoff & Carlson, 1997). If correct, the irregularly
distributed high-Xgrs domains cannot be modelled by
equilibrium thermodynamics, e.g. by the P–T pseudo-
sections presented below.
The steep compositional gradients of Xalm and Xgrs,

as well as the decrease of Xspssfrom garnet core to rim
of sample AMD provide evidence that the measured
zonation patterns result from prograde garnet growth.
The same must be concluded for garnet of sample
AM52, even though it is nearly unzoned (Fig. 6b). The
absence of the zonation could be explained by fast
garnet growth under nearly constant P–T–X condi-
tions, caused by a large reaction overstep (see Zeh &
Holness, 2003).

Hornblende

Hornblende only occurs in sample AMD, where it is
enclosed either in garnet or occurs intergrown with,
or overgrown by, grunerite in the matrix (Fig. 5e,f).
Hornblende inclusions in garnet are invariably round
indicating hornblende consumption during garnet
growth. Round and resorbed hornblende crystals are
also observed in some matrix domains, where they are
overgrown by euhedral grunerite (see Fig. 5f). This
provides evidence that grunerite formed at the ex-
pense of hornblende, perhaps during the same horn-
blende-consuming reaction, which led to garnet
formation. In other domains, in particular in the
coronas around the resorbed garnet porphyroblasts,
twinned grunerite crystals are often intergrown with
hornblende and rarely with plagioclase, indicating
that all three minerals were formed during garnet
consumption.

Grunerite

Grunerite occurs in the matrix of both samples, either
together with hornblende, plagioclase and quartz in
sample AMD (Fig. 5e,f), or associated with chlorite
and quartz in sample AM52 (Fig. 5a,b). In sample
AM52, abundant grunerite crystals are occluded by
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garnet, whereas no grunerite inclusions could be
detected in garnet of sample AMD. This indicates that
grunerite was present during growth of garnet AM52,
but perhaps not during formation of the core of garnet
AMD.

Hornblende and grunerite formulae were calculated
water-free on the basis of 23 oxygen, using the
computer program AXAX (T. J. B. Holland; http://
www.esc.cam.ac.uk/astaff/holland/index.html). Horn-
blende crystals in all textural domains of sample AMD
have similar XMg [Mg/(Fe + Mg)] ratios between 0.47
and 0.55 (Fig. 7a), whereas hornblende inclusions in
garnet have higher silica contents (6.6–6.8 PFU) than
matrix hornblende (6.3–6.7 PFU). The contents of Ti
(0.068–0.113 PFU), Ca (1.784–1.830 PFU), Na
(0.205–0.277 PFU) and K (0.042–0.094 PFU) scatter
in the same range in all domains. In contrast to
hornblende, grunerite in both rock samples shows
similar silica contents between 7.8 and 7.95 PFU
(Fig. 7b). However, grunerite in sample AM52 has
lower XMg ratios (0.32–0.33) than in sample AMD
(0.46–0.47).

Chlorite

Chlorite is widespread in sample AM52 either in the
matrix in contact with garnet or as inclusions in garnet

(Fig. 5a,b). However, chlorite in sample AMD occurs
only as inclusions in garnet, indicating that it was
present prior to and during garnet growth but reacted
out just before garnet formation ceased. Chlorite in
sample AM52 shows the chemical variations
Fe3.62)3.83Mg0.68)0.90Mn0)0.03Al2.51)2.69Si2.72)3.05O10

(OH)8, whereas chlorite in sample AMD is more Mg-
rich and has the formula Fe3.22)3.14Mg1.34)1.43
Mn0.01)0.03Al2.62)2.64Si2.63)2.65O10(OH)8.

Plagioclase

Plagioclase occurs only in sample AMD and forms
either lath-shaped crystals enclosed by garnet (Fig. 5d)
or round grains, which are intergrown with grunerite
and hornblende in the matrix. Plagioclase in all
domains is almost unzoned and anorthite-rich. Plagi-
oclase inclusions in garnet have higher anorthite con-
tents [Xan ¼ Ca/(Ca + Na) ¼ 0.89] than matrix
plagioclase (Xan ¼ 0.82).

Ilmenite

Ilmenite is rare in sample AM52, but occurs wide-
spread in sample AMD, either enclosed in garnet or in
the matrix (Fig. 5c,f). In both samples ilmenite (ilm)
has only a small pyrophanite (prph) and hematite
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(hem) component. The ilmenite composition in sample
AMD is ilm0.95)0.96prph0.022)0.029hem0.0)0.029 and in
sample AM52 ilm0.97)0.99prph0.011)0.019hem0.0)0.012.

Titanite

Titanite was only observed as inclusions in garnet in
sample AMD.

Sequence of mineral assemblages

On the basis of the observed inter- and overgrowth
relationships between garnet porphyroblasts and mat-
rix minerals, mineral inclusions in garnet, as well as
garnet and hornblende resorption textures (see
Fig. 5c–f), we conclude that the following mineral
assemblages were successively formed in sample AMD
(+quartz + ilmenite):

(AMD1) chloriteþ hornblendeþ plagioclase;

(AMD2) garnetþ chloriteþ hornblende

þ plagioclase;

(AMD3) garnetþ hornblendeþ grunerite

þ plagioclase:

In addition, textural relations reveal that garnet grew
in the mineral assemblages (AMD2) and (AMD3), but
was resorbed subsequently at the expense of horn-
blende, grunerite and plagioclase, which led to the
formation of garnet pseudomorphs (Fig. 5e). As des-
cribed above, the formation of garnet in sample AM52
took place in the assemblage: garnet + gruner-
ite + chlorite + ilmenite + quartz + apatite.

THERMOBAROMETRY

Several conventional thermobarometers [computer
software THERMOBAROMETRYTHERMOBAROMETRY version 2.1 of Spear &
Kohn: http://ees2.geo.rpi.edu/MetaPetaRen/Frame_
software.html/] and the average P–T feature of
THERMOCALCTHERMOCALC (Holland & Powell, 1998) in combination
with the computer program AXAX (Tim Holland; http://
www.esc.cam.ac.uk/astaff/holland/index.html) were
employed to obtain P–T information for the meta-
morphic evolution of these two samples (Fig. 8). The
chemical composition of minerals assumed to be in
equilibrium was used for the P–T calculation. This
calculation comprised mineral assemblages enclosed by
garnet AMD (AMD-Grt), the matrix of sample AMD
(AMD-Mx) and the matrix of sample AM52 (AM52-

Table 2. Representative mineral analyses and bulk compositions for sample AMD and AM52 used for geothermobarometry, and P–T
pseudosection calculations.

Mineral

AMD-Grt AMD-Mx AM52-Mx

AMD* AM52*Grt Chl Hbl Pl Grt Hbl Gru Pl Ilm Grt Chl Gru

SiO2 37.26 24.19 45.68 45.80 37.10 45.88 52.72 47.30 0.07 36.75 23.11 50.27 53.91 51.26

TiO2 0.19 0.05 0.67 0.00 0.02 0.79 0.00 0.00 52.88 0.00 0.05 0.12 0.96 0.11

Al2O3 21.03 20.56 10.91 34.88 21.13 10.72 0.86 33.89 0.07 20.84 20.10 1.35 16.75 8.94

Cr2O3 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00

Fe2O3 1.20 1.26 0.96 0.19 1.73 6.13 1.70 0.13 0.00 1.40 1.16 1.97 1.53 0.15

FeO 27.99 34.43 13.56 0.00 28.42 12.96 27.02 0.00 45.93 32.45 39.67 34.01 8.62 28.80

MnO 3.36 0.23 0.22 0.00 1.86 0.17 0.52 0.00 1.01 1.62 0.05 0.26 0.23 0.92

MgO 2.69 8.83 10.27 0.00 2.53 10.62 14.77 0.00 0.03 1.50 5.09 9.41 4.54 4.43

CaO 6.66 0.05 11.52 18.11 7.47 11.52 0.73 16.89 0.00 5.60 0.05 1.00 9.63 2.79

Na2O 0.00 0.08 0.75 1.34 0.00 0.66 0.15 1.99 0.00 0.00 0.00 0.13 0.55 0.26

K2O 0.00 0.03 0.32 0.03 0.00 0.34 0.04 0.03 0.00 0.00 0.00 0.03 1.11 0.04

Totals 100.39 89.71 94.86 100.35 100.27 99.80 98.53 100.23 99.99 100.18 89.28 98.55 97.82 97.70

Oxygen 12 14 23 8 12 23 23 8 3 12 14 23 CFMASH† CFMASH†

Si 2.966 2.635 6.874 2.103 2.955 6.643 7.828 2.166 0.002 2.966 2.609 7.748

Ti 0.011 0.004 0.076 0.000 0.001 0.086 0.000 0.000 1.002 0.000 0.004 0.014

Al 1.973 2.640 1.935 1.888 1.984 1.830 0.151 1.829 0.002 1.983 2.675 0.245 28.9 13.5

Cr 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.001 0.000 0.000

Fe3+ 0.072 0.103 0.109 0.007 0.104 0.668 0.190 0.005 0.000 0.085 0.099 0.228

Fe2+ 1.864 3.136 1.706 0.000 1.893 1.569 3.355 0.000 0.967 2.190 3.746 4.384 21.1 61.8

Mn 0.227 0.021 0.028 0.000 0.125 0.021 0.065 0.000 0.022 0.111 0.005 0.034

Mg 0.319 1.433 2.303 0.000 0.300 2.292 3.268 0.000 0.001 0.180 0.856 2.161 19.8 17.0

Ca 0.569 0.006 1.857 0.891 0.638 1.787 0.116 0.829 0.000 0.485 0.006 0.165 30.2 7.7

Na 0.000 0.017 0.219 0.119 0.000 0.185 0.043 0.177 0.000 0.000 0.000 0.039

K 0.000 0.004 0.061 0.002 0.000 0.063 0.008 0.002 0.000 0.000 0.000 0.006

Sum 8.000 10.000 15.169 5.010 8.000 15.146 15.026 5.007 1.996 8.000 10.000 15.024 100.00 100.00

XFe 0.85 0.69 0.43 0.86 0.41 0.51 0.92 0.81 0.67 0.52 0.78

Xalm 0.63 0.64 0.74

Xprp 0.11 0.10 0.06

Xgrs 0.19 0.22 0.16

Xspss 0.08 0.04 0.04

Xan 0.88 0.82

XFe, Fe/(Fe + Mg); Grt, assemblage enclosed by garnet; Mx, matrix assemblage.

*Bulk composition.

†CFMASH (mol.%) + Qtz + H2O.
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Mx). Analyses of these minerals are shown in Table 2,
and the results of the P–T calculations in Table 3 and
Fig. 8.

Employing the average P–T mode of THERMOCALCTHERMOCALC

yielded P–T conditions of 557 ± 22 �C at
3.9 ± 1.6 kbar for assemblage AMD-Grt, and
587 ± 89 �C at 4.5 ± 1.9 kbar for assemblage AMD-
Mx (Fig. 8). These conditions are higher in tempera-

ture when compared with those obtained with several
thermobarometers calculated with the computer soft-
ware THERMOBAROMETRYTHERMOBAROMETRY (Fig. 8). This is to be expected
because the average P–T calculations rely more on net-
transfer reactions (including dehydration reactions)
and less on the cation exchange equilibria used in
conventional thermometry (which are subject to
resetting effects during post-metamorphic-peak cool-
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Fig. 5. Photomicrographs of sample AM52 (a, b) and sample AMD (c–f). (a) Garnet porphyroblasts (Grt) in contact with chlorite
(Chl) and grunerite (Gru). (b) Garnet porphyroblast in contact with grunerite, chlorite and quartz (Qtz) showing an inclusion-rich core
and inclusion-poor overgrowth. Inclusions are chlorite, grunerite and ilmenite (Ilm). (c) Garnet overgrows numerous inclusions of
quartz, plagioclase (Pl) and ilmenite. (d) Lath-shaped plagioclase crystals, quartz and hornblende (Hbl) enclosed in garnet occurring in
contact with grunerite. (e) Resorbed garnet porphyroblasts (black) are surrounded by a corona of grunerite, hornblende and plagi-
oclase (crossed Nicols). (f) Resorbed hornblende crystal is overgrown by euhedral grunerite, which is in contact with ilmenite.
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ing). For the matrix assemblage AM52-Mx, tempera-
tures of 554 ± 41 �C were calculated with the average
T mode of THERMOCALCTHERMOCALC assuming a pressure of 4 kbar.
These conditions are, within error, consistent with
those obtained from sample AMD-Mx (Table 3).

P–T PSEUDOSECTIONS

In order to gain additional detailed information about
the metamorphic evolution of the garnet–grunerite-
bearing amphibolites from the Central Zone in the
Limpopo Belt, P–T pseudosections in the model sys-
tem CFMASH were calculated (Fig. 9) and contoured

for garnet composition and mode (Fig. 10a–c). The
specific bulk composition used for the phase diagrams
was determined by XRF-spectrometry (Philips PW
1480; Mineralogical Institute at Würzburg University)
of the rock samples from which the thin sections were
prepared. Fe2+ was analysed with a photometer
(ZEISS PMD 2), using an Fe(II) )2,2¢-bipyridine
complex. The analyses are given in Table 2.

Sample AMD

The P–T pseudosection calculated for sample AMD
supports the textural interpretation that the observed
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Fig. 6. Zonation profiles of garnet from
sample AMD (a) and AM52 (b). (c) 2D
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structed from c. 500 quantitative spot ana-
lyses. The profile x–y is related to (a).

Table 3. Results of P–T calculations.
Sample End-members XH2

O T (�C) ±2r P (kbar) ±2r Significant

AMD-Grt alm, py, gr, daph, ames, tr, ts, parg, an, ab, q 1.00 547 22 3.9 1.6 1.73

0.75 529 22 3.8 1.6 1.84

0.50 509 23 3.7 1.7 1.96

AMD-Mx alm, py, gr, tr, fact, parg, grun, an, ab, q 1.00 587 89 4.5 1.9 1.60

0.75 581 81 4.3 1.8 1.50

0.50 573 72 4.1 1.6 1.40

AM52-Mx py, gr, alm, clin, daph, ames, cumm, grun, q 1.0 554 41 4.0 – –

Grt, assemblage enclosed in garnet; Mx, matrix assemblage.

XH2
O ¼ mole fraction of H2O of a mixed H2O-CO2 fluid.

2r standard deviation and significant values are obtained with THERMOCALCTHERMOCALC.

End-member abbreviations are according to Holland & Powell (1998), AMD-calculated with average P–T feature. AM52-

calculated with average T feature for 4 kbar.
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assemblage sequence from (AMD1) to (AMD3) was
formed during a prograde pressure and temperature
increase from c. 570 �C at 5.5 kbar to 650 �C at
6.5 kbar (Fig. 9a). As shown in Fig. 10a, garnet will be
formed along this P–T path (c. 25 mol.% Grt, nor-
malized excluding H2O and Qtz). Xgrs will significantly
decrease (0.28 fi 0.17) during increasing pressure and
temperature conditions. These features are in general
agreement with the observations made in sample AMD
(Figs 5 & 6). The absence of grunerite inclusions in
garnet in sample AMD may be explained by garnet
growth occurring predominantly in the assemblage
Grt–Chl–Hbl–An, which was followed by little or no
garnet formation in the assemblage Grt–Gru–Hbl–An.
This interpretation is consistent with the garnet mole
proportion contours shown in Fig. 10a. The contours
in Fig. 10 also predict that garnet will be partially
consumed when the P–T path progressively crosses the
univariant reaction Chl + Grt + Hbl ¼ Gru + An,
until all chlorite is reacted out. Furthermore, the
observed Hbl–Gru–Pl coronas around garnet may be
interpreted as a result from a post-peak metamorphic
pressure decrease in assemblage AMD3 (points 3–4 in
Fig. 9a).

Nevertheless, the P–T pseudosection shown in
Figs 9a and 10c cannot account for the observed Xalm

increase from garnet core to rim from 0.50 to 0.65

(Fig. 6a,c). One reason could be that Mn, which is an
important garnet component, is not considered in the
CFMASH system. If Mn is taken into account and
activity models for garnet and chlorite as presented in
Zeh & Holness (2003) are used, the observed garnet
zonation patterns may be explained more realistically.
In the system MnCFMASH garnet growth will start at
c. 30 �C lower temperatures than in CFMASH (com-
pare Fig. 10a,d). Xspss and Xgrs decrease (Xspss ¼ 10–
1 mol.%; Xgrs ¼ 28–17 mol.%) during increasing
pressure and temperature conditions (Fig. 10d–g),
which is in general agreement with the observed garnet
growth zonation. Furthermore, Xalm is predicted to
increase and subsequently to decrease (Xalm ¼ 60 fi
70 fi 66 mol.%). As in the CFMASH system, garnet
will be partially consumed in the assemblage Grt–Chl–
Hbl–Gru–An and during a post-peak metamorphic
decompression in the assemblage Grt–Gru–Hbl–An.

The P–T vector inferred from the P–T pseudosec-
tions in Figs 9 and 10 generally conforms with the
results obtained by conventional thermobarometry
from the domains AMD-Grt and AMD-Mx (Fig. 8),
in particular with the P–T results calculated with the
average P–T feature of THERMOCALCTHERMOCALC (Table 3). Within
error, as propagated with THERMOCALCTHERMOCALC (see Table 3 for
conventional thermobarometry and ± 30 �C and
± 1.0 kbar for P–T pseudosection calculations) the
results are identical. Finally, it should be noted that the

Cummingtonite

Magnesio-hornblende

0.5

0.0

1.0

8.0 Si (pfu)

0.5

0.0

1.0

M
g/

(M
g+

F
e2+

)
M

g/
(M

g+
F

e2+
)

8.0 7.5 7.0 6.5 6.0

Ferro-hornblende

Tscher-
makite

Ferro-
tscher-
makite

Tremolite

Ferro-
actinolite

Actinolite

Si (pfu)

7.0

Grunerite

(a)

(b)

AMD-inGrt
AMD-Matrix

Monoclinic amphiboles

Ca-amphiboles

AM52-Matrix
AM52-inGrt
AMD-Matrix

Fig. 7. Composition of hornblende (a) and grunerite (b) from
samples AMD and AM52, shown in the classification diagram
after Leake et al. (1997).

T (°C)

P
 (

kb
ar

)

400 500 600 700
0

2

4

6

8

10

AMD-Mx(HP)
AMD-Grt(HP)

AMD Mx(GTB)-

AM52-Mx(HP)

12

34
56

Fig. 8. Results of P–T calculations obtained from matrix min-
erals of sample AMD (AMD-Mx) and AM52 (AM52-Mx), and
from minerals enclosed in garnet of sample AMD (AMD-Grt).
The P–T calculations were carried out with the computer soft-
ware THERMOCALCTHERMOCALC of Holland & Powell (1998) – (HP), and with
several conventional thermobarometers using the program
THERMOBAROMETRYTHERMOBAROMETRY (GTB) of Spear & Kohn (http://ees2.geo.
rpi.edu/MetaPetaRen/Frame_software.html/). Mineral compo-
sitions used are shown in Table 2 and additional P–T results in
Table 3. (1 & 2) garnet–hornblende geothermometer: (1) Graham
& Powell (1984), (2) Perchuk et al. (1985); (3–6) Garnet–
plagioclase–hornblende–quartz geobarometers: (3)Kohn&Spear
(1989) – pargasite–Fe-model, (4) Kohn & Spear (1989) –
pargasite–Mg-model, (5) Kohn & Spear (1990) – tschermakite–
Fe-model, (6) Kohn & Spear (1990) – tschermakite–Mg-model.
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P–T pseudosections in Fig. 10 give no explanation for
the complex Xgrs zonation patterns shown by garnet in
sample AMD (Fig. 6a,c). As mentioned above, this
complexity could result from kinetic effects causing
local Ca-disequilibrium during garnet growth and,
thus, cannot be explained by equilibrium thermody-
namics.

Sample AM52

The phase diagram in Fig. 9b is consistent with the
interpretation that the observed mineral assemblage
Grt–Gru–Chl (AM52) was formed in a narrow tem-
perature interval between 560 and 570 �C at pressures
higher than 3.9 kbar. These P–T conditions are in
agreement with the results obtained from the conven-
tional geothermometry (Fig. 8), and with the P–T path
inferred for sample AMD. According to the phase

diagram in Fig. 9b it seems likely that garnet in sample
AM52 crystallized initially in the assemblage Grt–Chl–
Hbl–Gru, and that hornblende reacted out during the
prograde evolution (points 1–2 in Fig. 9b). Conse-
quently, hornblende is absent in the matrix.

GEOLOGICAL IMPLICATIONS

The P–T pseudosections and the results of conven-
tional thermobarometry consistently support the
interpretation that rocks from the Endora Klippe
within the Central Zone of the Limpopo Belt under-
went a contemporaneous temperature and pressure
increase from c. 540 �C/4.5 kbar to 650 �C/6.5 kbar,
followed by a post-peak metamorphic pressure
decrease. Such a P–T path has never been inferred for
rocks from the Limpopo Belt, for which the rocks are
usually accepted as having all experienced granulite
facies conditions (e.g. Van Reenen et al., 1987; Holzer
et al., 1998, 1999). In fact, granulite facies rocks are
widespread in the Northern and Southern Marginal
Zones of the Limpopo Belt (e.g. Van Reenen, 1986;
Tsunogae et al., 1992; Kamber & Biino, 1995; Perchuk
et al., 2000), and are reported from the eastern and
western parts of the Central Zone (Fig. 4); e.g. from
the Messina, Alldays and Lose areas (Harris & Hol-
land, 1984; Windley et al., 1984; Droop, 1989; Hisada
& Miyano, 1996; Holzer et al., 1998, 1999; Van Ree-
nen et al., 2004; Zeh et al., 2004). The only exception
reported, so far, are rocks from the Venetia Klippe
(Fig. 4), which underwent a high-grade amphibolite
facies overprint with peak P–T conditions of 720 �C/7–
8 kbar (Klemd et al., 2003). Thus, the Venetia Klippen
Complex, comprising the Endora Klippe seems to
represent an exotic terrane within the high-grade
Limpopo Belt. In order to understand its geotectonic
significance, and to interpret the P–T path obtained
from the Endora Klippe in a geological context, the
following observations must be taken into considera-
tion:
(1) The area surrounding the Venetia kimberlite

pipes represents a pile of three tectono-stratigraphic
units, which are separated by low-angle shear zones
(Barton et al., 2003). The units are named from bot-
tom to the top: the Krone metamorphic terrane, the
Venetia Klippe and the Endora Klippe (Fig. 4). U/Pb
ages of detrital zircon, as well as Ar/Ar hornblende
and muscovite ages provide evidence that the metase-
diments of the Venetia Klippe were deposited after
2.6 Ga and affected by a tectono-metamorphic over-
print between 2.06 and 2.01 Ga (Barton et al., 2003).
Finally, these nappes were intruded by the Gotha
granitic complex.
(2) The Venetia Klippen Complex is surrounded and

underlain by granulite facies rocks, which are exposed
in the Messina, Lose and Alldays area (e.g. Hisada &
Miyano, 1996; Van Reenen et al., 2004; Zeh et al.,
2004), and are found as xenoliths within the Venetia
kimberlite pipes (Pretorius & Barton, 2003). A P–T
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path inferred from granulite facies rocks of the Mes-
sina area (c. 60 km east of Venetia) indicates that the
granulites underwent a prograde temperature and

pressure increase from 600 �C/7 kbar to 780 �C/9–
10 kbar (pressure peak) to 820 �C/8 kbar (thermal
peak), followed by a decompression-cooling path to
600 �C/4 kbar (Zeh et al., 2004; Fig. 11). A similar
retrograde P–T path is reported from the Alldays area,
c. 100 km west-southwest of Venetia (Van Reenen
et al., 2004; Fig. 11). The prograde P–T path suggests
that the granulites of the Messina area were formed
during contemporaneous burial and heating, main-
tained by a combination of crustal stacking on top and
thermal relaxation at depth (Zeh et al., 2004). Geo-
chronological results of Barton et al. (1983); Jaeckel
et al. (1997) and Holzer et al. (1998) support the tim-
ing of the thermal peak during granulite facies meta-
morphism at c. 2.03 Ga and that subsequent cooling
occurred until 1.98 Ga. Garnet with relic growth
zonation additionally indicates that the granulites in
the Messina area underwent a fast prograde heating
and cooling during a single orogenic event (Zeh et al.,
2004).

The geochronological and petrological evidence
from the Messina area and the Venetia Klippen
Complex indicates that granulite and amphibolite
facies metamorphism in the Central Zone were coeval
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at c. 2.03 Ga, i.e. much later than the granulite facies
metamorphism which affected the Northern and
Southern Marginal Zones at c. 2.7 Ga (e.g. Van Ree-
nen, 1986; Tsunogae et al., 1992; Berger et al., 1995;
Mkweli et al., 1995; Kreissig et al., 2001). At present,
there is no unambiguous evidence for a regional
metamorphic event in the Central Zone prior to
2.06 Ga, even though several ages of c. 2.6 Ga and
3.1 Ga are reported (e.g. Jaeckel et al., 1997; Kröner
et al., 1999; Boshoff, 2004). However, most of these
ages were obtained from magmatic zircon and could
reflect the time of granite emplacement. Hard evidence
for a metamorphic event at c. 2.52 Ga is presented
only by the dating of metamorphic garnet and silli-
manite, obtained from metapelitic xenoliths within the
Bulai batholith. However, these mineral ages do not
necessarily reflect the time of an important regional
metamorphic event, as suggested by Holzer et al.
(1998), but may rather be interpreted as representing
the age of the contact metamorphic overprint.

The prograde P–T path inferred for the rocks from
the Endora Klippe (Fig. 11) is consistent with crustal
stacking and heating. In fact, the P–T vector is similar
to that obtained from the granulites of the Messina
area (Fig. 11), but is shifted to lower pressure and
temperature conditions. Thus, we conclude that the
inferred P–T path of the Endora Klippe reflects the
metamorphic evolution in the roof zone of the granu-
lites now exposed in the surrounding areas. The low
angle shear zones that separate the different nappes of
the Venetia Klippen Complex also support a conclu-
sion that burial of the granulite facies rocks was
achieved by horizontal nappe tectonics, which caused
successive stacking of rock units on the top of the
Central Zone. The only argument against such a sim-
ple model is a prograde P–T path inferred from rocks
of the Venetia Klippe (Fig. 11), which indicates a
prograde P–T decrease from 630 �C/13 kbar to
720 �C/7–8 kbar (Klemd et al., 2003), and not a pro-
grade pressure increase as inferred for the Endora
Klippe rocks. Thus, either the prograde P–T path
inferred by Klemd et al. (2003) for the Venetia Klippe
is erroneous because of disequilibrium thermobarom-
etry or rocks of the Venetia and Endora Klippe
underwent different P–T evolutions and came into
juxtaposition late during the tectono-metamorphic
history. In order to obtain more information on this
important problem, additional petrological and geo-
chronological work in the Limpopo Central Zone is
required.

CONCLUSIONS

(1) The results of this study indicate that quantitative
phase diagrams derived from a calculated petrogenetic
grid in the system CFMASH adequately explain min-
eral assemblages, textures and compositional trends
observed in garnet–grunerite-bearing amphibolites.

(2) The petrological results indicate that rocks from the
Endora Klippe within the Central Zone of the Lim-
popo Belt experienced only amphibolite facies meta-
morphism during a contemporaneous temperature and
pressure increase from c. 540 �C/4.5 kbar to 650 �C/
6.5 kbar, followed by a post-peak metamorphic pres-
sure decrease.
(3) The inferred P–T path, in combination with geo-
chronological and petrological data from surrounding
areas, supports a tectonic model which suggests that
the rocks from the Endora Klippe reflect the meta-
morphic evolution in the roof zone of the migmatitic
gneisses and granulites exposed widely in the Central
Zone. They also suggest that granulite and amphibolite
facies metamorphism occurred during the Palaeopro-
terozoic at c. 2.03 Ga.
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APPENDIX

Thermodynamic data, solid solutions, site fractions and
activity expressions

The data for ferroactinolite and cummingtonite end-members in the
dataset of Holland & Powell (1998) require modification. The cum-
mingtonite data were based on an assumption of ideal mixing in
olivine, orthopyroxene and grunerite equilibrated in the experiments
of Fonarev et al. (1979); because the phases are quite Fe-rich and
somewhat non-ideal, extrapolation to cummingtonite is unsatisfac-
tory. For simplicity, in this study the mixing properties of olivine,
orthopyroxene and grunerite are treated as simple regular solutions
such that they simulate the activity–composition relations in the
more extensive order–disorder treatments (see Holland & Powell,
1996a,b). The mixing relations are detailed below, including an
enthalpy adjustment of )22.2 kJ relative to the data in Holland &
Powell (1998) for cummingtonite.

Also, as argued in Evans & Ghiorso (1995), ferroactinolite appears
to be more stable than implied by the experiments of Ernst (1966)
and therefore its thermodynamic data require adjustment. Because
non-ideal solution models are used here, there are relationships be-
tween the end-member Gibbs energies and the regular solution model
interaction energies, particularly through the internal equilibria such
as 7 tr + 5 grn ¼ 7 fact + 5 cum as discussed in Powell & Holland
(1999). We have derived an internally consistent set of interaction
energy parameters for the amphibole end-members:

These are based on assumed values for W(tr,fac) and W(tr,cum),
derived by analogy with other Fe–Mg mixing systematics (Holland &
Powell, 1998, p. 318; Powell & Holland, 1999, p. 8–10) and on the
width of the actinolite–grunerite solvus. W(tr,ts) was taken from
Holland & Powell (1998). The internal equilibrium yields the con-
straints:

HðfacÞ ¼ HðtrÞ þ 5

7
HðgrnÞ � 5

7
HðcumÞ þ delta

where
delta ¼ � 7

5
W(tr,fac)þW(fac,cum)�W(tr,cum)

and
Wðtr,grnÞ ¼ 84

25
Wðtr,facÞ þ 60

25
Wðtr,cumÞ � 35

25
Wðfac,cumÞ

Wðcum,grnÞ ¼ 49

25
Wðtr,facÞ

Wðgrn,facÞ ¼ 14

25
Wðtr,facÞ þ 35

25
Wðtr,cumÞ � 10

25
Wðfac,cumÞ

Taken together these provide values for W(fac,cum) and
W(grn,fac). Similar reasoning leads to the other values in the table
above, with an unknown value (¼n above) for W(cum,ts). The
value for n was estimated to be around 125 kJ by adjustment until
agreement with the alumina content of natural grunerites was
obtained. The properties of fact are derived from those of trem-
olite, grunerite and cummingtonite using the relationships above
and require a value for delta of 15.9 kJ [i.e. )5/7 (22.2) kJ] and
hence a Gibbs energy increment of 38.1 kJ relative to the data in
Holland & Powell (1998).
For clinopyroxene, similar arguments allow a simple model among

the end-members diopside, hedenbergite, Ca-Tschermaks pyroxene
and clinoenstatite. The interaction energies are listed below and are
based on the Cpx–Opx miscibility gap, Fe–Mg–Al exchange between
pyroxenes and garnet. The Gibbs energy increment, given below
(8.1–0.0045T kJ) allows for the ortho ¼ clino transition in enstatite.
To reproduce the results of this study accurately requires the data

files used here, which may be obtained from the first author on
request.

Olivine (Ol): (Fe,Mg)2SiO4

Mineral end-members:

Fayalite (fa) : Fe2SiO4

Fosterite (fo) : Mg2SiO4

Compositional variable:

x ¼ Fe(Ol) ¼ Fe=ðFe + MgÞ

Wij (kJ) tr ts fac cum fts grn

tr * 20 9 45 32.9 80.4

ts * 12.9 n 3.2 n ) 12.8

fac * 41.4 15 51.5

cum * n + 5.3 17.6

fts * n + 3.0

grn *
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Ideal mixing on site activity expressions:

x ¼ Fe(Ol) ¼ Fe=ðFe + MgÞ

a(fa) ¼ x(Fe)2

a(fo) ¼ x(Mg)2

Regular solution parameters: W(fa,fo) ¼ 9 kJ

Clinopyroxene (Cpx): (Ca,Mg)M2 (Fe,Mg,Al)M1 (Al,Si)T2 SiT1

O6

Mineral end-members:

Diopside (di) : CaMgSi2O6

Hedenbergite (hed) : CaFeSi2O6

Ca-Tschermaks Px (cats) : CaAlAlSiO6

Enstatite (en) : Mg2Si2O6

Compositional variables:

Ca(Cpx) ¼ XCa;M2 ts(Cpx) ¼ XAl,M1 x(Cpx) ¼ Fe=ðFeþMgÞ
Ideal mixing on site activity expressions:

x(Ca,M2Þ ¼ Ca x(Mg,M2Þ ¼ ð1� xÞð1� CaÞ

x(Al,M1) ¼ ts x(Fe,M1) ¼ xð1� tsÞ x(Mg,M1) ¼ ð1� xÞð1� tsÞ

a(di) ¼ x(Ca,M2)x(Mg,M1)

a(hed) ¼ x(Ca,M2)x(Fe,M1)

a(cats) ¼ x(Ca,M2)x(Al,M1)

a(en) ¼ x(Mg,M2)x(Mg,M1)

Regular solution parameters:

W(di,hed) ¼ 2:5;W(di,cats) ¼ 7;W(di,en) ¼ 24;

W(hed,cats) ¼ 4;W(hed,en) ¼ 34;W(cats,en) ¼ 24 kJ

Gibbs energy increment: DQF(en) ¼ 8.1–0.0045T kJ

Grunerite (Gru): (Ca,Fe,Mg)M4
2 (Fe,Mg)M13

3 (Fe,Mg,Al)M2
2

(Al,Si)T12 Si6O22(OH)2

Mineral end-members:

Tremolite (tr) : Ca2Mg5Si8O22ðOHÞ2

Ferroactinolite (fact) : Ca2Fe5Si8O22ðOHÞ2

Tschermakite (ts) : Ca2Mg3Al2Al2Si6O22ðOHÞ2

Cummingtonite (cum) : Mg7Si8O22ðOHÞ2
Compositional variables:

x(Gru) ¼ Fe=ðFeþMgÞ y(Gru) ¼ XAl;M2 ca(Gru) ¼ XCa,M4

Ideal mixing on site activity expressions:

xðCa;M4Þ ¼ Ca xðFe,M4Þ ¼ xð1� caÞ
xðMg,M4Þ ¼ ð1� xÞð1� caÞ

xðFe,M13Þ ¼ x xðMg,M13Þ ¼ ð1� xÞ

xðFe,M2Þ ¼ xð1� yÞ x(Mg,M2Þ ¼ ð1� xÞð1� yÞ xðAl;M2Þ ¼ y

xðAl;T1Þ ¼ 1

2
y xðSi,T1Þ ¼ 1� 1

2
y

a(tr) ¼ xðCa,M4Þ2xðMg,M13Þ3xðMg,M2Þ2xðSi,T1Þ2

a(fact) ¼ xðCa,M4Þ2x(Fe,M13Þ3xðFe,M2Þ2xðSi,T1Þ2

a(ts) ¼ 4xðCa,M4Þ2xðMg,M13Þ3xðAl;M2Þ2xðAl;T1ÞxðSi,T1Þ

aðcumÞ ¼ xðMg,M4Þ2xðMg,M13Þ3xðMg,M2Þ2xðSi,T1Þ2

Regular solution parameters:

Wðtr,factÞ ¼ 9;Wðtr,tsÞ ¼ 20;Wðtr,cumÞ ¼ 45;

Wðfact,tsÞ ¼ 12:9;Wðfact,cumÞ ¼ 41:4;

Wðts,cumÞ ¼ 125 kJ

Gibbs energy increments:

DQF(fact) ¼ 38:1 kJ;

G(fact) ¼ G(tr)þ 5

7
G(gru)� 5

7
G(cum)

þDQF(fact)

DQFðcummÞ ¼ �22:2 kJ

Hornblende (Hbl): (Ca,Mg)M4
2 (Fe,Mg)M13

3 (Fe,Mg,Al)M2
2

(Al,Si)T12 Si6O22(OH)2

Mineral end-members:

Tremolite (tr) : Ca2Mg5Si8O22ðOHÞ2

Ferroactinolite (fact) : Ca2Fe5Si8O22ðOHÞ2

Tschermakite (ts) : Ca2Mg3Al2Al2Si2O22ðOHÞ2

Cummingtonite (cum) : Mg7Si8O22ðOHÞ2
Compositional variables:

xðHblÞ ¼ Fe=ðFeþMgÞ yðHblÞ ¼ XAl;M2 caðHblÞ ¼ XCa,M4

Ideal mixing on site activity expressions:

xðCa,M4Þ ¼ ca xðMg,M4Þ ¼ ð1�xÞð1� caÞ xðFe,M4Þ ¼ xð1� caÞ

xðMg,M13Þ ¼ 1� x xðFe,M13Þ ¼ x

xðMg,M2Þ ¼ ð1� xÞð1� yÞ xðFe,M2Þ ¼ xð1� yÞ xðAl,M2Þ ¼ y

xðAl,T1Þ ¼ 1

2
y xðSi,T1Þ ¼ 1� 1

2
y

aðtrÞ ¼ xðCa,M4Þ2xðMg,M13Þ3xðMg,M2Þ2x(Si,T1Þ2

aðfactÞ ¼ xðCa,M4Þ2xðFe,M13Þ3xðFe,M2Þ2xðSi,T1Þ2

a(ts) ¼ 4xðCa,M4Þ2xðMg,M13Þ3xðAl,M2Þ2xðAl,T1ÞxðSi,T1Þ

a(cum) ¼ xðMg,M4Þ2xðMg,M13Þ3xðMg,M2Þ2xðSi,T1Þ2

Regular solution parameters:

Wðtr,factÞ ¼ 9;Wðtr,tsÞ ¼ 20;Wðtr,cumÞ ¼ 45;

Wðfact,tsÞ ¼ 12:9;Wðfact,cumÞ ¼ 41:4;

Wðts,cumÞ ¼ 125 kJ

Gibbs energy increments:

DQFðfactÞ ¼ 38:1kJ;

GðfactÞ ¼ GðtrÞ þ 5

7
GðgruÞ � 5

7
GðcumÞ þDQFðfactÞ

DQFðcummÞ ¼ �22:2 kJ

For chlorite activity, composition relations and regular solution
parameters were taken from Holland et al. (1998), and for garnet,
from White et al. (2000).
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