
Condor Birdbath*
Web Service interface to condor

Clovis Chapman1, Charaka Goonatilake1, Wolfgang Emmerich1,

Matthew Farrellee2, Todd Tannenbaum2, Miron Livny2,
Mark Calleja3 and Martin Dove3

1 Dept. of Computer Science, University College London,

Gower St, London WC1E 6BT, United Kingdom
2 Computer Sciences Department, University of Wisconsin

1210 W. Dayton St., Madison, WI 53706-1685, U.S.A.
3 Dept. of Earth Sciences, University of Cambridge,

Downing Street, Cambridge CB2 3EQ, United Kingdom

Abstract

The grid community has been migrating towards service-oriented architectures as means of
exposing and interacting with computational resources across organizational boundaries. The
adoption of Web Service standards provides us with an increased level of manageability,
extensibility and interoperability between loosely coupled services that is crucial to the
development of a grid infrastructure spanning multiple organizations and incorporating a wide
range of different services. Providing support for Web Services in existing middleware and tools
would ensure open interoperability with future mainstream grid developments. We cover in this
paper the work that we have done in incorporating Web Service support into Condor – a widely
adopted and sophisticated high-throughput computing software package, and present an overview
of the motivations, implementation and achievements of this work. In order to demonstrate
Condor’s new capabilities, we also present work that we have done in adapting GridSAM, a Web-
Service based job submission and monitoring system that endorses the emerging Job Submission
Description Language (JSDL) standard, in order for it to interact with Condor through its Web
Service API – as well as demonstrate the use of this combination of services to deploy real-world
scientific workflows in the context of the e-Minerals project using the Web Service based workflow
specification standard BPEL (Business Process Execution Language).

1. Introduction
Web Service technology has become an
important building block in the design and
development of a global grid infrastructure [1].
The ability to decompose resources and the
functionality they provide into a set of
discoverable and loosely coupled services,
which are capable of interaction in
heterogeneous environments addresses many of
the interoperability issues that can be
encountered in large scale grid infrastructures.
Through conformance to an established set of
XML based standards, such as the Simple
Object Access Protocol (SOAP) for
communication and the Web Service Definition
Language (WSDL) for interface definition, Web
Services ensure that independently developed
applications and tools can be seamlessly
integrated into a large-scale global grid
environment.
Bringing current grid middleware and tools in
line with these developments is a great
opportunity to identify new means of interacting
with these technologies and further exploit the
capabilities of the resources they manage. The

Condor system is a very good candidate for
such an undertaking. It is a widely adopted job
scheduling and resource management system
that offers a wide range of well defined high-
throughput computing services. By exposing its
functionality as a set of well defined individual
Web Services, we enable Condor managed
resources to be seamlessly integrated into this
emerging service oriented environment:
allowing third parties to fully incorporate
Condor’s capabilities into their own
applications, and considerably improve upon
Condor’s ability to operate across
organizational boundaries.
Building on a previous investigation into
exposing Condor services in a service oriented
grid environment [2], we present here work that
has been done in incorporating Web Service
support into the Condor architecture, in the
context of a project funded by JISC, DTI and
Microsoft – support that has now been made
part of Condor’s latest development release
(from 6.7.5 [3]).

* This work has been funded by the Department of
Trade and Industry, the Joint Information Systems
Committee and Microsoft

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ESC Publications - Cambridge Univesity

https://core.ac.uk/display/29418392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Condor is a mature and sophisticated software
system, which provides an impressive set of
capabilities spread across multiple daemons,
each responsible for managing different aspects
of Condor’s functionality: job scheduling,
resource allocation, meta-data collection, etc.
This particular aspect of the Condor architecture
has enabled us to clearly identify and
incorporate Web service support into the
daemons themselves, ensuring that core features
such as multi-phase commit, transaction
management and fault handling are maintained
on an end-to-end setting. In this first stage, we
have provided - as a set of complementary
services - the necessary framework for external
applications to submit and monitor jobs to a
remote Condor scheduler, including the transfer
of files to and from the scheduler and query a
Condor pool for information about its various
resources.
In order to both evaluate and produce a middle-
tier service capable of fully taking advantage of
Condor’s Web Service capabilities – we have
implemented a plug-in for gridSAM, a Web
Service-based job submission and monitoring
system. Currently being developed in the
context of an OMII-funded project [4],
gridSAM aims to serve as a standard interface
for job submission to a number of different
resource management and batch scheduling
systems such as Condor, LSF and the Sun Grid
Engine. It fully endorses the Job Submission
Description Language (JSDL), an emerging
GGF standard which aims to facilitate
interoperability in heterogeneous environments,
through the use of an XML based job
description language that is free of platform and
language bindings. Through our plug-in, we
have aimed to demonstrate that the use of
Condor’s Web Service interface does not only
considerably facilitate the development of
applications capable of interacting with Condor,
but can also bring significant new functionality
to the system.
Using this combination of services, we have
enabled scientists of the e-minerals project to
deploy complex computational workflows on
the e-minerals mini-grid, a cross-organizational
production level grid infrastructure that
incorporates a number of high performance and
high-throughput computational and data storage
resources. By relying on the Business Process
Execution Language (BPEL) [5], a Web Service
based workflow specification language, we have
enabled scientists to not only specify the
sequencing of jobs to be executed on a number
of Condor-managed resources, but also to
compose workflows incorporating a wide range

of independent Web Service-based systems,
such as data storage services, within their
workflows.

2. Background

2.1 Condor

The Condor system [3] is a batch scheduling
and high-throughput computing resource
management system, which has been maturing
over nearly two decades. It provides means for
users to submit compute intensive jobs to a local
scheduler in the form of batch executables, and
manages the execution of these jobs on suitably
selected resources in a pool of heterogeneous
machines, based on job requirements and
community, resource owner and workload
distribution policies.
A feature that has made it particularly popular
amongst the grid and the UK e-Science
communities, is its ability to harness under-
utilized computational resources: Condor can
ensure that jobs submitted to a pool are run on
idle machines. This particular aspect of its
functionality has enabled the condor software to
be deployed on existing computational
infrastructures with limited impact to their
everyday use. For instance, the UCL condor
pool – part of the larger e-Minerals mini-grid
(section 6) that we use here as our evaluation
environment - consists of 940 machines spread
over a number of student workstation clusters.
Condor provides a rich and varied range of
services, which can be simplified into the
following three categories:
- Job scheduling: Condor provides means to

manage job execution requests as persistent
queues of jobs, as well as coordinating and
monitoring the remote execution of the jobs
on the user’s behalf. It provides means for
users to specify and queue large number of
jobs or specify workflow dependencies
between jobs.

- Resource management services: A central
manager is responsible for collecting
resource characteristics and usage
information from machines in a Condor
pool. It is based on this collected
information, and on user priorities, that job
requests can be matched to suitable
resources for execution.

- Job execution management: Based on
matches obtained from the central manager
Condor manages the remote execution of
jobs on the selected resources. Condor
provides the ability to checkpoint jobs –
saving the state of a job on a regular basis –

ensuring that they can be migrated to other
resources in case of failure. It also provides
the ability to redirect system calls to the
submission machine, as well as file transfer
functionality to and from the execution site.

Condor’s functionality has been
compartmentalized into a number of individual
daemons. Interaction between these daemons is
illustrated in figure 1. Particular daemons of
interest to us here are the following:
- condor_schedd: The Condor scheduler is

responsible for maintaining a persistent
queue of job execution requests and
managing the remote execution of jobs.
Jobs are maintained as job classAds –
essentially a list of name/expression pairs
that represent the various characteristics of
a job (input files, arguments, executable,
etc.) as well as its requirements and
preferences (memory, operating system
etc.). The scheduler has been adapted to
provide client side job management
capabilities for a number of other resource
management systems, such as the Globus
Toolkit and LSF (Condor-G) [6].

- condor_collector: The collector is
responsible for maintaining meta-data
about all resources and other daemons in a
pool in the form of resource classAds,
describing the various characteristics of the
resource (memory, current load, Operating
system, etc.).

2.2 Web Services

Whilst it is outside of the scope of this paper to
cover in detail the inner-workings of Web
Services, we briefly cover the capabilities and
advantages this technology provides us with.
Web Services are essentially a collection of
XML-based protocols and standards, which
define the ways in which services should be
described (through the Web Service Description
Language – WSDL [7]), how they can be
accessed and how communications should be
formatted (Simple Object Access Protocol –
SOAP [8]), and finally how these may be
discovered by client applications. The reliance
on the eXtensible Markup Language (XML) as
a common formatting language ensures a degree
of platform, programming language and system
independence.
As such clients and services developed
independently can, through conformance to
these standards, be made to interoperate.
There are several advantages to Web Services
that should be noted here:

- Loose coupling: The use of published
WSDL interfaces and XML-based
communication protocols favours a ‘black-
box’ approach to development. Most of the
details of the inner-workings of the service
are abstracted away from the client, which
considerably facilitates the independent
development of clients capable of invoking
specific Web Services.

- Development kits: Numerous development
kits (such as gSOAP, Axis, etc.) and
transport protocol bindings are available,
providing support for a wide range of
platforms and programming languages.
There are also several hosting environments
available such as Tomcat, J2EE containers,
which can be used to deploy and manage
Web services.

- Web Service compatible applications and
standards: As Web Services have become
increasingly popular for business-to-
business interaction, numerous industry
tools and standards are available that can be
exploited in a grid setting. For example, the
industry standard BPEL can be used to
compose interactions between grid services
according to user defined workflows as we
demonstrate in section 6.

- Firewall management: Often used as a
‘selling point’ for Web Service technology
is its ability to traverse many proxies and
firewalls unhindered. SOAP messages can
be bound to the HTTP protocol; often
allowed through firewalls for web browsing
purposes. Whilst this may not necessarily
be desirable from a security standpoint, it
should be noted that Web Services enable
session management over a single port,
considerably facilitating the administration
of firewalls.

3. Related Work

3.1 Alternative interfaces to Condor

A number of alternative techniques can be used
to enable external applications to interact with
Condor, whose limitations we cover in this
section.

Command-Line wrappers: A commonly used
technique is to create wrappers around the
command line tools normally used by users to
submit, monitor and manage their jobs, in order
for these to be accessed programmatically by an
external application - as is done, for example,
within the Globus Toolkit GRAM (section 3.2).
However the interface to the command line
tools is naturally intended for human interaction
and is not as rich as the interface to the Condor
daemons themselves: core functionality such as
fault-tolerance capabilities, multi-phase
commits and transactions are not available
through this interface and would have to be built
on top of the tools by the third party developers.
This would naturally not be as robust or as
efficient as providing access to the daemons
themselves: in this manner we can ensure that
transactions and fault handling can be
maintained on an end-to-end basis.

GAHP: The Grid ASCII Helper Protocol
(GAHP) [9] provides a simple ASCII stream-
based protocol for interaction with Condor and
other resource managers. It provides richer
functionality than the command-line tools such
as more comprehensive error handling, multi-
phase commit capabilities and support for
transactions. Its ASCII based nature also
ensures a certain degree of independence from
software languages. However it lacks much of
the functionality that is inherent in Web
Services such as service and session
management or type safety through declared
WSDL interfaces, and was intended to “fill the
gap” until Web Services become commonplace
in grid computing .

DRMAA: The Distributed Resource
Management Application API (DRMAA) [10]
specification aims to define a standard API by
which external applications can interact with
resource managers such as Condor through local
procedure calls. Condor provides, built on top
of the command line tools, a DRMAA library
that can be linked into external applications.
However, apart from the fact that DRMAA is
intended for direct interfacing, only a ‘C’

language binding is currently available for
Condor and provides weak fault tolerance.

3.2 Alternative Web Service based Job

Submission services

The latest version (v4.0) of the Globus Grid
Resource Allocation manager (GRAM) [11]
enables jobs to be submitted to a Condor
scheduler through Web Services, or more
specifically using the emerging Web Service
Resource Framework - which provides on top of
Web Services additional state and property
management capabilities. The GRAM is
intended to provide a standard job submission
interface to multiple underlying resource
managers, including Condor. As a generic
interface, it hence cannot provide the full range
of capabilities available in Condor, nor can it
provide them as efficiently: a Condor specific
interface ensures that job submission, queue
management and other features are exposed in a
way that conforms to its architecture and not
through an additional layer of abstraction.
However this does not imply that Condor Web
Service interfaces are intended to supersede in
any way the GRAM interface. These are by
design complementary and can be combined to
provide additional functionality, and we intend
to demonstrate this through our implementation
of a plug-in for GridSAM, which offers similar
functionality to that of the Globus GRAM in
section 5.

4. Web Service interfaces to Condor

daemons

The primary services for which we have
provided Web Service support are the Condor
scheduler, and the Condor collector. These two
services provide all the necessary functionality
for third party applications and portals to
interact with Condor according to a job
delegation model (figure 2): external
applications can query a pool collector to
determine the type and availability of resources
in the pool, and submit their jobs to a scheduler
local to the pool so that it can manage the jobs
on its behalf. However whilst these two
daemons are the main sources of interaction
with the system, all daemons have been
embedded with some basic Web Service
functionality in order to provide the necessary
leeway for future extensions.
The strategy adopted has been to leverage
existing APIs of these components as individual
Web Services interfaces - supplementing
Condor’s traditional mode of communication

(Cedar) in order for daemons to be capable of
processing SOAP invocations. We have relied
for this purpose on the gSOAP Web Services
development kit [12].
This functionality is now present in the Condor
development release (from 6.7.5) and can be
enabled through Condor’s configuration file.

4.1 The scheduler

The scheduler has been extended to provide the
following operations through Web Services:

- Job Submission: The scheduler provides a

number of operations for job submission.
Submitting a job requires the creation of a
new job cluster (group of jobs), new job id
(within the cluster) and the definition of a
job classAd, describing all its
characteristics.

- Utility functions: Due to the complexity of
a classAd specification, a template classAd
can be obtained from the scheduler - pre-
configured with respect to the scheduler
environment. Further more a job
requirement prediction function can be used
to determine the files that are to be made
available for a job submission to be
successful.

- Data transfer and management: The
scheduler also provides means to send input
files and binaries to the scheduler and
retrieve any output files produced through a
simple chunk-based file transfer protocol.
Files transferred are managed within
individual “spools”, ensuring that a user
does not have to know exact locations of
files on the remote host. Spool removal can
be requested upon job completion.

- Job monitoring: Job classAds are
continuously updated throughout the life of
a job. They can be retrieved at any time
from the scheduler, providing the user with
information such as the current status of the
job, errors that may have occurred, etc.

- Queue management operations: A number
of additional queue management functions
have been made available, such as the
ability to cancel or hold jobs, request a
rescheduling, etc.

- Transaction based system: Any set of
actions described above can be performed
as part of a transaction. If any of the
operations specified within a transaction
fail, the transaction as a whole is rolled
back. Job submission for example may
require the submission of a classAd and the
transfer of one or more input files and
binaries. Wrapping these actions in a
transaction ensures that all steps have
completed before the submission itself is
considered as successful.

It should be noted that the scheduler’s ability to
manage submissions to the Globus Toolkit or
other grid resource management systems
(Condor-G), the ability to fork jobs on the
resource hosting the scheduler (scheduler
universe) or the use of other supported Condor
universes (PVM, MPI) are fully accessible
through these operations. Further more, the
ability to checkpoint jobs and migrate jobs
across multiple pools should also be available,
primarily due to the fact that checkpoint data
can be retrieved as a file from the scheduler.

4.2 The collector

As previously covered, the collector stores
meta-data about every resource in the pool in
the form resource classAds. This component
has been extended in order for classAd to be
retrieved through a set of query operations.
Remote users may specify particular constraints
to these queries (e.g. retrieve all classAds for all
Linux execution machines with more than 512
Mb of RAM), enabling them to narrow the
results to specific resources of interest to them.

5. Integrating gridSAM and Condor

5.1 GridSAM overview and objectives

The gridSAM job submission service [4]
enables jobs specified using the Job Submission
Description Language (JSDL) to be submitted
to a wide range of underlying schedulers

Figure 2: Job delegation to a local scheduler

through Web services

including Condor. JSDL essentially defines an
XML based vocabulary and schema to describe
requirements and characteristics of
computational jobs – such as input/output files,
arguments, resource requirements, etc. - for
execution on grid resources – with the aim of
facilitating interoperability between client
applications, such as portals, etc. and resource
managers and decoupling job specifications
from actual execution environments. GridSAM
attempts to leverage acceptance of this standard
by providing a Web Service interface for the
submission of a JSDL document and the
underlying mechanisms through which this
request can be transformed into a scheduler
specific submission. This is achieved through
the use of various Distributed Resource
Manager (DRM) connectors, which can be
‘plugged’ into the system to provide platform
specific job-launching capabilities. The
previous incarnation of the Condor DRM
connector relied on wrappers around command
line tools to interact with the Condor system.
By producing a plug-in which enables
interaction with Condor through its Web
Service interface, our objectives are hence
threefold: a) demonstrate the effectiveness of
Web Services for the integration of Condor and
third-party applications b) bring, through this
channel, significant new functionality to
gridSAM c) illustrate the ways in which
different grid-based job submission services
with similar modes of operations can be brought
together.
Additionally, an outcome of this work is the
development of a middle-tier service that will
provide an additional layer of abstraction for
clients. The Condor Web Service interfaces are
themselves relatively low-level in nature:
middle-tier services are required to fully take
advantage of these capabilities and define the
logic by which these functions are used - hence
coordinating the distribution of jobs to one or
more pools on behalf of a client application.

5.2 Condor Web Service DRM connector

The Condor WS DRM connector for gridSAM
allows us to distinguish two levels of operation
as illustrated in figure 3: in a first instance jobs
are submitted to the gridSAM service through
its provided mechanisms. These are then,
through SOAP invocations, delegated to a
remote Condor scheduler.
These latter invocations are managed within the
Condor WS DRM connector plug-in, whose
behaviour can be controlled by an administrator
through gridSAM’s configuration mechanisms.

GridSAM’s use of HiveMind – an Apache
development kit that allows run-time
configuration and composition of the
components – enables configuration attributes
to be injected into our plug-in upon start-up,
which we take advantage of here to allow
administrators to specify a set of target
schedulers - and any scheduler specific
attributes and policies – to which gridSAM
should relay incoming jobs.
The plug-in will monitor the remote execution
of jobs through regular polling and, upon job
completion retrieve any output files that have
been produced.
One of the obvious drawbacks of this approach
is that there is an additional overhead in
transferring the job sandbox – including
description and files - from the gridSAM host to
the remote scheduler. However there are
numerous advantages that clearly overweigh
this inconvenience:

- Independent deployment of GridSAM:

Though gridSAM would have normally
been required to run on a submission
machine local to a specific condor pool, it
can now – due to the fact that it can access
Condor schedulers remotely – be deployed
completely independently, on a resource
that does not require an actual condor
installation. This ensures that gridSAM can
be used to submit jobs to Condor resources
without the need to involve the
administrators of the resources. We can
imagine for example a scenario where a
Virtual Organization (VO) may deploy and
manage its own gridSAM instances and use

Figure 3: GridSAM architecture

these for submissions to non-dedicated
resources.

- Submission to multiple schedulers: An
important feature of our plug-in is the
ability for jobs submitted to gridSAM to be
distributed to more than one Condor
scheduler. The current version of our plug-
in enables workloads to be shared between
more than one pool or grid resource in a
Virtual Organization in a round-robin style.
Users can hence submit jobs without
having to concern themselves with the
actual location of the execution. This will
provide an important basis for future
research into workload distribution in
cross-organizational infrastructures, such as
improving workload sharing according to
different policies of use.

- Increased robustness and fault handling:
The Condor GridSAM plugin can track the
remote progress of job executions through
regular polling, and in cases where errors
occur – due to losses in communication or
scheduling errors – jobs can be restarted or
rescheduled where possible. Condor
transactions have been tied into gridSAM’s
own transaction system, used to manage
state changes – ensuring consistency
throughout the various stages of the
execution.

- Access to a wider range of Condor
functionality: The Condor WS DRM
connector allows access to a wider range of
Condor functionality, such as the ability to
submit jobs to Condor-G or use PVM, MPI
or any other Condor supported universes.

- Job Specification: Due to the fact that
JSDL is intended as a standard job
description language, it cannot support all
the attributes that can be defined in a
Condor classAd. We have implemented a
set of generic libraries that provide all the
basic JSDL to classAd mappings to be
performed, as well as enabled
administrators to specify in the gridSAM
configuration file any additional classAd
attributes and job policies that should be
injected at run-time into the job
descriptions for specific schedulers, in
cases where special environmental
considerations should be taken into account
(e.g. condor-G submissions).

All these features contribute to making
gridSAM a powerful instrument in the
development of Virtual organizations, easing
many of the administrative burdens often

encountered in VO construction and facilitating
the use of multiple independent resources.

6. Deployment of these services on the e-

Minerals mini-grid

Finally, in order to demonstrate the use of these
services to tackle scientific problems, we have
deployed these on the e-Minerals mini-grid
[13]: a production level grid infrastructure
encapsulating a number of dedicated and
contributed compute and data storage resources
across six sites in the UK. The compute
resources subset of the mini-grid consists of 4
16-node clusters, 2 IBM pSeries computers, a
sunfire server, and the Cambridge and UCL
Condor pools – the later consisting of more than
940 teaching machines, whilst the data storage
subset encapsulates a number of high capacity
Storage Resource Broker (SRB) vaults.
The objective has been to enable scientists to
execute complex computational workflows,
consisting of a number of inter-related jobs,
relying on gridSAM and Condor to handle the
coordination and distribution of jobs across our
infrastructure. For this purpose we have relied
on the Business Process Execution Language
(BPEL): a Web Service based workflow
specification language that allows a series of
Web Service invocations to be composed as a
single integrated process. whose usefulness as a
means of orchestrating scientific workflows has
been investigated in previous work [14].
We have used for this purpose the BPEL editor
that is being developed at UCL as part of an
OMII funded project, which aims to make
BPEL more accessible to scientists by enabling
them to specify workflows using a graphical
user interface that abstracts most of the
complexities of writing BPEL documents.
The specific use case we have tackled here is
the management and distribution of calculations
required to determine, in a systematic way, the
mechanisms by which pollutant molecules such
as DDT, dioxins and biphenyls, become bound
to soil minerals [15]. Using BPEL, we have
specified the sequencing of several hundreds of
jobs to be executed on our resources, which
were submitted to a central gridSAM node –
responsible for distributing through our Condor
plug-in them to our various computational
resources.
From a usability perspective, this has proved to
be a very successful exercise: as users do not
need to concern themselves with the actual
location of the execution of the jobs, workflows
can be completely free of any workload
distribution concerns. Further more,

submissions were not limited to actual Condor
pools but also to our Globus managed resources
(through the use of Condor-G). Finally it should
be noted that this deployment required no
changes to our existing environment.
The use of BPEL potentially allows for any
Web Services to be incorporated into a
workflow. For example, the SRB data
management system that we use to handle our
data storage need in the e-minerals mini-grid
should soon provide a Web Service interface.
This would allow Condor executions to be
linked to data storage operations, such as
enabling input data and output data for our
computations to be retrieved and stored back
into our storage vaults. We are in the process of
defining - using BPEL - a set of similar reusable
patterns that correspond to various scenarios of
use repeatedly encountered in the e-minerals
project.

7. Conclusion and future work

Web Services prove to be a valuable technology
in allowing users to aggregate a wide range of
computational services according to their own
requirements. As a growing number of grid
services adopt Web Services, these can be,
through technologies such as BPEL, composed
into user-defined workflows and used alongside
Condor Web Services to provide a single
unified grid service.
We have currently enabled job submission and
monitoring to be achieved through Web
Services, but Condor provides many more
services such as accounting and execution
management that we hope to eventually make
available through these same means.
Security features are also in development.
Condor daemons will initially support SOAP
over SSL connections and mappings to local
accounts through X.509 certificates.
We also hope to take advantage of the
capabilities of new emerging Web Service
based standards, such as the Web Service
Resource Framework (WSRF) or WS-
notification – which extend current Web Service
standards to provide state management, meta-
data querying and asynchronous notification. As
we now have an established set of submission
services, and used these in practice, we hope
that the WSRF and WS-notification extensions
will allow us to refine particular aspects such as
the ability to use notifications as opposed to
polling for job state monitoring.
We have provided some initial groundwork in
this domain by incorporating - through
gSOAP’s support for WS-addressing; on which

the WSRF framework relies on to define service
endpoint references.

References:
[1] Foster, I., Kesselman, C., Nick, J. and
Tuecke, S. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
Systems Integration. Globus Project, 2002.
[2] Chapman, C., Wilson, P., Tannenbaum, T.,
Farrellee, M., Livny, M., Brodholt, J., and
Emmerich, W., Condor Services for the Global
Grid: Interoperability between OGSA and
Condor, in Proc. Of the All Hands Meeting
2004, Nottingham, 2004.
[3] The Condor Project.
http://www.cs.wisc.edu/condor
[4] The gridSAM project.
http://www.lesc.ic.ac.uk/gridsam/
[5] Andrews, T., et al., Business Process
Execution Language for Web Services Version
1.1. OASIS, http://ifr.sap.com/bpel4ws
[6] Livny, M., Tannenbaum T., Thain, D.
Condor and the Grid, in Fran Berman, Anthony
J.G. Hey, Geoffrey Fox, editors, Grid
Computing: Making The Global Infrastructure
a Reality, John Wiley, 2003.
[7] Christensen, E., et al., Web Services
Description Language (WSDL) 1.1. W3C, Note
15, March 2001
[8] Box, D., et al. Simple Object Access
Protocol (SOAP) 1.1. W3C, Note 8, 2000.
[9] Grid ASCII Helper Protocol
http://www.cs.wisc.edu/condor/gahp/
[10] Distributed Resource Management
Application API Working Group.
http://www.drmaa.org/
[11] The Globus Project.
http://www.globus.org/
[12] The gSOAP development kit
http://www.cs.fsu.edu/~engelen/soap.html
[13] Blanshard, L., Brodholt, J., Bruin, R.,
Calleja, M., Chapman, C., Dove, M., Emmerich,
W., Kleese van Dam, K., Tyer, R., and Wilson,
P., Grid tool integration within the e-Minerals
project, in Proc. Of the All Hands Meeting
2004, Nottingham, 2004.
[14] Emmerich, W., Butchart, B., Chen, L.,
Wassermann, B., and Price, S., Grid Service
Orchestration using the Business Process
Execution Language (BPEL), UCL-CS.
Research Note RN/05/07.
[15] Chapman, C., Wakelin, J., Artacho, E.,
Dove, M., Calleja, M., Bruin, R., and
Emmerich, W., Workflow issues in atomistic
simulations, in Molecular Simulations, Taylor
and Francis Ltd. 2005.

