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Experiments on standing bubbles
in a vertical pipe
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We present a series of laboratory experiments in which a steady stream of air is
supplied through a small hole in the wall of a vertical pipe of rectangular cross-
section down which there is a steady flux of water. For a range of liquid flow rates,
the air forms a steady standing bubble whose nose is attached to the point of air
supply. The steady bubble sheds a flux of much smaller air bubbles at its base, located
downstream of the air injection point. The minimum liquid speed for which steady
standing bubbles develop occurs at a particular Froude number of the liquid flow,
Frd = U/

√
gd = 0.38, where U is the upstream speed, g the acceleration due to gravity

and d the width of the cell. These trapped bubbles are distinct from the freely rising
Taylor bubble, in that the Froude number at the nose is variable. Also, on a length
scale greater than that influenced by surface tension, we find that the bubble nose
asymptotes to a cusp-like shape, with an angle that decreases with Frd . We show that
numerical solutions of the potential flow equations replicate the bubble shape and
angle of the cusp, which appear independent of the gas flux. We also find that there
is a minimum gas flux for which these standing bubbles develop. As the gas flux
decreases below this threshold, the standing bubbles become unstable and, instead, a
much shorter oscillating bubble develops. This produces a wake which has similarities
with that formed downstream of a cylinder in a confined channel, but which also
carries bubbles downstream. We also find that with sufficiently small gas flux, no
bubble develops. For liquid flow rates smaller than the critical value, Frd < 0.38, we
find that the bubbles become unstable and detach from the injection point and rise
up the tube.

1. Introduction
For the past 60 years there has been a continued interest in the dynamics of

free bubbles rising in a vertical tube, owing to their importance in a wide range of
applications. The initial pioneering works of Dumitrescu (1943) and Davies & Taylor
(1950) analysed the rise speed of the bubbles in a circular pipe, using potential theory,
and established that the rise speed U varies as a function of the pipe radius according
to the relation

U ≈ 0.5
√

gR (1)

where R is the pipe radius and g is the gravitational acceleration. Numerous
subsequent papers have attempted to describe the shape of the freely rising bubble
near the nose (Batchelor 1967; Collins et al. 1978). Recently Clanet, Héraud & Searby
(2004) generalized the model of Dumitrescu, to describe the rise speed of free bubbles
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in pipes of different cross-sectional geometry, and proposed the relation

U ≈ 0.2
√

gP (2)

where P is the wetted perimeter of the tube.
Following a different approach, Keller & Geer (1973) and then Vanden-Broeck

(1984a), used potential theory to examine the shape of a theoretical, long bubble rising
with a prescribed speed through a two-dimensional tube. For ease of calculation, the
model was developed in the frame of the bubble, with an upstream flow equal to
the bubble rise speed, and the shape of the bubble was analysed as a function of the
Froude number

Frd =
U√
gd

(3)

where d is the width of the tube and g the acceleration due to gravity. This analysis
identified that, in the absence of surface tension, there is a critical Froude number,
Frd = 0.36, for the bubble at which the nose ceases to be horizontal. For larger Froude
numbers, the theoretical bubble shape develops a cusp which subtends zero angle
at its nose. Downstream of the nose the bubble rapidly approaches the theoretical
shape predicted by slender jet theory, in which the interior pressure of the bubble is
a constant and the liquid flow is essentially parallel to the walls of the tube. Further
modelling by Vanden-Broeck (1984b) identified that surface tension leads to the
formation of cusped bubbles of finite angle, such that the angle at the cusp decreases
with Froude number, although he states that these solutions are not physical at the
cusp; instead, one expects a localized region of high curvature at the nose connecting
each side of the bubble. In a different model, Vanden-Broeck (1984c) has indeed
shown that if there is an elliptical object of small thickness at the tip of the bubble,
then each side of the bubble may separate from this object with finite angle to the
direction of the upstream flow.

Although of theoretical interest, it is not clear that such mathematical solutions
for a standing bubble may arise in practice. Indeed, the majority of experimental
observations of freely rising bubbles are in accord with the results of Dumitrescu and
Taylor, and suggest that the bubble rises with a particular (natural) Froude number
(equations (1) and (2)) and that the nose of the bubble is smooth on a scale much
larger than the capillary scale.

However, it may be possible for forced, standing bubbles to develop if there is a
steady downward flow of liquid in a tube in which a continuous source of gas is
supplied through the wall at a fixed point. If the liquid flow rate exceeds a critical
Froude number, then one might expect that a trapped bubble can form downstream
of the injection point, and that its shape would be determined to good approximation
by potential theory.

We now report on a series of experiments for this flow configuration, and identify a
range of Froude numbers for which such ‘forced’ trapped bubbles do indeed develop.
We also show that within the resolution of our experiments, the bubbles develop a
cusp-like structure near the nose, with an angle which is consistent with some new
numerical predictions from potential theory in the limit of small surface tension. The
shapes are cusp-like, in that outside a very small region of high curvature,< 1 mm,
at the nose, the bubble appears to subtend a finite angle with the vertical. The
experiments also reveal that the stability and downstream extent of these bubbles
is strongly dependent on the gas flux supplied to its nose. For small gas fluxes, the
long quasi-steady bubbles become unstable, and a much shorter, oscillating bubble
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Figure 1. Schematic of the experimental apparatus.

develops, again anchored at the point of gas injection. These oscillating bubbles
shed vortices and small bubbles which are swept downstream in a wake somewhat
analogous to that formed downstream of an obstacle in a uniform flow (Roshko 1954;
Deniz & Staubl 1997).

As well as being of fundamental interest, recognition of such forced, trapped
bubbles is important for two-phase pipe flow in which liquids may enter through
perforated walls of the pipe. For example, during the production of oil, well bores are
often inclined to the horizontal, and if any gas breaks through into the well, one can
envisage situations in which liquid–gas counterflow develops (Dake 1979). Formation
of a long, trapped bubble downstream of the gas inflow point may cause pressure
losses and hence compromise production from upstream.

It may also be of interest to note that, although the physical systems are different,
some of the bubble shapes are reminiscent of pre-mixed turbulent V-flames which
develop downstream of a flameholder in a free stream (Rhee, Talbot & Sethian 1995).

2. Experimental study
Figure 1 illustrates the apparatus used in the series of experiments reported in

this paper. There is a vertical pipe 1.0 m in length of rectangular cross-section,
15 cm × 1 cm, at the top of which a steady stream of water is supplied; 35 cm below
the top of the tube there is a hole of diameter 1mm in the centre of one of the wider
sides. An air line, connected to a compressor, supplies a constant flux of air to this
opening. The liquid flow thus travels over 18 hydraulic diameters prior to reaching
the gas inflow port, and therefore has become fully turbulent. The flow rate of both
air and water was measured through rotating flowmeters (Key Instruments MR3A02
for the air, Krohne VA20 for the water). The experiments were recorded using digital
video and digital photography using a Nikon 995 camera; a 1 kW uniform backlight
was used to illuminate the flow. The remainder of the laboratory was blacked out to
improve contrast.

The range of liquid flow rates used in the experiments, 400–2500 cm3 s−1, imply
Reynolds numbers, Re =URH/ν, of order 10 000–35 000, where RH is the hydraulic
radius of the cell, defined as 2A/P where A is the cross-sectional area and P the
perimeter of the cell, and ν the kinematic viscosity, and hence we expect the effects of
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Figure 2. (a) Photograph showing a typical quasi-steady bubble. (b) The averaged profile,
computed from the average of 20 frames, lies within about 5 mm of each instantaneous shape
of the bubble. Note the horizontal and vertical axes have different scales in (b). The experiment
shown in (a) has Qw = 1.1 l s−1 (Frd =0.60) and Qg = 2.0 lmin−1 (G =0.018).

viscous resistance from the wall to be small. On the scale of the cell width, the effects
of surface tension are of secondary importance compared to the buoyancy forces
as may be seen from the relatively large Bond number Bo = ρgR2

H/σ ≈ 11, where σ

is the surface tension and ρ is the density (Clanet et al. 2004). Indeed, with a flow
of speed 1 m s−1 near the tip of the bubble, the surface tension σ/r associated with
an interface of curvature r becomes comparable to the fluid inertia ρu2 only with
interface curvature of order r ∼ 10−4 m. This suggests that surface tension has only a
secondary effect except in a localized zone at the tip of the bubble, of scale smaller
than or comparable to the gas inflow opening, which has diameter 0.001 m.

In a typical experiment, as the water flux was increased for a fixed gas flux, it
reached a critical value at which the downflowing water swept the gas downstream.
For sufficiently large gas flux, a standing gas bubble then formed immediately below
the gas injection site. These bubbles appeared to be two-dimensional features, and
extended up to 50 cm downstream of the injection point. The downstream tail of the
bubbles extended up to 10–12 cm across the width of the tube. The tail of the bubble
has a somewhat flat surface, and there is a region of recirculation in the wake directly
behind the bubble, with a rapid jet-like flow of liquid continuing downwards on each
side of this wake. The wake flow is reminiscent of the turbulent wake directly behind
a spherical cap bubble (Wegener & Parlange 1973). At the downstream edge of the
bubble, a series of very small gas bubbles, of size 2–3 mm, continually peeled off and
were carried downstream in this jet. Figure 2(a) is a photograph which illustrates
the shape of a typical quasi-steady gas bubble. Small perturbations may be seen on
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Figure 3. (a) Photographs illustrating the shape of the oscillatory bubble at five different
points in the cycle, (i) to (v). This indicates the periodic asymmetrical shedding of bubbles as
each side of the tail becomes extended and breaks off to be swept downstream. The bubble
shown in the figure has been obtained with a water flux Qw = 0.95l s−1 (Frd = 0.52) and an air
flux Qg =1.0 lmin−1 (G =0.08) and oscillates at a frequency of 3.3 Hz. (b) Photograph of the
wake downstream of the bubble.

the surface of the bubble; these are advected downstream, and appear to decay with
distance. Figure 2(b) illustrates the average of 20 photographs of the shape of the
gas bubble. This average lies within about 5 mm of each of the instantaneous bubble
shapes, confirming that the bubble is stable, and that the perturbations to the bubble
surface do not grow as they move downstream. As an example, this average shape may
be compared with the dashed line in figure 2(b), which is a trace of the bubble in
figure 2(a).

As the gas flux was decreased, a critical value was reached at which these long
steady bubbles were no longer stable, and there was a transition to a much shorter
bubble which executed large-amplitude oscillations just downstream of the injection
port, to which it was anchored. The pattern of flow observed for these oscillatory
bubbles is shown in figure 3(a). During each oscillation, the tail of the bubble
extends downstream first on one side and then on the other side of the channel. As
the tail passes through the point of maximum displacement of the oscillation, the
tail separates and is swept downstream. Following each separation event, an eddy
also propagates downstream. This leads to a downstream wake which is somewhat
analogous to a vortex street, but which also carries discrete bubbles (figure 3b).

For the range of gas fluxes for which either the steady long bubbles or the short
oscillatory bubbles developed, then, for a given liquid flux, the shape of the bubble
near the nose appears to be independent of the gas flux. In the next section we show
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Figure 4. Regime diagram illustrating the transitions between the long quasi-steady and short
oscillating bubbles as a function of the Froude number (x-axis) and the dimensionless gas
flux G (y-axis); it can been seen that no stable standing bubble develops for Frd < 0.38. Solid
symbols represent oscillating slugs while open symbols represent steady slugs; triangles, stars,
squares and circles represent Froude numbers Frd = 0.38, 0.44, 0.52 and 0.60.

some numerical solutions from steady potential theory which replicate the shape of
both the time-averaged quasi-steady long bubbles (figure 2b) and the near-nose part
of the shorter oscillatory bubbles (figure 3a).

We have built a regime diagram, based on our observations that the stability
of the long standing bubbles varies as a function of the liquid flux, Qw , and
the gas flux, Qg . This is shown figure 4, which illustrates the flow regime as a
function of (a) the upstream Froude number, Frd = U/

√
gd , which is equivalent to

the dimensionless liquid flux, Qw/(A
√

gd ), since Qw = AU , and (b) the dimensionless
gas flux, G =Qg/(A

√
gd ), where A is the cross-sectional area of the cell. It is seen

that for liquid Froude numbers smaller than the critical value Frd =0.38 the standing
slugs are unstable, and for Frd < 0.3 no standing bubble appears. Instead, for the
experimental conditions examined herein, the air either rises from the injection point
or is swept downstream in small bubbles. For larger liquid Froude numbers, Frd > 0.38
the figure shows that as the gas flux decreases there is a transition from the long
steady to the short oscillatory bubbles as described above.

The flow associated with the oscillatory bubbles is somewhat analogous to
observations of vortex shedding from fixed and oscillating obstacles in a confined
channel (Roshko 1954; Deniz & Staubl 1997; Carberry, Sheridan & Rockwell 2005).
There is a wide literature of such experiments conducted at Reynolds numbers
comparable to those in the present experiments, and it has been observed that the
frequency of vortex shedding, f, when expressed in dimensionless form St = f a/U ,
where U is the mean speed and a the width of the obstacle, has value of order 0.1–0.3.
Also, St has been observed to increase as the ratio of width of the obstacle a to
the width of the channel, d, increases (Richter & Naudascher 1976) and Hiwada &
Mabuchi (1981) found that with a sufficiently wide obstacle relative to channel width,
a/d > 0.6, the vortex shedding ceased. Our experiments show similar features to
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these experimental observations. For example, for the bubble shown in figure 3, the
frequency of oscillation is 3.3 Hz corresponding to St ∼ 0.3. Also, for our experiments,
the transition from the oscillating bubble to the longer steady bubble occurs when
the bubble width reaches a fraction of order 0.5–0.6 of the width of the pipe.

Some insight into the transition from the oscillatory bubble regime to the long
steady bubble regime emerges from the observation that for small gas fluxes, the
periodic shedding of discrete bubbles and their transport in the wake (figure 3b)
carries all the gas injected into the flow downstream. If u is the downstream flow
speed in the wake, and ub is the average rise speed of these discrete bubbles relative
to the liquid, then the flux may also be written as φdw(u − ub) where φ is the void
fraction of bubbles in the wake, and dw is the cross-sectional area of the experimental
flow pipe. Therefore, as the gas flux increases, the void fraction φ also increases.
Eventually, with sufficient gas flux, this leads to bubble mergers and a further increase
in void fraction in the wake as the rise speed of the merged bubbles increases.

As a result, the wake is unable to transport the gas downstream, and the main
bubble becomes progressively longer until reaching a new quasi-steady shape. A very
fast liquid flow then develops on each side of the bubble and this removes a large flux
of small bubbles from the downstream edge of the main bubble, leading to a different
mechanism for the gas transport. This phenomenological picture of the transition
from oscillatory to steady bubbles, based on the ability of the wake to transport the
gas as discrete bubbles, is also consistent with experimental data which show that the
maximum gas flux for which the oscillatory bubbles form, increases with the liquid
flow rate.

We find that the length of the steady bubbles increases with gas flux, but decreases
with liquid flux (figure 5). This observation may be rationalized by noting that, with
the long standing bubble, the erosion of small bubbles from the downstream outer
edge of the bubble supplies the gas flux, which is carried by the jet-like flow of liquid
near the wall, downstream of the bubble. As the bubble length increases, the near-wall
liquid flow speed also increases (see § 3); in turn, with a higher liquid flow speed, the
near-wall jet is able to erode a greater flux of small bubbles from the downstream
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edge of the bubble. Hence a larger gas flux or smaller liquid flux will tend to increase
the bubble length.

As the upstream Froude number decreases below 0.38, the bubble becomes
progressively more unstable and undergoes a series of large-amplitude fluctuations
in shape and position as it attempts to rise from the point source, and is then
swept downwards by the flow. With Frd < 0.3 air bubbles were observed to rise
immediately from the injection point through the descending liquid stream. It is
interesting to note that the results of Clanet et al. (2004) for the rise speed of a
free bubble in a rectangular pipe may, in the present case, be expressed as Frd = 0.3
which is consistent with these observations. It is relevant to note that our experiments
have been limited to a cell of width 15 cm (figure 1), and we have not studied the
behaviour of the injected gas stream in a cell of much larger width, for which the
Froude number may fall below 0.2 and different flow regimes may exist.

3. Potential theory description of steady bubbles
In the limit that the pressure variation in the bubble is small relative to that of the

liquid, its average shape can be approximated by applying two-dimensional potential
theory to model the liquid flow past a surface of constant pressure with zero surface
tension. We have developed a finite element numerical model to solve the potential
flow in the liquid zone using the Galerkin method as described in Rao (1999). We
assume an initial arbitrary shape for the bubble, using a polyline, and then solve for
the flow around it considering it as a rigid surface. We then examine the variation of
the pressure along the surface of the bubble, and adjust the location of the surface
iteratively, in an attempt to generate a surface of uniform pressure. We compare the
shape of the calculated bubbles when the pressure fluctuations along the surface of
the bubble are smaller than different thresholds to calculate the steady-state shape
of the bubble. These numerical solutions suggest that the bubble asymptotes to a
cusp-like shape at the nose, and the angle subtended by this cusp with the vertical
decreases with the Froude number (e.g. figures 6, 7). The angle is determined by
fitting each side of the bubble with a polynomial, and calculating the gradient at the
nose; we checked convergence of the numerical solutions by changing the size of the
numerical mesh for a given Froude number, and ensuring this angle was invariant.
We note that in practice, we expect that at the nose there will be a region of high
curvature (of dimension 10−3–10−4 m in our experiments), in which the surface tension
balances the inertia. This region connects each side of the bubble, so that strictly
there is no cusp, although our numerical calculations do not include surface tension
and so cannot resolve this.

Figure 6 compares the shapes of the bubbles which we have generated numerically
with the shapes of the experimental bubbles for three different flow rates. It is
seen that the numerical solutions are in very close agreement with the experimental
observations in terms of the shape of the bubble. In figure 7, we show the angle of
the apparent cusp at the nose of the experimental bubbles, as estimated by a curve
fit through the averaged bubble shape, and this is compared with the predictions of
the numerics. As for the bubble shape, there is very good agreement between the
numerical solutions and the experimental observations.

Our numerical solutions also coincide with the theoretical bubble shapes published
by Vanden-Broeck (1984a), up to the resolution of the thickness of the lines in his
figure; however, the cusp of zero angle which he predicts theoretically is unphysical
owing to the finite surface tension. In a later paper (Vanden-Broeck 1984b) he shows
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line represents the prediction from slender jet theory (4).
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Figure 7. Angle which the flow subtends at the nose of the bubble as a function of the Froude
number, as determined from the numerical solution (solid line) and the experiments (symbols).

that with finite surface tension the angle of the cusp varies with Froude number,
and, although noting that the cusp is unphysical, in a further paper (Vanden-Broeck
1984c) he shows that if there is a thin smooth plate present at the nose, then the
flow on each side of the plate subtends a finite angle with the plate. This is consistent
with the present picture, except that here it seems to be the bubble itself which has
a narrow region of high curvature at the nose connecting each side of the bubble.
The agreement between our numerical bubble shapes and Vanden-Broeck’s (1984a)
predictions away from the immediate vicinity of the nose, in the limit of high Weber
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number, suggests that the detail of the flow at the nose does not control the shape
far downstream, beyond the region in which surface tension is important.

In figure 6, for completeness, we also compare the numerical bubble shape with
the prediction from the slender jet model (Keller & Geer 1973). This model assumes
that the liquid flow is parallel to the walls of the tube, and combining this with the
constant pressure of the bubble and Bernoulli’s principle, leads to the prediction (cf.
Vanden-Broeck 1984a)

y =
dFr2

d

2

(
1

(1 − 2|x|/d)2
− 1

)
(4)

where y is the distance downstream, such that y =0 when x = 0 (figure 2b). It is seen
that, although the slender jet model is unable to describe the shape near the nose
of the bubble, it does provide a good representation of the bubble shape further
downstream, at distances greater than the width d of the channel.

The potential flow model does not account for the presence of the point air source,
or the particular flux of gas. The shape of the slug is determined by the condition
of constant pressure along the surface of the bubble. This is consistent with the
experimental observation that the shape of the slug is independent of the gas flow
rate. The length of the slug, on the contrary, is dependent on the gas flux: indeed,
as the gas flux increases, the bubble length at the tail of the bubble also increases
(figure 5).

4. Discussion
In this work we have described a series of new standing bubbles which can appear

in a vertical pipe when air is added to a downward flux of water from the side of the
pipe. We have shown that the dynamics of such bubbles is well described by classical
potential flow theory. Also, as the gas flux supplied to the bubble decreases, the
bubble becomes unstable and generates an oscillatory wake which carries a discrete
flux of bubbles downstream, in a somewhat analogous fashion to the wake behind an
obstruction in a confined channel.

Observation of these standing bubbles in a pipe with a downward liquid flow is of
considerable interest for a number of reasons. First, from a theoretical perspective,
these standing bubbles develop for a range of Froude numbers which are distinct
from the case of a freely rising bubble. Second, the formation of a standing bubble
leads to the shedding of a series of very small bubbles from its tail into the continuing
flow; this may have importance for the formation of emulsions in two-phase flows
within a pipeline. Thirdly, if the flow in the producing zone of a well encounters such
standing slugs, the continuing flow past the slug will experience a substantial pressure
loss and an intense zone of dissipation develops.

For the flow regimes analysed herein, the main cause of dissipation is the sudden
expansion across the tail of the bubble. In this regard, we can use the momentum
integral to estimate this decrease in pressure. If the area suddenly increases from A1

to A2 then the pressure jump as the flow expands is given by

�p = ρu2
2

(
A2

A1

− 1

)
(5)

where subscripts 1 and 2 denote the properties upstream and downstream of the tail
of the bubble.
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In the present case, the liquid speed downstream of the bubble has value of order
1 m s−1, and the width of the liquid stream in the tail of the bubble, just above the
point of breakup, is about 0.01 m. We therefore deduce that the pressure drop across
the tail of the standing slug is of order 104 Pa. This is a significant pressure loss for
the flow in comparison to the frictional pressure losses from the walls of the system.
For example, with a drag coefficient of 0.01 on the walls of the system, and a length
scale 0.1 m for the pipe diameter, the pressure loss per unit length of a pipe with a
flow of speed 1m s−1 is about 50 Pa m−1, so that the pressure loss in the expansion at
the tail of the slug corresponds to the frictional losses along about 200 m of a pipe.

In closing, we note that there are many features of these bubbles for which it would
be interesting to develop quantitative models. First, it would be valuable to study the
relationship between the entrainment of gas from the tail of the standing bubbles and
the liquid flow speed, since this might provide a key input to determine the length
scale of the standing bubble; secondly, it would be interesting to explore the waves
on the bubble surface, whose wavelength appears to increase with distance from the
nozzle.
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