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abstract: Emerging infectious diseases (EIDs), particularly zoono-
ses, represent a significant threat to global health. Emergence is often
driven by anthropogenic activity (e.g., travel, land use change). Al-
though disease emergence frameworks suggest multiple steps from
initial zoonotic transmission to human-to-human spread, there have
been few attempts to empirically model specific steps. We create a
process-based framework to separate out components of individual
emergence steps. We focus on early emergence and expand the first
step, zoonotic transmission, into processes of generation of pathogen
richness, transmission opportunity, and establishment, each with its
own hypothesized drivers. Using this structure, we build a spatial em-
pirical model of these drivers, taking bat viruses shared with humans
as a case study. We show that drivers of both viral richness (host di-
versity and climatic variability) and transmission opportunity (hu-
man population density, bushmeat hunting, and livestock produc-
tion) are associated with virus sharing between humans and bats. We
also show spatial heterogeneity between the global patterns of these
two processes, suggesting that high-priority locations for pathogen dis-
covery and surveillance in wildlife may not necessarily coincide with
those for public health intervention. Finally, we offer direction for fu-
ture studies of zoonotic EIDs by highlighting the importance of the
processes underlying their emergence.

Keywords: emerging infectious diseases, zoonoses, hotspots, land use,
viral richness, bats.

Introduction

Human emerging infectious diseases (hereafter, EIDs) are
a global health priority (Morse et al. 2012). Though “emerg-
ing” is poorly defined in the literature (Funk et al. 2013), it
is usually considered to involve a pathogen recently moving
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into humans for the first time, increasing in incidence and/
or geographic range, or exhibiting higher pathogenicity in
humans (Morse 1995; Taylor et al. 2001). Approximately
60%–75% of reported human EIDs (Taylor et al. 2001; Wool-
house and Gowtage-Sequeria 2005; Jones et al. 2008) are
zoonotic; therefore, a focus on the human-animal epidemi-
ological interface is essential to understanding the emer-
gence of the majority of EIDs.
Disease emergence depends on a series of drivers, which

include socioeconomic and environmental changes (Smo-
linski et al. 2003; Karesh et al. 2012). Although a wide range
of drivers have been traditionally proposed, these have only
recently been considered from the perspective of disease
emergence as a series of steps from initial zoonotic trans-
mission to human-to-human spread. Several stepwise frame-
works for EIDs have been proposed (Wolfe et al. 2007;
Morse et al. 2012), with some distinguishing between pre-
dicted ecological drivers of each step (Lloyd-Smith et al.
2009; Mollentze et al. 2014). As well as varying between
processes, emergence drivers also vary spatially as they of-
ten involve landscape-level changes. Therefore, environment
and biogeography represent a significant determinant of EID
risk (Patz et al. 2004). To better understand the ecological
drivers and global patterns of emerging zoonoses, we build
on these approaches as well as models of driver interactions
(Plowright et al. 2008; Wood et al. 2012) to create a process-
based stepwise framework (fig. 1). We then use our frame-
work to inform an empirical spatial model of drivers of early-
stage disease emergence.
Emerging zoonoses begin when pathogens in a natural

host (fig. 1A, step 1) spill over (i.e., transmit to a novel
host) into human individuals (fig. 1A, step 2). This cross-
species transmission is dependent on physical opportunity,
for example, occupation of the same environment or fre-
41.061.070 on January 05, 2016 02:38:15 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://core.ac.uk/display/29416431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


E000 The American Naturalist
quency of direct or indirect contact (Pulliam 2008; Peder-
sen and Davies 2009; fig. 1B). Both successful cross-species
transmission and transmission between individuals of the
new host species (fig. 1A, steps 2 and 3) are dependent on
how phylogenetically related the novel and natural host are
(Wolfe et al. 2000; Streicker et al. 2010; Cooper et al.
2012), as immunological and molecular environments (e.g.,
cell receptors) are more similar between closely related hosts
(Morse et al. 2012). Propagation between individuals of a
new host species can exhibit complex epidemiological dy-
namics with variable outcomes, for example, cyclic increases
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and decreases but also endemicity or extinction (Anderson
et al. 1986). Given the definitions outlined earlier, a zoonotic
pathogen may be reported as emerging or reemerging at any
point (fig. 1A, step 4), subject to surveillance capacity and
disease characteristics.
Few studies to date have attempted to empirically model

specific steps, and those existing models tend to focus to-
ward the later stages. For example, the phylogenetic deter-
minant of reaching step 3 (fig. 1A) has been modeled across
a number of taxonomic groups (Pedersen and Davies 2009;
Streicker et al. 2010; Cooper et al. 2012), and for zoonoses,
A B

Figure 1: Process-based framework of zoonotic pathogen emergence for the whole pathway (A) and between steps 1 and 2 (B), expanded
with necessary processes for spillover, labeled i, ii, and iii. Processes are verbally described to avoid conflicting terminology; for example,
“opportunity for transmission” has been differentially referred to as “contact” in emerging disease literature and “exposure” in host-parasite
literature. Drivers are listed next to the arrows between steps.
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step 4 (fig. 1A) has been spatially modeled in the form of
reported emergence events (Jones et al. 2008). Here, we focus
on empirically modeling the drivers of cross-species trans-
mission, or spillover (fig. 1, transition from steps 1 to 2),
an area where current epidemiological models are noted
to be deficient (Lloyd-Smith et al. 2009). In addition to em-
pirical modeling, addressing the spatial ecology surround-
ing drivers has been urgently advised (Patz et al. 2004). Char-
acterizing spatial variation in zoonosis risk and its causes
would offer valuable predictions of potential future disease
emergence locations (Morse et al. 2012) and insights into
biogeographic mechanisms of human-wildlife interaction.
Therefore, we conduct our empirical model in a spatial con-
text to identify priority high-risk regions (termed hotspots)
and to further understand the determinants of these patterns.

As a study system, we model zoonotic viruses from bats
(order: Chiroptera), hereafter, defined as viruses shared be-
tween bats and humans. Bats make an excellent group for
studying global anthropogenic drivers, as most known bat-
origin zoonoses have emerged recently compared to other
zoonotic hosts, which likely reflects increasing intensifica-
tion of human activity and subsequent bat-human inter-
actions and/or increasing surveillance (Halpin et al. 2007;
Plowright et al. 2011; Pulliam et al. 2012). In restricting our
focus to one host group, we minimize variation between host
species in their phylogenetic distance from humans. We fo-
cus on viruses, as bats are known to host a large number of
viruses spanning 15 viral families (Calisher et al. 2006; Olival
et al. 2012; Luis et al. 2013) and are the suspected natural
hosts of several high-impact human viruses (Chua et al. 2003;
Li et al. 2005; Leroy et al. 2009; Memish et al. 2013). Although
comparative analyses of bat viral richness and sharing with
humans have been carried out (Turmelle and Olival 2009;
Luis et al. 2013), we are not aware of any comparative anal-
yses that examine ecological drivers of such patterns in a
spatial framework.

To investigate drivers of zoonotic bat viruses with re-
spect to the emergence pathway, we expand the transition
between steps 1 and 2 and designate three necessary gen-
eralized processes: (i) generation of pathogen richness (here-
after, viral richness), (ii) opportunity for transmission, and
(iii) establishment within an individual (fig. 1B). Based on a
literature review of ecological dynamics of disease emer-
gence, we identify spatial drivers of each process and pre-
sent those most often hypothesized or cited as appropriate
for bat pathogens (fig. 1B). Subsequently, we use this expan-
sion to shape our choice of predictor variables in spatially
modeling associations between drivers and virus sharing
between bats and humans. As there is insufficient spatially
formatted data to model specific drivers of process (iii) for
bat viruses, we focus on the first two processes. Greater viral
richness is anticipated to increase risk of a successful zoo-
notic transmission event (Wolfe et al. 2000). Viral richness
This content downloaded from 128.0
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is influenced by a range of factors, including evolutionary
dynamics, diversity of potential hosts, and host-parasite in-
teractions (fig. 1B). For example, global viral richness pat-
terns vary with wildlife host richness (Jones et al. 2008;
Dunn et al. 2010) and greater seasonal variability in tem-
perature and precipitation (Guernier et al. 2004), a proxy
for niche diversity or environmentally dependent transmis-
sion routes. Viral richness of individual bat species is also
strongly associated with richness of sympatric bat species
(Luis et al. 2013). We therefore hypothesize that bat spe-
cies richness and climatic variability will correlate with viral
cross-species transmission to humans.
Opportunity for transmission between natural and po-

tential hosts will also increase cross-species transmission
risk. For example, human population density is a strong pre-
dictor of zoonotic disease emergence globally (Jones et al.
2008), as high density may represent greater human-wildlife
contact opportunities through population size alone or as a
proxy for various forms of human activity, for example, ur-
ban expansion. Other human-environment interactions have
also been suggested as drivers, for example, periurban and
agricultural land use change has been linked to the emer-
gence of Hendra and Nipah viruses from bats through do-
mestic animals (Plowright et al. 2011; Daszak et al. 2012;
Pulliam et al. 2012). Bats are also widely consumed as bush-
meat in regions where human populations are expanding,
which is a known risk factor for bat-borne zoonoses in Cen-
tral and West Africa (Leroy et al. 2009; Kamins et al. 2011)
and throughout Asia (Li et al. 2005; Mickleburgh et al. 2009).
For bat-borne zoonoses, we therefore hypothesize oppor-
tunities for transmission will increase with human popu-
lation density and in regions where anthropogenic land use
change and bushmeat activity bring humans into contact
with bats.
Using host-virus association data for bats and humans,

we create proxy spatial distributions for human-shared bat
viruses. We then use spatial regression to show that this
virus sharing is positively associated with drivers of both
viral richness (greater diversity of bat hosts and climatic
variability) and opportunity for transmission (greater hu-
man population density, livestock production, and bush-
meat hunting) and that the global risk patterns from these
drivers differ between processes.
Material and Methods

Human-Shared Bat Virus Data Set

Data on viral infections of bats were collected from the lit-
erature from sources published between 1900 and 2010.
Sources were identified systematically using the search term
“bat*” combined with different pathogen terms including
“parasite,” “pathogen,” “virus,” and “viral” in several jour-
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nal indexes (ISI Web of Science, BIOSIS, Google, Google
Scholar) and via recursive follow-up tracing of the literature
cited by each source. Data from experimental infections and
serological diagnoses were excluded as serological cross-
reactivity can lead to virus misidentification. Data was also
supplemented using entries from a recently published data
set of bat virus sequences (Chen et al. 2014). Bat species
synonyms were standardized using the taxonomy of Wil-
son and Reeder (2005); we merged synonyms and excluded
any species without a matching reference. Virus names were
standardized in the same way using the International Com-
mittee on Taxonomy of Viruses 9th Report (King et al.
2011). No assumptions were made on transmission method,
directionality, or whether bat species maintained infection
as a natural reservoir. We then calculated the number of vi-
ruses shared with humans, defined as the virus being re-
corded as human infective in either the UniProt virus tax-
onomy database (Apweiler et al. 2004) or a recent catalog
of human RNA viruses (Woolhouse et al. 2013). Using this
definition, our data also includes viruses in later propagation
(fig. 1A, steps 3 and 4), though we assume later steps cannot
be reached without having transitioned through step 1 to
step 2 (fig. 1B) and therefore assume all viruses in our data
set have followed this process. These data spanned 33 zoo-
notic viruses from 14 genera and nine families and 148 bat
species from 453 literature sources (table S1; tables S1, B1
available online).

We created proxy geographic ranges for each virus by
fusing together the range maps of all known bat host spe-
cies (Fritz and Purvis 2010), assuming viruses were pres-
ent throughout the entire range of their bat hosts as an
upper-bound estimate. However, we expect this assumption
to be reasonable mathematically, as previous parasite distri-
bution models have shown robustness to this approxima-
tion (Harris and Dunn 2010; Cooper et al. 2012), and biolog-
ically, as many bat species are theoretically less restricted in
range and movement than terrestrial species, giving potential
for population mixing and virus transmission (Epstein et al.
2009). Projected shapefiles for each proxy virus range are
available in the Dryad Digital Repository: http://dx.doi.org
/10.5061/dryad.ds2nj (Brierley et al. 2016). Spatial grids were
overlaid, and presence/absence was calculated to give total
human-shared viruses of each cell. We used a one-decimal-
degree resolution as most of our global predictor variables
were at this native resolution (unless stated otherwise) and
downscaling would not have improved the accuracy of our
models. Shared virus counts were square-root transformed
to normalize prior to regression modeling.
Driver Data Sets

We assembled spatially explicit sets of data on different
drivers of viral richness and opportunity for transmission
This content downloaded from 128.0
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(fig. 1B, i and ii). These were as follows: (1) mean monthly
temperature range (7C); (2) annual temperature range (max.
temperature of warmest month 2 min. temperature of cold-
est month; 7C); (3) annual rainfall range (max. rainfall of
wettest month 2 min. rainfall of driest month; mm); (4) bat
species richness, created by calculating presence/absence
grids from range maps of 1,079 bat species (Fritz and Pur-
vis 2010); (5) human population density (persons/km2) in
2005 from Gridded Population of the World, version 3 (Balk
and Yetman 2005); counts of (6) buffalo, (7) cattle, (8) goats,
(9) poultry, (10) sheep, and (11) pigs from the Food and
Agriculture Organization’s Gridded Livestock of the World,
2007 (Wint and Robinson 2007); (12) cropland/pasture cover,
calculated by summing the proportion of land used per grid
cell for cropland and pasture in 2000, obtained from Ra-
mankutty (2010); and (13) bat bushmeat activity, specified
as 1 or 0 for countries where significant hunting and con-
sumption of bats occurs or does not occur, respectively, fol-
lowing Mickleburgh et al. (2009). Data on (1)–(3) were ob-
tained from the BIOCLIM 1950–2000 data set (Hijmans et al.
2005) and resampled up from 100 to 17 resolution using bi-
linear interpolation in ArcGIS v9.2 (ESRI 2006). Data on
(6)–(11) were resampled from 1-km cells to 17 resolution by
overlaying a grid and recalculating using zonal statistics in
ArcMap v9.2 (ESRI 2006). Bushmeat data was converted to
grid-cell format by matching grid cells to countries as de-
fined by Sandvik (2008).
Reporting effort for infectious diseases is likely to corre-

late with health-care quality and availability for humans
(Jones et al. 2008; Chan et al. 2010) and surveillance re-
sources for wildlife (Hopkins and Nunn 2007). As unequal
reporting effort could introduce bias into our models, we
controlled for this by including the following additional
variables: (14) total number of authors per country from
the Journal of Infectious Diseases from 1973 onward, follow-
ing methods from Jones et al. (2008); (15) total number of
authors per country from bat research papers from 1973
onward; and (16) country-level gross domestic product
(GDP) per capita from 2000, inUS dollars (based on 2005 ex-
change rates) from the World Bank Development Indicators
data set (World Bank Group 2010). Bat research papers were
obtained by searching Web of Science v5.0 for the binomial
names of the 148 bat species in this study and their synonyms
(Wilson and Reeder 2005). Data on (14)–(16) were con-
verted to grid-cell format by matching grid cells to countries
as before.
To detect any redundancy among driver variables, cor-

relations between them were examined. Based on the cor-
relation matrix (fig. A1, available online), annual temper-
ature range (2); counts of buffalo, cattle, goats, and poultry
(6–9); and total number of authors per country from the
Journal of Infectious Diseases (14) were excluded. All re-
maining continuous variables were log transformed before
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modeling to normalize, except mean monthly temperature
range (1), which showed approximate normality under a
quantile-quantile plot, and proportion cropland/pasture
cover (12), which was arcsine transformed. Transforma-
tions did not introduce further variable redundancy. Ap-
proximately 40% of terrestrial grid cells had no viruses or
were missing covariate data and were thus excluded, leaving
10,124 cells.
Model Construction

Our gridded human-shared bat viruses showed strong spa-
tial autocorrelation (Moran’s Ip 0.893, Pp .001, 999 sim-
ulations). To account for this, we constructed a spatially ex-
plicit linear model using a conditional autoregressive (CAR)
specification. The CAR specification corrects for both auto-
correlation in response and explanatory variables by weight-
ing expected values of outcome variables toward those of
neighboring cells and weighting model coefficients based
on residual fits of neighbors (Besag 1974; Dormann et al.
2007). The distance within which cells were considered neigh-
bors was set to 645 km to ensure no cells had zero neighbors.
Stepwise removal of terms that did not significantly improve
model fit was then carried out using likelihood ratio tests.
Data manipulation and modeling were conducted in R 3.1.1
(R Development Core Team 2011), and spatial regression
models were carried out using the package spdep, version
0.5-77 (Bivand and Piras 2015), and scripts modified from
Dormann et al. (2007).
Results

Patterns of Bat-Human Virus Sharing

All 33 human-shared bat viruses within our data set were
RNA viruses, the most common genera being Flavivirus
(np 8) and Lyssavirus (np 7; table S1). The most geo-
graphically widespread viruses were European bat lyssavi-
ruses 1 and 2 (Rhabdoviridae: Lyssavirus), found in 16 and
8 bat species covering 6,818 and 6,295 grid cells, respectively,
and St. Louis encephalitis virus and Japanese encephalitis
virus (Flaviviridae: Flavivirus), found in 3 and 12 bat species
across 5,688 and 5,553 cells, respectively (table S1). Our
proxy distributions showed hotspots of virus sharing pri-
marily in sub-Saharan Africa, as well as in South and East
Asia, Southern Europe, and Central America (fig. 2A). The
mean number of shared viruses per cell was 6.57, and the
maximum of 16 viruses per cell was found across West Af-
rica and localized parts of East Africa (fig. 2A). Both family-
level diversity and number of species of shared viruses was
highest in the Eastern Mediterranean World Health Orga-
nization region and lowest in the Americas (fig. 2A, 2B).
Families were mostly well represented globally, though proxy
This content downloaded from 128.0
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potential ranges of Filoviridae shared with humans were re-
stricted to Eurasia and Africa (fig. 2B).
Drivers of Bat-Human Virus Sharing

Correcting for study and reporting biases, the final model
of virus sharing contained both drivers of viral richness and
opportunity for transmission (table 1). Monthly temperature
range, sheep stocks, and agricultural land cover (cropland/
pasture) did not significantly improve model fit and were
excluded from the final model (table B1). The fitted spatial
coefficient, l, suggested a high degree of autocorrelation in
both virus sharing and model covariates (lp 0.981). Cor-
relation between fitted model values and observed values
was high (rp 0.954) and, when decomposed, showed a rel-
atively high contribution to model fit from spatial autocor-
relation (rp 0.728) compared to contribution from model
covariates (rp 0.763). For drivers of viral richness, areas
with higher bat species richness and annual rainfall ranges
had more bat-human shared viruses (table 1). Drivers of op-
portunity for transmission were marginally less influential
than drivers of viral richness (table 1), though greater bat-
human virus sharing was associated with higher human pop-
ulation densities, bushmeat hunting and consumption, and
higher pig stocks. Bias corrections of country-level bat pub-
lications and GDP per capita both exhibited an unexpected
negative relationship with bat-human virus sharing.
Spatially mapped values from the final CAR model

showed differences in hotspots when comparing the over-
all final model and drivers of viral richness and drivers of
opportunity for contact separately (fig. 3A–3C). Consider-
ing drivers of viral richness alone, risk of bat-human virus
sharing showed prominent hotspots in Central/South Amer-
ica, sub-Saharan Africa, and parts of Southeast Asia (fig. 3B),
whereas risk associated with drivers of opportunity for trans-
mission was primarily concentrated in South and East Asia
(fig. 3C). For both overall and separately plotted drivers, the
Tropics tended to show greater bat-human virus sharing
than temperate zones, though in some cases Eurasia pre-
sented a relatively high risk (fig. 3A, 3C).
Discussion

Patterns of Bat-Human Virus Sharing

Our proxy ranges showed virus-sharing hotspots in sub-
Saharan Africa and Southeast Asia, areas from which bat-
origin zoonotic viruses have recently emerged, for example,
several filoviruses in Africa (Towner et al. 2007; Leroy et al.
2009) and Nipah virus and SARS coronavirus in South-
east Asia (Chua et al. 2003; Guan et al. 2003). Notably, the
highest-risk hotspot identified inWest Africa has recently ex-
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perienced the largest-scale outbreak of Ebola virus disease
yet seen, occurring outside the previously proposed endemic
range (Bausch and Schwarz 2014), and the African hotspot
patterns we show also coincide with recent predictive maps
for the ecological niche of zoonotic ebolavirus transmission
(Pigott et al. 2014). Our proxy filovirus ranges also covered
parts of Eurasia (fig. 2B), though zoonotic filovirus trans-
mission has not been reported within this region to date.
However, Lloviu virus, a novel filovirus with unknown zoo-
notic potential, has recently been discovered in Southern Eu-
ropean bats (Negredo et al. 2011). Our patterns also broadly
parallel previously modeled hotspots of disease emergence
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in humans (Jones et al. 2008) and pathogen sharing between
humans and primates (Pedersen and Davies 2009).
Drivers of Bat-Human Virus Sharing

Both drivers influencing viral richness and drivers influ-
encing opportunity for transmission were significantly as-
sociated with bat-human virus sharing. Bat species rich-
ness may correlate with viral richness through host-virus
codivergence. Although not yet systematically demonstrated,
codivergence has been hypothesized to explain phylogeo-
Bunyaviridae

Flaviviridae

Orthomyxoviridae

Paramyxoviridae

Reoviridae

Rhabdoviridae

Togaviridae

Coronaviridae

Filoviridae

A

B

Figure 2: Distributions of bat-human virus sharing showing numbers of bat-human shared viruses at 17 grid resolution (A)—color repre-
sents a linear scale from 1 (green) to 16 (red)—and composition of viruses by family within the six World Health Organization World Re-
gions (B), where the size of the charts is proportional to the number of viruses. Shading denotes region (from lightest to darkest: Europe,
South Asia, Africa, Americas, Eastern Mediterranean, Western Pacific), while colors denote viral family (see key).
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graphic bat virus patterns in multiple viral families (Halpin
et al. 2007). Additionally, bat species richness likely cap-
tures variation from cross-species transmission between bats,
as range overlap with heterospecific bat species is a partic-
ularly strong predictor of zoonotic viral richness (Luis et al.
2013). Wider mammal species richness is also known to
predict zoonotic emergence risk across all pathogen types
(Jones et al. 2008). We also found greater climatic ranges
(in the form of rainfall) to correlate with an area’s number
of shared viruses. Climatic variability has been shown to pre-
dict latitudinal gradients in viral diversity in humans (Guer-
nier et al. 2004) and may facilitate greater virus (as well as
bat and alternative host) speciation through habitat diver-
sity or seasonality, providing niche diversity.

Anthropogenic drivers of opportunity for transmission
(human population density, pig stocks, bat bushmeat ac-
tivity) also predicted bat-human virus sharing. As well as
simply facilitating invasion and persistence of infection,
increasing human population densities can also introduce
mechanistic transmission routes; for example, urbanization
creates habitats for peridomestic bat species, bringing them
into closer proximity to humans (Plowright et al. 2011). Hu-
man density is also the strongest anthropogenic predictor
of reported zoonotic emergence events (fig. 1, stage 4; Jones
et al. 2008), suggesting some drivers may influence both early
and late steps in the emergence pathway. Though pig stocks
were associated with virus sharing, sheep stocks were not
present in the final model, which could indicate specificity
in how these livestock systems ecologically interact with
wild hosts—for example, Nipah virus emergence has been
specifically traced to shared feeding on fruits between bats
and pigs (Chua et al. 2003). Pig stocks also showed mod-
erate covariance with human density and other livestock
types (fig. A1) and may have alternatively acted as a proxy
for certain agricultural or nonagricultural human activities,
though we report no association between agricultural land
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use and virus sharing. Domestic hosts are frequently im-
plicated in zoonotic spillover (Daszak et al. 2000), partic-
ularly for certain bat-borne viruses, for example, henipa-
viruses (Plowright et al. 2011; Pulliam et al. 2012), and may
involve amplification of viral load or particles per trans-
mission. Global data was not available for other domestic
animals of interest, for example, dromedary camels, known
hosts of zoonotic MERS coronavirus (Reusken et al. 2013).
However, sheep and pigs appeared representative for com-
mon livestock groups (fig. A1). Although bat bushmeat hunt-
ing was globally associated with virus sharing, this should
be interpreted cautiously, as the majority of bat consump-
tion occurs in the Paleotropics (Mickleburgh et al. 2009).
Bat exploitation still represents a critical priority in these
areas as the most likely emergence route of certain zoono-
ses, for example, SARS coronavirus (Li et al. 2005).
Contrary to expectation, our study bias measure and

GDP per capita negatively predicted virus sharing. Author-
ship may not reflect areas where study or sampling was car-
ried out, and higher socioeconomic status may have pre-
dominantly represented prevention and control efforts of
zoonoses rather than reporting (Dunn et al. 2010). Report-
ing disparities may be reduced as surveillance improves
within developing regions (Chan et al. 2010). If the direc-
tion of this effect is genuine, however, it would indicate a
concerning mismatch between high-risk areas and well-
studied areas, a pattern visible for primate zoonoses (Hop-
kins and Nunn 2007; Pedersen and Davies 2009).
More generally, this work establishes empirical support

that anthropogenic activity and demography is associated
with early-stage cross-species pathogen transmission. Al-
though this has long been advocated through case studies
of emerging diseases (Patz et al. 2004), few studies have
quantified the relative impact of such drivers comparatively
across multiple pathogens (Jones et al. 2008). Our models
stress that, beyond basic spatial gradients of pathogen and
Table 1: Drivers of bat-human virus sharing within the final spatial conditional autoregressive model, separated by their associated
type of process
Covariate
 Driver type
41.061.070
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Z statistic
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Coefficient
(intercept)
 . . .
 23.81
 1.66 (1.51, 1.82)**
log(Annual rainfall range)
 Richness
 7.55
 .0529 (.0375, .0683)**
log(Bat species richness)
 Richness
 53.18
 .348 (.334, .363)**
log(Human density)
 Transmission
 12.41
 .0180 (.0148, .0212)**
log(Pig stocks)
 Transmission
 4.48
 .00564 (.00287, .00841)**
Bushmeat activity
 Transmission
 4.06
 .0582 (.0266, .0897)**
log(Bat publication authors)
 Bias
 26.54
 2.0188 (2.0252, 2.0125)**
log(GDP per capita)
 Bias
 23.16
 2.0228 (2.0387, 2.0069)*
Note: “Richness” denotes drivers of viral richness. “Transmission” denotes drivers of opportunity for transmission. “Bias” denotes bias corrections. “Coef-
ficient” denotes model regression slope (95% confidence intervals in parentheses). GDP p gross domestic product.

* P ! .01.
** P ! .001.
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host diversity, anthropogenic activity is a significant deter-
minant of the global distribution of emerging diseases. This
supports the recent One Health perspective that human
health is inherently connected with wild environments, not
only through the high fraction of our pathogens that origi-
nate from wild zoonotic transmission but also through com-
plex, expanding human-environment interfaces that facili-
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tate opportunity for such transmission (Daszak et al. 2000;
Karesh et al. 2012).
Model Assumptions

Our empirical findings are based on several assumptions.
We modeled predictors of virus species known to infect
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Figure 3: Spatial patterns from the final conditional autoregressive model of bat-human shared viruses at 17 grid resolution for total
predicted values of bat-human shared viruses (A), combined effects of drivers of viral richness (richness; B), and combined effects of drivers
of opportunity for transmission (trans.; C). Note that B and C are effects from modeling the square-root-transformed number of shared
viruses, calculated mathematically, and not corrected for autocorrelation, so values have no direct interpretation. Color represents a linear
scale from lower (green) to higher (red) values. Color keys do not retain the same scale between plots in order to highlight geographic dif-
ferences in driver importance.
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both bats and humans, though currently available data pre-
cludes us from inferring whether zoonotic transmission
truly occurs. Bats and humans could acquire infection with
viruses within our data set independently from common
sources, such as environmental routes (e.g., rotavirus A), in-
sect vectors (e.g., yellow fever virus), or contact with other
mammals (e.g., Hantaan virus). Our host data was based
on evidence of infection, though species are unlikely to be
equally competent, with some potentially being incidental,
dead-end hosts that cannot maintain infection or act as a
reservoir at the population level. Reservoir status of hosts
often requires substantial investment to determine (Viana
et al. 2014), especially for bats, which are poorly sampled,
giving very incomplete coverage of current data (Anthony
et al. 2013). We model viruses at the species level, within
which there may be substantial differentiation into strains.
Strains may have distinct host ranges, and those known in
bats may not necessarily be those infecting humans. For ex-
ample, the influenza A virus H17 subtype has, to date, been
found only in bats (Tong et al. 2012). Constructing viral phy-
logenies could potentially help to uncover directionality of
bat-to-human transmission events, although sequence data
is again deficient formost bat viruses. Although these caveats
may overestimate zoonosis risk based on our host ranges, we
posit this bias will be largely independent of geography and
should not affect the comparative spatial hotspot patterns
we find.

Second, we assumed virus distributions followed the com-
bined entire distributions of their known bat hosts, equiv-
alent to mean-field population mixing, a reasonable ap-
proximation for hosts with less restricted movement and
dispersal (Webb et al. 2007). Current sampling records are
consistent with this assumption for certain viruses, for ex-
ample, henipaviruses (Rahman et al. 2010; Daszak et al.
2012); however, we acknowledge this will not hold true for
the highly structured populations of many bat species (Ros-
siter et al. 2000; Miller-Butterworth et al. 2003) and, con-
sequently, their viruses, which is likely to introduce uncer-
tainty within our empirical model. However, using complete
host ranges has been shown to be a good approximation com-
pared to more conservative range measures when calculat-
ing spatial parasite richness for terrestrial groups (primates:
Cooper et al. 2012; North American carnivores: Harris and
Dunn 2010). Improvements to both certainty of bats as
sources of viral zoonoses and their distribution will likely
be improved by systematic, georeferenced sampling efforts
in future.

As with any other macroecological analysis, our con-
clusions should also be interpreted in the face of poten-
tial model biases and restricted explanatory power. We ag-
gregated covariate data sets over different geographic scales
with different accuracy, as we selected the most accurate data
available with global coverage, which may be improved on.
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We were limited to country-level data on bushmeat hunt-
ing and GDP per capita; however, bat bushmeat hunting
and associated economic pressures can be highly localized
within countries (Kamins et al. 2011). Higher-resolution data
would be able to better predict patterns in virus-sharing risk
within countries and provide greater explanatory power.
Additionally, our model conclusions and separated spa-

tial hotspots assume that our drivers are truly representative
of the underlying processes (fig. 1) and may be subject to
confounding by unmeasured relationships. For example, hu-
man population density could represent a variety of factors
known to influence opportunity for transmission (e.g., travel
and connectivity; Wolfe et al. 2000) or other processes such
as generation of viral richness (e.g., urbanization-associated
bat population shifts; Plowright et al. 2011). The multitude
of determinants means that successful zoonotic transmis-
sion is ultimately a highly stochastic event, and our results
should be interpreted as broad ecological associations rather
than suggesting specific causal mechanisms. For further causal
inference or exploration of driver interactions, our concep-
tual framework may be expanded into a larger causal network
(Plowright et al. 2008), which can similarly act as a founda-
tion for empirical models for testing hypotheses surround-
ing disease emergence.
Wider Applications

Despite the limitations outlined, large-scale predictive mod-
els can offer useful inference in disease ecology in predict-
ing likely regions and routes of future cross-species trans-
mission (Morse et al. 2012). Our model could be extended
to identify or quantify populations at risk, as has been re-
cently conducted for ebolaviruses (Pigott et al. 2014). The
set of drivers our model highlights as influential could also
direct follow-up studies in a more localized or experimen-
tal setting, to better understand their dynamics (Plowright
et al. 2008).
Our approach is translatable to a range of systems. Fram-

ing spatial empirical models around conceptual frame-
works (fig. 1) could offer scope for understanding and pre-
dicting emergence of wildlife infections with anthropogenic
drivers (Daszak et al. 2000); for example, the amphibian
chytrid fungus, Batrachochytrium dendrobatidis, is thought
to be spread by global amphibian trade networks (Farrer
et al. 2011). Our framework also parallels biological inva-
sion models (Blackburn et al. 2011) by identifying the pro-
cesses involved in species moving from a natural to a novel
context. Stratifying empirical predictors according to the
processes they drive could be valuable for invasive species
management, where precision in targeting invasion path-
ways is critical (Hulme et al. 2008).
In separating drivers of viral richness from drivers of op-

portunity for transmission, our spatial model showed dis-
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parity between the hotspots for each (fig. 3), which could be
used to better target public health programs (Daszak et al.
2000; Daszak 2009; Morse et al. 2012). Interventions such
as bushmeat regulation and reducing bat-human or bat-
livestock contact (Halpin et al. 2007; Nahar et al. 2010) may
be particularly effective in hotspots of opportunity for trans-
mission (fig. 3C). However, surveillance may be best placed
in hotspots of viral richness (fig. 3B), and targeted surveil-
lance initiatives like the PREDICT program of the United
States Agency for International Development (USAID 2009;
Morse et al. 2012) and associated sequencing efforts (Anthony
et al. 2013) will provide more complete knowledge of the bat
virome, improving future empirical analyses and risk assess-
ments. Although traditionally neglected, attention toward
zoonoses from bats is growing. Bats are hypothesized to be
unique as viral hosts (Olival et al. 2012), and comparative
analysis has shown that bats host more zoonotic viruses
per species than rodents (Luis et al. 2013). Given the press-
ing associations between human drivers and virus sharing,
we assert that bats deserve substantial allocation of surveil-
lance and scientific resources.
Conclusion

We offer a process-based empirical approach to further
inference in studies of pathogen emergence by demonstrat-
ing the distinct underlying drivers of different processes and
their distinct spatial mechanisms. Our framework and model
unite ecology, epidemiology, and public health in line with
recent One Health perspectives. Global risk patterns linking
anthropogenic drivers and zoonotic viruses suggest that as
human populations continue to expand into pristine and
potentially virus-rich habitat, particularly in tropical hot-
spots, the threat of zoonoses will increase. Reducing oppor-
tunities for transmission, including reducing hunting pres-
sure and disturbance of bat populations, can both mitigate
zoonosis risk and provide a strong impetus for conservation
programs that specifically reduce anthropogenic activity in
regions of high biodiversity.
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