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Abstract  

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable 

blindness. Cell replacement therapy, using pluripotent stem cell-derived 

photoreceptor cells, may be a feasible future treatment. Achieving safe and effective 

cell replacement is critically dependent on the stringent selection and purification of 

optimal cells for transplantation. Previously, we demonstrated effective 

transplantation of post-mitotic photoreceptor precursor cells labeled by fluorescent 

reporter genes. As genetically-labeled cells are not desirable for therapy, here we 

developed a surface biomarker cell selection strategy for application to complex 

pluripotent stem cell differentiation cultures. We show that a five cell surface 

biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation 

of photoreceptor precursors from 3D self-forming retina differentiated from mouse 

embryonic stem cells. Importantly, stem cell-derived cells isolated using the 

biomarker panel successfully integrate and mature into new rod photoreceptors in 

the adult mouse retinae after subretinal transplantation. Conversely, unsorted or 

negatively selected cells do not give rise to newly integrated rods after 

transplantation. The biomarker panel also removes detrimental proliferating cells 

prior to transplantation. Notably, we demonstrate how expression of the biomarker 

panel is conserved in the human retina and propose that a similar selection strategy 

will facilitate isolation of human transplantation-competent cells for therapeutic 

application. 
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Introduction  

Many retinopathies, while variable in their aetiology, share a common end point, the 

loss of rod and cone photoreceptors in the retina [1]. Inherited retinal degenerations 

arise from mutations in one of more than 200 different genes [2]. In the majority of 

cases rod photoreceptors are affected first while loss of cone photoreceptors is 

secondary due to a trophic dependence on the adjacent rods [3]. Worldwide the 

number of people blinded by retinal degenerative conditions, including age related 

macular degeneration is estimated to be more than 3.2 million and is predicted to 

rise as life expectancy increases [4, 5]. Unfortunately, the human retina lacks any 

significant regenerative potential to replace lost photoreceptors; consequently once 

these cells have degenerated the resulting visual impairment is permanent. These 

conditions present a high socio-economic burden for patients, their families, and the 

healthcare system [6]. While significant progress has been achieved over the past 

decade in understanding the underlying molecular mechanisms for a range of retinal 

diseases, current treatment options only delay the onset or decelerate the condition.  

To address the current lack of effective treatments much research effort has been 

focused on the development of novel therapeutic strategies. Cell replacement 

therapy, the reintroduction of healthy photoreceptors into the degenerating retina, 

constitutes such an approach. We and others have previously shown that post-

mitotic, yet immature photoreceptor precursors, derived from a defined time window 

during postnatal development in the mouse can integrate into the existing retinal 

architecture of the normal and diseased adult retina [7-14] and contribute to the 

retinotopic map in the visual cortex [13]. Furthermore, we have demonstrated that 

transplanted rod precursor cells, labeled by the rod-specific Nrl.GFP transgene, can 

significantly improve rod-mediated vision in the Gnat1-/- mouse model of night 
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blindness [13]. The degree of photoreceptor integration appears to be influenced by 

the host environment as different models of retinal degeneration allow varying levels 

of cell incorporation [15].   

Human embryonic stem cells (ESC) and induced pluripotent cells (iPSC) currently 

represent the most feasible sources of cells for future cell therapies as they are 

renewable and can in principle give rise to all somatic cell types. While progress has 

been made in establishing in vitro differentiation protocols for photoreceptor cells, 

most have not yielded sufficient numbers or the appropriate stage for application in 

cell-based therapies [16-19]. Recently, in a landmark study, Sasai and colleagues 

described an embryoid body-based 3D ESC differentiation system, which 

recapitulated many aspects of normal retinal development, sparking the prospect of 

producing sufficient quantities of correctly-staged cells for clinical applications [20, 

21]. Subsequently, we have shown that photoreceptor precursor cells isolated via 

expression of a Rho.GFP transgene from self-forming retinae (generated using an 

adapted Sasai protocol) have the ability to integrate into the healthy and 

degenerating retinal environment in mice [22]. These experiments demonstrated that 

a stem cell-based therapy for retinal dystrophies may in fact be possible by 

combining these new technologies.  

One major obstacle preventing translation to the clinic is the lack of strategies to 

isolate and purify safe and effective cells from complex 3D tissue differentiation 

systems such as those generated from ESC or iPSCs. In these cultures the desired 

target cells are generated in addition to photoreceptors of inappropriate 

developmental stages and other undesired retinal and non-retinal proliferating and 

non-proliferating cell types. While transplantation-competent murine donor cells can 

be isolated relatively effectively from the developing retina via photoreceptor-specific 
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transgene expression [7, 12, 14, 15, 23] a similar genetic manipulation for clinical 

application is undesirable given the potential risks of tumorigenicity associated with 

genetic labelling techniques [24], as well as the need to overcome regulatory hurdles 

associated with combined cell- and gene-based therapies. The use of conjugated 

monoclonal antibodies specific to epitopes on the target cells constitutes an 

alternative to genetic tagging and has already been successfully deployed in clinical 

applications in the areas of cancer biology and immunology [25-27]. Previously, we 

identified two cell surface biomarkers, CD73 and CD24, that in combination labeled a 

(sub)population of postnatal photoreceptor precursor cells, and demonstrated that 

CD73/CD24 positive cells isolated from the postnatal mouse retina integrate 

efficiently into the normal and diseased mouse eye after sub-retinal transplantation 

[28]. CD73/CD24 double-positive rod precursors displayed a significantly higher 

integration potential than unsorted cells, or rod cells isolated using a conventional 

Nrl.GFP transgene. However, our data also indicated that additional markers would 

be necessary for isolation of photoreceptor precursor cells from heterogeneous stem 

cell differentiation cultures due to the broad distribution of individual cell surface 

antigens on non-photoreceptor cells [28]. Therefore, here we developed a cell 

surface biomarker panel of five markers that in combination permits the isolation of 

post-mitotic rod precursors from 3D ESC-derived self-forming retina. We show for 

the first time that ESC-derived rod precursors isolated via a photoreceptor precursor 

biomarker panel can integrate and mature into the normal or diseased adult mouse 

retina. 

 

Material and Methods 

Detailed methods are provided as Supplementary File 1 
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Results  

Identification of cell surface biomarkers for photoreceptors  

To identify a panel of useful cell surface antigens contributing to the characteristic 

biomarker signature of transplantation-competent photoreceptor precursors, defined 

as postnatal day 4-8 (P4-8) [13], we employed a dual approach. First, we examined 

microarray data of the P4 Nrl.GFP retina [28] for enrichment of genes encoding 

cluster of differentiation (CD) markers in the Nrl-expressing rod precursor population 

compared to other retinal cell types. CD markers represent cell surface molecules 

useful for cell immuno-phenotyping and already have widespread clinical application, 

(e.g. selection of bone marrow stem cells for transplantation [29]), due to the 

availability of well-established antibodies. Using a 2-fold cut off to delineate the 

positive and negative cell populations we identified 9 and 25 genes for known mouse 

CD markers that were enriched in rod precursors and other retinal cell types, 

respectively. An additional 60 CD marker genes were expressed in both populations 

in the P4 mouse retina (Supplementary Table 1). 

In a second approach, we used flow-cytometry to screen postnatal retinal cells 

from Nrl.GFP mice with a panel of 174 well characterized monoclonal antibodies (BD 

Lyoplate screening panel) to CD markers and identified 15 expressed antigens (>2% 

in population; Supplementary Fig1A,B). A small number of markers labeled subsets 

of non-Nrl.GFP cells (e.g. CD309, CD200, CD15 and CD90), while the majority of 

cell surface antigens were common between retinal cell populations (Supplementary 

Fig1A,B). CD133 and CD73 intensely labeled Nrl.GFP cells compared to non-

Nrl.GFP cells. Comparison of protein expression seen in the lyoplate screen to the 

respective mRNA levels of CD marker genes observed in the microarray analysis 
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(Supplementary Table 1) showed a widespread congruence, validating gene 

expression analysis as a useful means of identifying biomarkers for cell selection. 

 

FACS analysis of the PPr biomarker panel during retinal development 

We, and others, previously established that CD73 is photoreceptor-specific in the 

context of the developing retina, yet it also labels many other cell types, for example, 

mesenchymal stem cells [9, 28, 30]. Furthermore, CD73 is strongly expressed in 

late-stage and mature photoreceptors, which have poor transplantation efficiency 

and would therefore not be useful as a sole selection tool [12, 28]. To increase 

specificity, we examined CD73 co-labelling with additional CD markers. Based on 

their high expression levels in transplantation-competent Nrl.GFP rod precursors, we 

selected CD47 and CD133, together with CD73 and CD24, to test as a biomarker 

signature for positive cell selection (Supplementary Fig1A,B; in B, top right-hand 

quadrants of scatter plots show CD marker and Nrl.GFP co-labeled cells). All of the 

CD markers we identified on photoreceptor cells, are known to be expressed on 

other cell types, but no cell type has previously been defined as expressing this 

combination of CD markers [CD73(+)CD24(+)CD133(+)CD47(+)] together. To 

remove potentially harmful mitotically-active cells we utilised the retinal progenitor 

marker CD15 [31-33] for negative selection, which, as expected, did not show co-

labeling of Nrl.GFP (Supplementary Fig1A, B). Henceforth, the combination of 

CD73(+), CD24(+), CD133(+), CD47(+) and CD15 (-) is referred to as the 

photoreceptor precursor (PPr) biomarker panel.   

The PPr biomarker panel displayed a dynamic expression profile during the 

course of retinal histogenesis in flow cytometry analyses (Fig1A,B). At embryonic 

day 15 (E15) the proportion of cells expressing all four positive selection markers 
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(CD73, CD133, CD24 and CD47) was 3.5% ± 0.1 (Fig.1B; n=3), due to the low 

number of CD73 positive photoreceptors in the retina at this point. Over the next few 

days the proportion of CD73 positive cells increased resulting in an overall co-

labelling of 17.9% ± 4.1 (Fig.1B; n=3) for the PPr marker panel at P4, which also 

represented the peak of co-expression of the biomarkers during retinal development. 

Among the CD73/CD133 double-positive cell population, which delineates the 

developing rods, CD24 and CD47, both markers of immature retinal cells, were also 

strongly expressed labelling 57.2% ± 17.5 and 96.3% ± 2.3 of the CD73/CD133 

double positive population, respectively, at P4 (n=3; see Fig.1A for representative 

example). Subsequent developmental stages saw a reduction in the number of PPr 

panel-positive cells, with 10.9% ± 0.6 (Fig.1B; n=3) staining at P8 and only 6% ± 3.3 

at P10 (Fig.1B; n=3). The decrease in co-labelling mainly occurred due to the down-

regulation of CD24 in maturing retinal neurons. While CD47 expression was 

maintained at P10, it was then rapidly down-regulated and absent in mature 

photoreceptors (Supplementary Fig.2A). In a separate set of experiments, co-

labelling for CD15 and CD73 showed that these two cell populations are mutually 

exclusive during retinal development indicating that CD15 can be used to remove 

progenitor cells from cell mixes (Fig.1C). qRT-PCR and immunohistochemical 

analysis was also performed on developing retinal samples and showed similar 

trends of biomarker expression (Supplementary Figure 2B, C). Taken together our 

data demonstrate that the PPr marker biomarker panel effectively labels developing, 

but not mature rod photoreceptors (Fig.1D).   

 

Characterization of PPr biomarkers in 3D mESC differentiation cultures 
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Photoreceptor precursors can be generated efficiently using a previously described 

embryoid body-based 3D mouse ESC (mESC) differentiation system [20, 22]. In this 

culture system continuous neuroepithelia are readily produced within 5 days of 

differentiation and optic vesicle-like structures appear around day 7-9 (Fig.2 shows 

optic vesicle neuroepithelium at day 12). Retinal cell genesis proceeds in a 

sequence similar to normal retinal development with all neural retinal cell types being 

present and correctly organised in layers by day 29 of the differentiation procedure, a 

stage which has been shown to correlate with P4-8 during mouse retinal 

development [22].  

Consistent with previous observations, we found that at day 12 of differentiation in 

vitro retinal epithelia showed widespread expression of retinal progenitor markers 

Pax6 and Vsx2 (Fig.2A,B), suggesting an immature state at this point. By day 27, the 

majority of cells within the retinal epithelium labeled with the rod markers Rhodopsin 

and Recoverin and displayed typical photoreceptor morphology (Fig.2C,D). Markers 

of advanced photoreceptor differentiation, such as rod α-Transducin and Peripherin 

2, were only observed in a few photoreceptors at this point (Fig.2E, F). We assessed 

the expression profiles of PPr biomarker transcripts in this system using quantitative 

real-time PCR. Expression of all biomarkers could be detected in undifferentiated 

mESC cultures albeit at relatively low levels. During the retinal differentiation 

procedure, transcript levels of CD24, CD133, CD47 and CD15 increased from day 0 

to day 12, while CD73 transcript levels were significantly increased by day 28; CD24 

levels then declined by day 36 (Fig.2G). We also used an adeno-associated viral 

vector (pseudotype 2/9) carrying a GFP reporter under the control of a Rhodopsin 

promoter (Rhop.GFP) to label rod photoreceptors [22]. Importantly, real-time PCR 

on FAC-sorted Rhop.GFP-positive cells isolated at day 26 of culture confirmed 
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CD73, CD24, CD133 and CD47 expression in the rod population, whilst negligible 

levels of CD15 were detected (Fig.2H). 

Next, we determined the spatial distribution of the proteins encoded by CD73, 

CD133, CD24 and CD47 using immunohistochemistry on tissue sections from early 

and late ESC differentiation cultures (Fig.2I-T). CD73 protein was not detected in 

early retinal epithelia at day 12 of differentiation but showed intense staining 

throughout the photoreceptor layer of in vitro retinae at day 28 and day 36, co-

labelling with rod specific marker Rhodopsin and pan photoreceptor marker 

Recoverin. CD133, CD24 and CD47 showed a similar wide distribution across the 

retina during both early (day 12) and later (day 28) stages of differentiation, including 

the photoreceptor layer, and showed overlap with Rhodopsin and Recoverin signals. 

By day 36, CD24 co-labelling with Rhodopsin and Recoverin appeared reduced 

compared with earlier stages, and compared with the level of co-labelling observed 

for CD73, and CD133  (Fig 2K', N', Q'). In addition to the broad cell surface staining 

also observed with CD24 and CD47, CD133 displayed intense foci of immune-

reactivity at the apical surface of the epithelium (Fig.2I; white arrowhead), similar to 

the pattern detected in late postnatal stages [28].  

Taken together, these different components of the PPr biomarker panel are 

present at both transcript and protein levels in retinal differentiation cultures of mESC 

and exhibit an expression profile broadly consistent with that observed in the 

developing post-natal mouse retina. 

 

FACS profile of PPr biomarkers during retinal differentiation in 3D cultures 

We next established the percentage of cells labeled by each cell surface antigen at 

different times of the retinal differentiation protocol, by performing FACS analysis 
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using fluorochrome-conjugated antibodies (Fig.3A). In undifferentiated (day 0) mESC 

cultures CD73 weakly, but consistently, labeled a small number of cells. Labelling 

then increased significantly to 4.1% ± 2.7 at day 12, and 40% ± 7.9 at day 27 of 

differentiation consistent with onset of photoreceptor genesis in the in vitro retinae 

between the two later time points. In contrast, CD24 labeled most if not all cells at 

day 0 and displayed a slight decrease at subsequent stages of differentiation. CD133 

and CD47 displayed a similar staining profile, labelling only a small proportion of 

cells at the start of the protocol (14.9% ± 8.2 and 18.1% ± 4.9 respectively) and 

increasing over time to 68.5% ± 21.4 and 81.8% ± 12.5 respectively, at day 27. 

These data suggest that no single marker would be sufficient to effectively isolate 

pure and stage-specific photoreceptor precursors for the purpose of retinal stem cell 

therapy.  

We next investigated if, in combination, the cell surface biomarkers could be used 

to isolate cells displaying the typical photoreceptor precursor signature from the 

differentiation cultures at day 0, 12 and 27. As expected, at day 0 the number of cells 

expressing the PPr biomarker panel was minute (0.6% ± 0.1 at d0 and 1.2% ± 0.6 at 

d12, respectively). However, at day 27 of culture 24.6% ± 6.5 of all cells in the in 

vitro retinae were positive for the PPr marker combination (Fig.3B). Conversely, the 

retinal progenitor marker CD15 did not co-label with CD73 (Fig.3B), indicating that 

this marker would enhance removal of potential harmful cells prior to transplantation.  

The distribution of CD markers is usually not restricted to one particular tissue or 

cell type. We therefore confirmed the identity of the PPr biomarker panel-positive 

cells generated in the 3D retinal culture system using immuno-cytochemistry (Fig.4A, 

B). Day 27 retina were dissociated and plated on coverslips to allow investigation of 

colocalisation of CD73 with Rhodopsin or Recoverin on a single cell basis. 
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Rhodopsin and Recoverin were selected as indicators of photoreceptor cell identity 

with robust available antibodies. We observed that 36.3%±14.4 (n=3) of the cells 

labeled with CD73. As expected, the majority of CD73 positive cells were also 

strongly co-labeled with the rod pigment rhodopsin (78.3% ± 10.5; n= 3), confirming 

the rod photoreceptor identity of PPr biomarker labeled cells generated in the day 27 

ESC-derived retina. Similar analysis conducted using Recoverin showed co-labelling 

of 41% ± 13.6 (n=3) of the CD73 positive cells. 

Of the total ESC-derived population, 45% ± 17.8 (n=3) showed Rhodopsin 

staining, confirming a robust and reproducible production of rod photoreceptors in 

this system. Approximately half of the total Rhodopsin-positive cells, expressed 

CD73 (49.4% ± 22.1) indicating the presence of photoreceptor precursors at different 

stages of development. Of the total ESC-derived population, 16.2% ± 7.1 (n=3) 

stained with Recoverin, with the majority of these Recoverin-expressing cells 

showing strong CD73 staining (92.9% ± 10.4; n=3).  

We also performed immunostaining on cells plated after FACS selection using the 

PPr biomarker panel (CD+) compared with CD- and unsorted cells from day 27 ESC-

derived cultures. Enrichment for Crx, Rhodopsin and Recoverin-positive cells was 

observed in the CD+ population (Figure 4C). Yields of PPr sorted CD+ cells ranged 

from 0.41 - 4.89 % of ESC cultures at day 27 (n=3) with a viability of 80%-90%. 

Together, these data indicate that the PPr biomarker panel is useful for the isolation 

of stage-specific rod photoreceptor cells from ESC-derived 3D retinal cultures.  

 

Exclusion of mitotically active cells via PPr selection 

Inclusion of undifferentiated pluripotent stem cells or other proliferating cell 

populations in cell preparations destined for transplantation presents a serious 
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challenge due to their propensity to result in uncontrolled growth and, in the worst 

case scenario, elicit the development of tumours [19, 34, 35]. It is essential that such 

cells be removed prior to transplantation to not only eliminate the risk of tumour 

formation but also increase integration efficiency of genuine photoreceptors as well 

as to prevent any permanent retinal detachment that could arise from cell masses in 

the sub-retinal space [13].  

 At day 27, a small number (<2%; n=3) of cells incorporated EdU during S-

phase and 3.25% labeled with Ki67 (n=1) suggesting that this 3D retinal 

differentiation protocol is generally effective in promoting exit from cell cycle (Fig.5A). 

Nevertheless, because of inherent variability within culture preparations, further 

safeguards to stringently select against any persisting proliferative cells will be 

required. To test the ability of the PPr biomarker panel to remove mitotically active 

cells under challenging conditions (i.e. incomplete, less efficient differentiation) we 

added undifferentiated mouse embryonic stem cells (15%) to dissociated day 26 

retinal cultures and determined the number of mitotic cells after FAC-sorting. No 

overlap was observed between EdU labelling and PPr biomarker selected cells (data 

not shown). However, we found that EdU labelling in combination with the five 

fluorochrome conjugated antibodies to the PPr biomarker panel was not very robust 

due to limitations in the detection system, therefore Ki67 antibody was used as an 

alternative quantitative labelling approach for mitotic cells. In these experiments, 21 

± 6.6% (n=3) of unsorted cells from the combined cell population (~15% 

undifferentiated ESC: 85% day 27 retinal cultures) showed Ki67 (+) staining (Fig.5B, 

C). Cells selected from this proliferative population via co-labelling with CD73+, 

CD24+, CD133+, CD47+, CD15- (CD+) contained only a very small number of 

Ki67(+) dividing cells (0.5% ± 0.23; n=3), demonstrating the effectiveness of the 
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biomarker panel even in the presence of contaminating, undifferentiated cells. On 

the other hand, a high proportion of proliferating cells were observed in the CD- 

population (46 ± 16.5; Fig.5B, C). These data demonstrate that mitotically-active 

cells are efficiently eliminated from donor cell populations, prior to transplantation, by 

using the combination of PPr cell surface biomarkers.   

 

Transplantation of mESC derived photoreceptors 

We next examined the transplantation potential of photoreceptors isolated via the 

PPr biomarker panel from mESC 3D retinal differentiation cultures. To this end, in a 

series of experiments, we transplanted 200,000 PPr biomarker FAC-sorted ESC-

derived rod precursors into the subretinal space of adult wild type, and Gnat1-/- mice 

in which rods are non-functional due to the absence of the rod α−Transducin protein, 

pivotal to the phototransduction cascade [36]. ESC-derived rod precursors were 

sorted at day 27 of 3D retinal differentiation, based on their co-expression of the five 

specific PPr cell surface biomarkers CD73(+) CD24(+) CD133(+) CD47(+) CD15(-). 

Two methods were used in order to identify ESC-derived cells after transplantation. 

Either wEBs were infected with AAV2/9.CMV.GFP virus several days prior to the 

experiment, or, alternatively a transgenic mouse ESC line (CBA.YFP ESC; ATCC-

R), with a YFP reporter cassette driven by the ubiquitously active beta-actin 

promoter was used. 

 Photoreceptors derived from both ESC lines, and selected via PPr biomarker 

expression (CD+) integrated into the adult mouse retina after subretinal injection 

(Fig.6A-E; Supplementary Fig.3). Three weeks post transplantation GFP/YFP 

labeled cells, with single nuclei and displaying the characteristic rod morphology, 

were readily visible within the outer nuclear layer (ONL) of recipient mice and were 
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frequently found in small clusters near the injection site (Fig.6). Rod α−Transducin 

(Gnat-1) immunostaining was detected in the outer segments of GFP-labeled cells 

integrated into ONL of wild type and in the Gnat-deficient recipient retina (Fig.6A, C; 

Supplementary Fig.3). In the latter, we observed clear and robust expression of the 

outer segment protein (Gnat-1) that was missing in the endogenous rods in the 

knock out model. The YFP/GFP-labeled cells displayed typical rod features such as 

segment formation and spherical synaptic connections in the outer plexiform layer. 

Furthermore, integrated cells were Recoverin (Fig.6B) and Rhodopsin positive but 

did not stain with cone-specific markers such as RxRγ, sw-opsin and mw-opsin (data 

not shown) demonstrating a rod identity of incorporated cells. Transplantations of 

cells selected via PPr biomarker expression (CD+) from the mouse postnatal day 8 

(P8) Nrl.GFP retina similarly showed integration of GFP+ cells within the recipient 

wild type ONL three weeks later (Supplementary Figure 3). We evaluated the 

efficiency of transplantation using the PPr biomarker selected ESC-derived 

photoreceptor precursors by counting the number of new GFP-labeled cells 

integrated within the recipient ONL. The transgenic mouse ESC line (CBA.YFP), 

rather than viral labelling, was used for quantification experiments as contaminating 

viral particles could hypothetically label host photoreceptors [22]. Indeed, in 

experiments using AAV2/9.CMV.GFP virus, we observed a large number of 

integrated GFP-labeled cells did not co-label with Gnat-1, suggesting that either 

some integrated cells had not yet acquired a mature differentiation state, which can 

take many days [14], or that a proportion of GFP+ cells were a product of viral 

labelling of host cells (data not shown). 

We found that transplantation of the PPr biomarker positive CBA.YFP ESC-

derived photoreceptor precursors resulted in integration levels significantly higher 
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than unsorted cells (Fig.6G; median for CD+ = 654 cells, range of total number of 

integrated cells per retina = 315 - 1068, N=7), and similar to those previously 

reported with virally-labeled Rhop.GFP ESC-derived rods [22]. By contrast, 

transplantation of biomarker negative cells (CD-), or unsorted day 27 ESC cultures 

demonstrated only poor integration abilities (Fig.6F; median for CD- = 9 cells, range 

0 - 204, N=6; median for unsorted day 27 cultures cells = 60, range 0 - 80, N=6). We 

observed integration levels for P8 PPr biomarker positive cells similar to those for 

ESC-derived PPr biomarker positive cells (median = 210 cells, range 22 - 3039 

N=9). In all ESC transplants, non-integrated GFP+ ESC-derived cells typically 

persisted in the subretinal space 3 weeks after injection (Supplementary Fig.3C 

shows cells in subretinal space in low magnification view of Fig.6E). In transplants of 

biomarker negative cells (CD-) we frequently observed large sub-retinal cell masses 

that contained unidentified cell types of diverse morphologies (Fig.6F) but little or no 

integration. Immmunostaining for Pax6 and GFAP, markers of immature neurons 

and glial cells respectively, and Ki67 for mitotically active cells, did not label 

significant numbers of cells in the PPr biomarker panel negative sub-retinal cell 

masses at 3 weeks post transplantation (data not shown). Taken together, these 

data demonstrate that FAC-sorted ESC-derived rod precursors selected via the PPr 

biomarker panel from dissociated synthetic retinae can integrate effectively, and 

significantly more efficiently than the unsorted ESC-derived cells or PPr biomarker 

negative populations. 

 

Conservation of biomarkers in the developing and mature human retina 

To test the usefulness of the biomarker panel for clinical application we investigated 

the expression of CD73, CD133, CD24 and CD47 in the human retina. RT-PCR 
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revealed CD24 and CD47 were abundantly expressed even at the early stages of 

retinal development (8wks gestation) and, in contrast to the murine retina, remained 

at similar levels in the mature tissue (Fig.7A). CD133 was expressed at low levels 

during weeks 9, 10 and 11 but increased thereafter and was strongly expressed at 

the adult stage. In contrast, CD73 mRNA was not detected until 12wk of gestation 

and was present at all subsequent stages of development and in the mature retina.  

In order to establish the spatial distribution of the biomarker proteins we 

performed immunohistochemistry on cryo-sections prepared from human fetal and 

adult retinal tissue. At 10, 13 and 19wk of gestation, CD24 and CD47 proteins were 

detected in all retinal layers (Fig.7B; Supplementary Fig.4) including the developing 

outer nuclear layer, which contained CRX and RECOVERIN positive photoreceptor 

precursor cells. While CD73 transcript was present from 12wk onwards, no 

immunostaining was observed during the fetal stages, suggesting a post-

transcriptional control mechanism. In contrast, CD133 protein was visible starting 

from 10wks in a punctate pattern at the apical surface of the retina, abutting the 

interface with the retinal pigmented epithelium. qRT-PCR analysis of expression of 

the PPr biomarker panel genes in human retinal samples showed expression of 

CD47 and CD24 during fetal stages, but decreased expression in the mature retina 

(Supplementary Figure 4B), in line with the reduced labelling of mature 

photoreceptors by these markers in the human and mouse retina (Supplementary 

Figure 4A, Supplementary Figure 2).  

While CD73 protein appeared to be absent in the native fetal human retina, a 

small number of CD73 immuno-positive cells were observed in differentiation 

cultures derived from 14wk old primary retinal cells (Fig.7C). Approximately 6% of 

cells in these primary cultures co-labeled with CD73 and CD133 in FACS analysis, 
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whereas 39.4 ± 4.76% of cells in the adult human retina were positive for this dual 

marker combination (Fig.7D). The total number of cells in the adult retina labelling 

with CD73 was 74 ± 4.7%, consistent with the total number of photoreceptors 

(Fig.7D). Furthermore, in immunocytochemical analysis of dissociated retinal cells all 

CD73 positive cells in the adult human retina co-expressed Recoverin, indicating a 

photoreceptor identity (Fig.7E).   

Taken together, our findings demonstrate that the expression patterns and relative 

onset of biomarker expression with respect to retinal differentiation is similar 

between mouse and human. The lack of available human fetal tissue beyond 19wk 

of gestation prevented us from pinpointing the exact onset of CD73 protein 

expression in the human retina; most rod photoreceptors are generated after 19 wks. 

However, our observations are consistent with findings in the murine retina, which 

showed onset of CD73 protein expression in the postnatal time period when the 

majority of the rod photoreceptors are born and then sustained expression in 

photoreceptors.  

 

Discussion 

Cell replacement therapy for retinal disease is a very promising therapeutic strategy 

currently under investigation, the goal of which is the transplantation of stem cell-

derived cells into the diseased retina, either to substitute photoreceptor cells lost 

through the disease process and replace disease genes, or to delay or prevent the 

loss of the remaining cells [37, 38]. We and others have demonstrated that 

photoreceptor precursors can be introduced into the normal and degenerating rodent 

retina via sub-retinal injection and that transplanted rods make appropriate synaptic 

connections to the remaining inner retinal cells [7-10, 15]. Furthermore, correctly 
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integrated cells have been shown to confer low light visual function in a mouse 

model of retinal degeneration and signals generated by these cells were projected to 

visual processing areas in the brain [13].  

The most promising sources of donor cells for a future therapeutic application are 

hESCs and iPSCs; however, the successful translation of this approach to the clinic 

is critically dependent on the development of methods for the isolation and 

purification of optimal stage precursor cells. The use of mixed cell populations 

carries the risk of tumorigenesis due to the presence of mitotically active stem cells, 

and even inappropriately staged photoreceptors reduce integration efficiency and 

therefore would result in a suboptimal clinical outcome. It is therefore critical that a 

cell selection strategy should enable the specific isolation of wild type cells, which 

are committed to the photoreceptor lineage, but which have not yet fully matured, as 

well as excluding proliferating cells.  

In order to meet the need for stringent cell selection and avoiding genetic 

manipulation of cells, we have developed a panel of five useful photoreceptor 

biomarkers that can be effectively utilised to isolate transplantation-competent rod 

precursors from 3D retinal differentiation cultures of mESC. In this study we utilised 

existing CD markers for which fluorochrome-conjugated antibodies already exist far 

application in FACS protocols. Although we have not formally proved that all five 

selected CD markers are necessary and sufficient, this study demonstrates for the 

first time the successful application of a CD marker signature for isolation of 

photoreceptor precursors from differentiated ESCs. In future work it may be possible 

to develop antibodies suitable for FACs for additional markers identified in 

photoreceptors by microarray analysis [28, 39]. We selected CD73 and CD133 to 

confer photoreceptor specificity in the context of ESC-derived retinal differentiation 
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cultures and CD24 and CD47 to enrich for cells equivalent to young, postnatal cells. 

In addition CD15 (SSEA-1) was included for negative cell selection. We showed that 

the biomarkers for positive cell selection (CD73, CD133, CD24 and CD47) have a 

peak of co-expression that correlates with the window of transplantation competence 

(P4-P8) for donor cells isolated from the developing retina. Importantly, the 

expression of individual biomarkers in mESC differentiation cultures followed the 

same pattern seen in the developing retina, with 25% of cells in day 27 cultures 

displaying the biomarker signature of transplantation-competent rod precursors. The 

majority of CD73-expressing cells (~85%) in day 27 cultures co-labeled with the rod 

marker Rhodopsin. Our data indicate that the PPr biomarker selection panel strongly 

enriches for immature photoreceptors in the context of this very heterogeneous ESC-

derived retinal cell culture system.  

Consistent with this conclusion, we showed that sub-retinal transplantation of 

cells selected via the PPr biomarker panel (CD+) resulted in significantly higher 

integration levels compared to unsorted cells, or cells that did not label with the 

positive-selection markers (CD-). While integrated CD+ cells displayed the typical 

rod morphology and labeled with Recoverin, CD- cells rarely integrated and instead 

formed substantial cell masses with varying morphology. These observations 

illustrate heterogeneity present in the ESC retinal culture system and the effects of 

inclusion of non-photoreceptor cells in cell preparations. Significantly, we showed 

that the PPr biomarker panel selection excludes proliferating cells, as assessed by 

Ki67 labelling, even in samples comprising more than 10% mitotically active stem 

cells.  

This study brings together for the first time the use of photoreceptor cell sorting 

strategies using CD markers, and new ESC-derived self-forming retinal cultures to 
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isolate transplantation-competent cells without genetic modification. This is an 

important milestone towards the development of clinical photoreceptor cell therapy. 

The biomarker-sorted cells maintained viability and showed integration levels similar 

to those observed using genetically-labeled ESC-derived populations [22]. As the 

integration levels achieved with the ESC-derived cells and the PPr biomarker 

selection panel were lower than previously reported experiments using CD73/CD24 

selected cells (Median 10,899, range 544-32,826, [28]; Mean 2199 ± 1006 

cells/retina [9],) and Nrl.GFP selected cells (Mean 16,759 ± 1,705 cells/retina [13]), 

isolated from the developing retina, further optimization and fine tuning of 

differentiation and isolation protocols will be required to maximize the transplantation 

outcome. Variability in transplant outcomes as reflected in the range of integrated 

cell numbers, possibly due to variation in host inflammatory responses and surgical 

delivery of cells [14, 40, 41] also needs to be resolved in future studies. Based on 

our previous demonstration of restoration of visual function in the Gnat1−/− model 

containing ~25,000 newly-integrated cells from the developing retina [13], we 

estimate that a 40-fold increase in the number of integrating ESC-derived cells will 

be required to demonstrate robust restoration of rod function in a mouse model in 

vivo. 

Lastly, the fact that the expression of components of the photoreceptor 

biomarker panel was conserved in the developing and adult human retina suggests 

that our cell selection approach may be applicable for isolation of cells for clinical 

transplantation from human ESC/iPSC retinal culture systems. Taken together, we 

have identified and tested, for the first time, a set of 5 cell surface biomarkers that 

are useful for the enrichment of transplantation-competent rod photoreceptor cells 

from pluripotent stem cell-derived self-forming retina. These findings define an 
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approach that we anticipate will be broadly applicable for the isolation of 

photoreceptor cells for clinical therapy.  
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Figure legends 

 

Figure 1. Expression of the photoreceptor biomarker panel during retinal 

development in the mouse. (A) Representative FACS scatter plots showing co-

immunostaining of individual cell surface markers at different time point during retinal 

histogenesis. Dependent gates are shown from left to right. (B) Summary of FACS 

analysis for combined photoreceptor biomarker panel and CD73 alone. While CD73 

alone efficiently labels all post mitotic photoreceptor cells, including non-integration 

competent adult photoreceptors, the biomarker panel enriches for cells from a 

narrow postnatal time window, which coincides with transplantation competence. (C) 

Assessment of co-expression of retinal progenitor marker CD15 and CD73 at 

postnatal day 4. CD15 and CD73 are mutually exclusive during retinal development. 

(D) Schematic showing a comparison of the relative onset of expression of key 

photoreceptor markers and individual cell surface biomarkers. Vertical bars denote 

the optimal transplantation competent period for photoreceptor precursors (P4-P8).  

  

Figure 2. Characterization of PPr surface biomarkers on 3D ESC retinal cultures. 

(A, B) Day 12 optic vesicle neuroepithelium showing Vsx2 (green, A) and Pax6 (red, 

B) positive retinal progenitor cells. (C, D) Day 28 retinal neuroepithelium regions 

containing Rhodopsin (green, C) and Recoverin (red, D) positive ESC-derived 

photoreceptors. (E, F) Immunohistochemical analysis showing a small number of 

cells positive for Rod α-transducin (E) and Peripherin 2 (F) at day 28 of culture. High 

magnification inserts highlight expression pattern of these markers. (G) Real time 

quantitative RT-PCR analysis of ESC retinal cultures demonstrating the expression 

of PPr biomarker panel over time in culture. (H) Expression of the PPr biomarker 
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panel on day 26 FAC-sorted Rhop.GFP+ ESC-derived rods. (I) 

Immunohistochemical analysis for CD73, CD24, CD133 and CD47 (red), and 

Recoverin and Rhodopsin (green) on cryosections of ESC-retinal differentiations at 

day 12, 28 and 36 of culture. Scale bars: 25µm 

Figure 3. Expression of components of the photoreceptor biomarker panel during 

mESC differentiation. (A) Representative fluorescent activated cell sorting (FACS) 

scatter plots showing the expression of individual cell surface markers in 

undifferentiated mESC and at day 12 as well as day 27 of the retinal differentiation 

procedure. A summary of three experiments is shown to the right of the plots. (B) 

FACS analysis of PPr biomarker panel at day 12, 27 and 36 of mESC differentiation. 

At day 27 (scatter plots shown) about 25% of the cells in the differentiating embryoid 

bodies express the combination of cell surface markers characteristic for postnatal 

photoreceptors but do not co-label with progenitor marker CD15. By day 36 < 1% of 

total cell population expresses the PPr biomarker panel. FSC, forward scatter.  

Figure 4. Majority of CD73 positive cells in ESC-derived retinal cultures express 

photoreceptor markers. (A) Immunocytochemical analysis of cells from dissociated 

ESC retinal cultures co-stained with cell surface biomarker CD73 and photoreceptor 

markers Rhodopsin or Recoverin. Representative confocal tile scan of plated cells. 

Inset show high magnification view of indicated area. (B) Image analysis software 

Cellprofiler was used to determine the number of single or double positive cells from 

three independent experiments and confirmed by manual counting. Total number of 

marker positive cells is shown as light bars while darkly shaded bars indicate the 

percentage of cells co-staining for the respective second marker. About 44% of all 

cells express rhodopsin, 29% CD73 and 16% show Recoverin staining. The majority 
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of CD73 positive cells (~82%) label with rod photoreceptor marker rhodopsin and 

~40% label with Recoverin. (C) Analysis of cells selected from ESC-derived day 27 

retinal cultures using PPr biomarker panel (CD+). Immunocytochemical analysis of 

CD+ selected cells, CD- and unsorted ESC-derived cells with photoreceptor markers 

CRX, Rhodopsin or Recoverin was used to determine the number of cells expressing 

each marker (n= 3 independent experiments).  82.64 ± 7.53%, 76.83 ± 9.6%, and 

17.3 ± 4.9% of CD+ cells labelled with photoreceptor markers CRX, Rho, and REC 

respectively; Mean ± SD. Scale bars: 40 µm 

Figure 5. FAC-sorting via PPr biomarker panel eliminates mitotically active cells. (A) 

Representative FACS scatter plot of EdU based proliferation assay, following a 2 

hour EdU pulse, showing percentage of d26 ESC retinal culture cells in S-phase of 

cell cycle. Only 2% of cells have incorporated EdU demonstrating that the majority of 

ESC-derived cells are postmitotic. (B) Undifferentiated mESC (15%) were added to 

dissociated d26 retinal cultures and the resulting cell suspension was sorted via PPr 

biomarkers. CD(+), CD(-) and unsorted cells were plated for immunocytochemical 

analysis and the number of Ki67+ cells was determined using Cellprofiler software. 

(C) Summary of Ki67 based proliferation assay. FACS sorting using PPr biomarkers 

effectively removed Ki67+, mitotically active cells from the cell sample. FSC, forward 

scatter. DAPI, blue, Ki67, red. Scale bars: 200 µm 

Figure 6. Transplantation of mESC-derived, biomarker sorted photoreceptor 

precursors into the adult mouse retina. (A) Virally-labeled day 27 ESC-derived 

photoreceptor precursors sorted via biomarker panel integrated into Gnat1-/-adult 

retina. Anti-Gnat-1 immunohistochemistry only labels the outer segments of 

transplanted cells but not host photoreceptors. (B) Whole embryoid bodies from the 
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CBA.YFP mESC line endogenously expressing YFP; day 27 of retinal differentiation 

cultures were FAC-sorted via PPr biomarker panel and transplanted sub-retinally into 

adult wild-type retinas (B, C, D, E, F). (C, D) Cells expressing the biomarker panel 

(CD+) integrate into the outer nuclear layer (ONL) of the host, while cells from the 

biomarker negative fraction (CD-) did not integrate and formed large cell clusters in 

the subretinal space. (E) Summary of data from subretinal transplantation 

experiments showing numbers of cell integrates within the outer nuclear layer 3 

weeks post transplantation. (F) Transplanted cells, which have migrated into the 

ONL express photoreceptor marker Recoverin. Inset show a high magnification view 

of the area indicated by arrow. Scale bars, 20 µm. 

Figure 7. Expression of PPr biomarker panel components in the human retina. (A) 

RT-PCR analysis showing the expression of biomarkers at different stages of 

development in the human retina. CD24 and CD47 transcripts are strongly 

expressed prior to the F1 stage, while CD133 shows only weak levels of expression 

and CD73 is absent. CD73 transcripts are first observed at 11 weeks of gestation 

correlating with the onset of photoreceptor development. (B) Immunohistochemistry 

analysis of cell surface and key retinal markers at 19wk of gestation. CD24 and 

CD47 display a widespread expression pattern, labelling cells in all retinal layers. 

CD133 immunostaining is restricted to punctate labelling at the apical surface of the 

developing outer nuclear layer, whereas CD73 staining is absent at this stage. White 

arrows indicate region of higher magnification inset for CD133 and CD73. (C) 

Immunocytochemical analysis of 14 wk cultured fetal human cells. Cells expressing 

CD133, CD47 and CD24 are abundant at the beginning of culture, CD73 positive 

cells only begin to appear after two weeks in culture. (D) FACS analysis of cultured 

fetal cells at 14wk and adult human retinas. A small number of CD73/CD133 double 
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positive cells are present in primary cell cultures derived from 14wk retinas. In the 

adult human retina ~78% of cells express CD73 and ~40% co-label with CD133, 

consistent with the murine retina. (E) Colabelling immunocytochemistry of 

dissociated adult retinal cells showing all CD73+ cells express the photoreceptor 

marker recoverin. ONL, outer nuclear layer; ONBL, outer neuroblastic layer; INL, 

inner nuclear layer; GCL, ganglion cell layer. Scale bars: 20 µm 

 

Supplementary Material 

Supplementary Table 1. CD surface marker analysis from P4 Nrl.GFP microarray. 

Genes encoding for cluster of differentiation (CD) markers expressed in the postnatal 

day 4 mouse retina. Genes are grouped according to their enrichment in the rod 

precursor population (Nrl.GFP+), other retinal cell types (Nrl.GFP-), or ubiquitous 

expression. The log intensity indicates relative signal strength in the microarray 

experiment and fold change is given as a measure of enrichment between positive 

and negative cell populations. A fold change value of 2 was used to delineate the 

two cell populations. Markers used in PPr biomarker panel are highlighted in green. 

 

Supplementary Figure 1. Cell surface marker screen of P8 Nrl.GFP retinae using 

BD Lyoplates. (A) Heat map showing top 15 cell surface marker candidates identified 

in the FACS-based screen. The relative number of cells in the Nrl.GFP positive and 

Nrl.GFP negative cell populations is indicated (red, high; green, low). (B) Individual 

flow cytometry scatter plots of dissociated P8 retinal cells for cell surface markers 

identified in the lyoplate screen. Nrl.GFP intensity is plotted on the x-axis whereas 
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staining intensity of the cell surface markers is shown on the individual y-axes. Top 

right hand quadrants of scatter plots show CD marker and Nrl.GFP co-labeled cells 

 

Supplementary Figure 2. A, Flow cytometry analysis of cell surface marker CD47 

during postnatal retinal development. At postnatal day 4 and 8, CD47 is expressed in 

most, if not all, retinal cells but is down-regulated in more mature Nrl.GFP expressing 

rod photoreceptors at day 21. B, Real time quantitative RT-PCR analysis of mouse 

retina demonstrating the expression of PPr biomarker panel over time. C, 

Immunohistochemical analysis for CD73, CD133, CD24, CD47, CD15, (red), on 

cryosections of P1, P7 and adult Nrl.GFP (green) retina.  CD73 and CD133 co-

localize in developing and mature photoreceptors, whereas initially broad expression 

of CD24 and CD47 is down-regulated in adult photoreceptors. CD15 is seen only in 

amacrine processes within the inner plexiform layer at these timepoints. NBL, 

neuroblastic layer; IPL, inner plexiform layer; GCL, ganglion cell layer; ONL, outer 

nuclear layer; INL, inner nuclear layer. Scale bars: 20µm. 

Supplementary Figure 3. A’-A’’’, Transplants of PPr biomarker panel selected cells 

from P8 mouse retina (Nrl.GFP) into wild type recipients. 3 weeks after subretinal 

injection, PPr selected GFP-positive photoreceptors were observed within the 

recipient ONL. B-D Immunohistochemical analysis of integrated rod photoreceptors 

derived from a YFP expressing mouse embryonic stem cell line and CD biomarker 

selected (CD+), 3 weeks after sub-retinal transplantation in wild-type mice. B-C, Z-

stack maximum projection showing integrated YFP-expressing photoreceptors co-

labelling with the rod specific phototransduction protein GNAT-1 in the host outer 

nuclear layer. Dashed square indicates the location of the high magnification image 

of a single slice of Z-stack. D, Low magnification view of CD+ transplanted cells 
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surviving in the subretinal space, corresponding to region shown in Figure 6E. White 

arrows in D' indicate the location of the inset high magnification image; location of 

asterisks in the inset plate correspond to the location of the arrows. IS, inner 

segment; OPL, outer plexiform layer; ONL, outer nuclear layer; INL, inner nuclear 

layer; Scale bars: 20µm  

Supplementary Figure 4. A, Immunohistochemical expression analysis of 

biomarkers in the developing and adult human retina. At 10, 13 and 19 weeks of 

gestation, CD24 and CD47 are expressed broadly across all retinal layers while 

CD133 is restricted to bright foci on the apical side of the outer neuroblastic layer 

abutting the retinal pigment layer. Immunostaining for CD73 on the other hand is not 

visible at these stages. At 19 weeks, CD24 and CD47 staining is particularly strong 

in the emerging inner plexiform layer, developing interneurons in the inner nuclear 

layer as well as nerve fibre layer. In the adult retina, CD73 expression can be 

observed in the ONL and CD133 is localized to the base of outer segments of 

photoreceptors. Both CD24 and CD47 are down regulated in the adult photoreceptor 

layer, while strong CD47 immuno-labelling is visible in the INL and OPL. By 10wks 

CD15 is down regulated in neuroblasts, and is detected transiently in projections of 

presumed amacrine cells in the IPL at 19wks. B, Real time quantitative RT-PCR 

analysis of the expression of the PPr biomarker panel over time in human retinal 

samples. CD24 and CD47 are downregulated in the adult retina compared with the 

fetal retina; expression patterns of the biomarkers during human and mouse retinal 

development are largely consistent (see Supplementary Figure 2). ONBL, outer 

neuroblastic layer; GCL, ganglion cell layer; INBL, inner neuroblastic layer; ONL , 

outer nuclear layer; INL, inner nuclear layer; IS, inner segments; OS, outer 

segments; IPL, inner plexiform layer. Scale bars 20µm 
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Supplementary File 1 
 

 

Material and Methods 

 

 

Animals  

Experimental mice were kept in University College London animal facilities 

and all experiments were conducted in agreement with the Animals (Scientific 

Procedures) Act 1986 and the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision 

Research. C57Bl/6J, and Gnat1
−/− (kind gift of J. Lem; [1]) recipient mice were 

between 6 and 10 weeks of age at the time of transplantation.  

 

Mouse ES cell culture and 3D retinal differentiation 

The mouse EK.CCE ESC line [2] (129/SvEv; a kind gift of E. Robertson) or 

CBA.YFP ESC line (a variant of R1 ESCs; 7AC5/EYFP, from ATCC) were 

maintained as previously described [3]. On day 0 of retinal differentiation, 3 × 

104 ESCs were resuspended in one milliliter of differentiation medium (GMEM 

containing 1.5% KSR, 0.1 mM NEAA, 1 mM pyruvate, 0.1 mM 2-

mercaptoethanol) and plated into 96-well low-binding (Corning) plates. 

Embryoid-body cell aggregates were cultured at 37°C, 5% CO2 and growth 

factor-reduced Matrigel (BD Biosciences) was added on day 1 of retinal 

culture to a final concentration of 2% (v/v). At day 9, whole EBs were 

transferred into retinal maturation medium (DMEM/F12 Glutamax containing 

N2 supplement and Pen/strep), plated in low-binding plates at a density of 6 

wEBs/cm2 and maintained at 37 °C, 5% CO2. The media was changed every 
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2–3 days and 1 mM taurine (Sigma) and 500 nM retinoic acid (Sigma) were 

added from day 14 of culture onward.  

 

Histology and Immunohistochemistry 

Tissue specimens were fixed in 4% (w/v) phosphate-buffered formaldehyde 

solution at 4°C for 30min, washed three times with phosphate-buffered saline 

(PBS) and equilibrated in 30 % (w/v) sucrose solution for cryo-protection at 

room temperature for 1-2 hours. Subsequently, the specimens were 

transferred into an optimal cutting temperature (OCT)-compound (RA Lamb) 

filled mould prior to freezing in a dry ice-methylbutane slurry. Tissue sections 

were prepared on a cryostat (Leica CM1900 UV) to 14-18 µm thickness and 

collected onto SuperfrostTM plus glass slides (VWR). OCT compound was 

removed by a 15 min incubation in 37 °C PBS. Tissue sections were then 

blocked with 10 % (v/v) goat serum, 1 % (w/v) bovine serum albumin (BSA) in 

PBS containing 0.1 % (v/v) Triton X-100 for one hour at room temperature 

preceding the primary antibody incubation. Triton X-100 was omitted for 

staining of cell surface molecules. The following primary antibodies were 

used; Recoverin, Millipore, 1:1000, overnight, 4°C; Cone arrestin, Millipore, 

1:20,000, overnight, 4°C; PKCa, Millipore, 1:1000, overnight, 4°C; Prominin 1, 

Biolegend, 1:350, overnight, 4°C. CD73 Biolegend 1:250, overnight, 4°C or 

CD24 BD Bioscience 1:250, overnight, 4°C). The primary antibody was 

omitted for negative controls. Primary antibody staining was followed by 

several washes with PBS. Tissue sections were then incubated for 1h at room 

temperature with the corresponding secondary antibody diluted in blocking 

solution (Goat anti-rabbit AlexaFluor594, Invitrogen, A-11037, 1:300; Donkey 
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anti-sheep Cy3, Jackson, 1:500; Goat anti-mouse AlexaFluor594, Invitrogen, 

1:500). Hoechst 33342 (1:3000, Sigma-Aldrich) was applied for 10 min at 

room temperature to visualize nuclei, followed by three several washes with 

PBS prior to cover-slipping with the Citifluor AF-1 (Electron Microscopy 

Science) mounting medium. 

 

Dissociation of Retinal Cells/ESC retinal cultures and Flow Cytometry 

Neural retinae from wild-type eyes were isolated by micro-dissection and 

dissociated into a single cell suspension using enzymatic treatment with 

papain according to the manufacturer’s instructions (Worthington Biochemical, 

Lorne Laboratories, UK). In the case for mouse ESC cultures, differentiated 

whole embryoid bodies from day 12 and 27 of differentiation were used for 

analysis and treated similarly to retinal tissue. Eyes from a variety of 

developmental stages (E15.5, E17.5) and postnatal day, [P] 4, and [P] 8 as 

well adult were isolated and dissociated.  

 

Following dissociation cells were resuspended in FACS blocking buffer 

containing 1% BSA (w/v), phosphate-buffered saline and incubated for 45min 

on ice. The conjugated antibody or IgG isotype controls were added and cells 

were incubated in the dark on ice for additional 45min. The conjugated 

monoclonal antibodies were used for FACS analysis: PE-conjugated CD73 

(clone TY/11.8, eBioscience); Phycoerythrin-Cy7 conjugated CD24 (clone 

M1/69, BD Bioscience); PerCP-eFluor710 conjugated Prominin-1 (CD133, 

clone 13A4, eBioscience); AlexaFluor 647 conjugated CD47 (Biolegend, 

miap301); V450 conjugated CD15 (clone MC480, BD Horizon). Antibody 
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specificity for these monoclonal antibodies including Western blot analysis 

has been previously demonstrated. The same antibody clones were used for 

FACS and immunohistochemistry analyses. FACS antibodies were used 

according to manufacturer’s instructions.  

 

After staining the cells were centrifuged at 200g for 5min at 4°C and 

resuspended in PBS and kept on ice until analysis. FACS analysis was 

carried out using a BD Bioscience LSR II flowcytometer and FlowJo software 

(Tree Star, USA). FACS gates were set according to specific isotype controls 

and at least 20000 events of live cells were analysed. FACS compensation 

was carried out using BD FACSDiva software using single stained controls for 

each conjugated antibody. Data presented is from at least 3 biological 

replicates.  

 

Immunocytochemistry on dissociated and FAC-sorted ESC-derived cells 

Day 27 ESC retinal cultures were dissociated and sorted via biomarker panel 

as described above. 50000 cells were plated on poly-lysine/laminin coated 

coverslips and allowed to adhere for 30min at 37C. Coverslips were then 

washed once with PBS and adherent cells fixed with 4% PFA/PBS for 10min 

at room temperature. Following three times washing with PBS, samples were 

blocking in 10% FBS, 1% BSA/ PBS containing 0.1 % (v/v) Triton X-100 for 1h 

at room temperature. The blocking solution was replaced by staining solution 

containing anti-Ki67 antibody in 10% FBS, 1% BSA/ PBS (0.1 % (v/v) Triton 

X-100). The primary antibody was omitted for negative controls. Finally 

coverslips with adherent cells were then incubated for 1h at room temperature 
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with the secondary antibody diluted in blocking solution (Invitrogen, Goat anti-

rabbit AlexaFluor594) and counter stained 5min with DAPI. The percentage 

Ki67 positive cells in the experimental groups was established by Cellprofiler 

analysis software, using confocal tile scans and was verified by manual cell 

counts; > 100 cells were counted from 3 biological replicates for each 

condition. 

 

Microarray and lyoplate and screen for cell surface markers 

Postnatal day 4 Nrl.GFP microarray data were previously published [4] and 

deposited in the National Center for Biotechnology Information’s (NCBI; 

Bethesda, MD) Gene Expression Omnibus (GEO accession number E-MEXP-

3922). Array data were further analysed using Onto-express 

(http://vortex.cs.wayne.edu/ontoexpress/) and DAVID (Database for 

Annotation, Visualization and Integrated Discovery; 

http://david.abcc.ncifcrf.gov/home.jsp), in order to discover genes encoding 

cell surface CD markers.  

 

Retinal cell suspensions from P8 Nrl.GFP mice were prepared as described 

above and manufacturers recommendations were followed to conduct the 

antibody screen using lyoplates (BD). All centrifugation steps were carried out 

at 300g for 5min at 4°C. After retinal dissociation cells were resuspended in 

FACS staining buffer (BD) and adjusted to a cell concentration of 10 million 

cells per 1ml followed by transfer of the cell into round bottom 96-well plates 

(BD Falcon, Cat. No. 351177). 20 µl of reconstituted primary monoclonal 

antibody solution was then added to the cells, mixed and incubated on ice for 

Page 53 of 59



 

30 minutes. This was followed by several washing steps with stain buffer (BD 

Pharmingen) after which the cells were incubated for 30 min with the 

appropriate biotinylated secondary antibody (rat, 1.25ug/ml; Syrian hamster, 

1.25ug/ml; Armenian hamster, 0.6ug/ml; mouse, 1.25ug/ml). Following 

several washing steps 100 µl of Alexa Fluor® 647 Streptavidin (1:4000, 

0.5ug/ml) was added to each well containing cells stained with the biotinylated 

secondary antibodies and incubated on ice in the dark for 30min. Finally, 

stained cells were washed several times and analysed on a BD FACSCalibur. 

At least 30,000 events were collected for the analysis using FACSDiva 

software and monoclonal antibodies were assessed for their ability to label 

Nrl.GFP positive rod precursors.  

 

Cell cycle analysis 

Click-iT EdU analysis was carried out according to manufacturer’s 

recommendations (Life Technologies). Briefly, whole day 27 embryoid body 

derived retinal cultures were incubated with 10uM EdU for 2h at 370C. Cells 

were harvested as described above (Dissociation of Retinal Cells/ ESC retinal 

cultures and Flow Cytometry) and blocked in 1% BSA in PBS. Cells were 

pelleted and 100ul fixative (4% PFA) was added followed by a 15min 

incubation at room temperature. The cells were then washed with 1% BSA in 

PBS, pelleted and re-suspended in 100ul of 1xClick-iT saponin based 

permeabilization and wash reagent. After 15min of incubation at room 

temperature 1x Click-iT reaction cocktail was added to the sample and 

incubated for 30min at room temperature followed resuspension in 
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wash/permeabilization buffer. FACS analysis was carried out on a BD LSRII 

using unstained EdU negative cells as a control.   

 

For Ki67 assay day 27 ESC retinal cultures were dissociated and sorted via 

the biomarker panel as described above. 50000 cells were plated on poly-

lysine/laminin coated coverslips and allowed to adhere for 30min at 37oC. 

Coverslips were then washed once with PBS and adherent cells fixed with 4% 

PFA/PBS for 10min at room temperature. Following three times washing with 

PBS, samples were placed in blocking solution (10% FBS, 1% BSA/ PBS 

containing 0.1 % (v/v) Triton X-100) for 1h at room temperature. The blocking 

solution containing anti-Ki67 antibody was then added for 60 minutes at room 

temperature. The primary antibody was omitted for negative controls. Finally, 

coverslips with adherent cells were then incubated for 1h at room temperature 

with the secondary antibody diluted in blocking solution (Invitrogen, Goat anti-

rabbit AlexaFluor594) and counter stained for 5min with DAPI. The 

percentage Ki67 positive cells in the experimental groups was established by 

Cellprofiler analysis software, using confocal tile scans and was verified by 

manual cell counts. 

 

Retinal Cell Transplantations  

Donor cells for subretinal transplantation were derived from either CCE or 

ATCC-R mouse ESC lines, or from Nrl.GFP postnatal day 8 retinae (Nrl.GFP 

mice were a kind gift of A. Swaroop; [5]), and isolated as described above.  

For transplantation via PPr biomarkers, cells were incubated in blocking 

solution (1%BSA/PBS) for 1h and subsequently stained with specific 
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monoclonal antibodies (see above) directed towards the biomarkers 

according to manufacturer’s recommendations or respective isotype controls. 

ESC-derived photoreceptor precursors were isolated by FAC-sorting (BD 

FACS AriaIII) with gating determined for each individual experiment using 

single stained controls and combined isotype controls. GFP/YFP fluorescence 

of donor cells was not taken into consideration for cell isolation. Cells in 

experimental group “unsorted” were processed identically to labelled cells 

except they were ungated. Post sort cell viability was > 85% based on DAPI 

staining, and the sorted cells were resuspended at 200,000 live cells/µl in 

injection buffer (EBSS, DNaseI) after centrifugation at 200g for 10min using a 

Heraeus Labfuge 400R (Thermos, UK).  

 

Recipient mice (6-8wk, C57Bl/6J or Gnat1
-/-) were anaesthetised with an 

intraperitoneal injection of 0.2 ml of a mixture of Domitor (1 mg/ml 

(medetomidine hydrochloride, Pfizer Pharmaceuticals, Kent UK), ketamine 

(100 mg/ml, Fort Dodge Animal Health, Southampton, UK) and sterile water 

(ratio 5 : 3 : 42). Topical application of 1% tropicamide was used to dilate 

pupils of animals and injections were performed using a Zeiss operating 

microscope. Fundi were visualised using a contact lens system consisting of a 

coverslip and a drop of coupling medium liquid (Viscotears, Novartis 

Pharmaceuticals, Frimley, UK). The 34G injection needle loaded with 1 µl of 

cell suspension (containing 200,000 live FAC-sorted cells) was inserted under 

direct visualization through the superior equatorial sclera and guided into the 

sub-retinal space and towards the posterior pole, creating a self-sealing 

sclerotomy. Injection of the cell suspension in the superior hemisphere 
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resulted in a bullous retinal detachment around the injection site. Anaesthesia 

was reversed by administration of 0.2ml of Antisedan (atipamezole 

hydrochloride 0.10 mg/ml, Pfizer, Kent UK). The retinas of recipient mice were 

harvested 3 weeks post cell transplantation and processed for analysis. 

 

Counts of integrated photoreceptors 

The number of integrated photoreceptor cells in the ONL of recipient retinae 

was established by counting serial sections of the eye. CBA.YFP cells with a 

cell body located within the ONL and displaying at least one of the following 

structures: inner/outer segment, inner/outer processes, synapse in the OPL, 

were scored as new integrated photoreceptors. The total number of integrated 

cells per eye was determined by counting all the integrated CBA.YFP+ cells in 

alternate serial sections through each eye. All transplanted eyes that 

contained CBA.YFP cells in the ONL and/or the sub retinal space were 

included in statistical analyses and all data points are represented in graphs. 

Mann Whitney tests were used to compare median integration efficiencies 

between samples. 

 

Microscopy, Image Acquisition, and Processing 

For epifluorescent analysis retinal sections were viewed on a Zeiss Axioplan 2 

and images captured using a Jenoptik C14 digital camera (OpenLab, 

Improvision). A Zeiss LSM710 (Zen2009, Zeiss) was used for acquisition of 

confocal micrographs. Images were processed in Zen2009 (Zeiss), 

Photoshop CS4 (Adobe), Illustrator CS4 (Adobe) and FIJI. Double-labelling 

analysis was carried out in Adobe Photoshop CS4. 
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Transcript analysis by quantitative Real-Time Polymerase Chain 

Reaction (qRT-PCR) 

Total RNA was extracted from retinal induced embryoid bodies or from FAC-

sorted cell populations using the RNeasy Mini Kit (Qiagen, UK). An on-column 

DNA digest was performed to eliminate all trace amounts of genomic DNA 

from the samples. Following quantification of total RNA using a NanoDrop 

ND-1000 spectrophotometer, cDNA was generated by means of M-MLV-

reverse transcriptase (Promega, USA). Gene expression levels were 

established for Nt5e, Cd24a, Cd47, Cd15 and Prom1 using Applied 

Biosystems Taqman PCR reagents and probes on a 7500 Real-Time PCR 

System according to manufacturer’s recommendations. Gene expression data 

was normalized using Gapdh as a reference. The mean RQ values as well as 

RQmin and RQmax as measures of variation were calculated using ABI 7500 

software 2.0.1. 

 

Human retinal cultures 

Human fetal retinal tissue was micro-dissected and dissociated using a 

papain solution according to manufacturer’s recommendation (Worthington 

Biochemical Corporation, Lorne Laboratories, UK). Cells were seeded on 

poly-L-lysine (Sigma-Aldrich) and laminin (Sigma-Aldrich, 1mg/ml) coated 

glass coverslips and cultured in retinal differentiation media containing 

DMEM-F12 Glutamax (Invitrogen), 1 x N2 and 1 x B27 neural supplements 

(Invitrogen) and 10% FBS (Invitrogen) as well as penicillin/streptomycin 

(Invitrogen). Cell culture media was changed every 2-3 days.  
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